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ABSTRACT 
 

In this paper, we present an evaluation of learning algorithms of a novel rule evaluation support method for 
post-processing of mined results with rule evaluation models based on objective indices. Post-processing of mined 
results is one of the key processes in a data mining process. However, it is difficult for human experts to completely 
evaluate several thousands of rules from a large dataset with noise. To reduce the costs in such rule evaluation task, 
we have developed a rule evaluation support method with rule evaluation models that learn from a dataset. This 
dataset comprises objective indices for mined classification rules and evaluation by a human expert for each rule. To 
evaluate performances of learning algorithms for constructing the rule evaluation models, we have done a case study 
on the meningitis data mining as an actual problem. Furthermore, we have also evaluated our method with ten rule 
sets obtained from ten UCI datasets. With regard to these results, we show the availability of our rule evaluation 
support method for human experts. 
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1  INTRODUCTION 
 

In recent years, enormous amounts of data are stored on information systems in natural science, social science, and 
business domains. People have been able to obtain valuable knowledge because of the development of information 
technology. Data mining techniques combine different kinds of technologies such as database technologies, statistical 
methods, and machine learning methods, then, utilize data stored on database systems. In particular, if-then rules, 
which are produced by rule induction algorithms, are considered as one of the highly usable and readable outputs of 
data mining. For large datasets with hundreds of attributes including noise, the process often produces many 
thousands of rules. From such a large rule set, it is difficult for human experts to find out valuable knowledge which 
is rarely included in the rule set. 
To support such rule selection, many efforts use objective rule evaluation indices such as recall, precision, and other 
interestingness measurements (Hilderman, 2001; Tan, 2002; Yao, 1999) (Hereafter, we refer to these indices as 
"objective indices").  Further, it is difficult to estimate the subjective criterion of a human expert actually using a 
single objective rule evaluation index because his/her subjective criterion, such as “interestingness” or “importance,” 
for the purpose is influenced by the amount of prior knowledge and the passage of time.   
In this paper, we present an adaptive rule evaluation support method for human experts with rule evaluation models. 
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This method predicts the experts' criteria based on objective indices by re-using the results of the evaluations by 
human experts. Section 2 summarizes previous work; while in Section 3, we describe the rule evaluation model 
construction method based on objective indices. We present a performance comparison of learning algorithms for 
constructing rule evaluation models in Section 4. 
 

2  RELATED WORK 
 
Many research efforts have been performed to select valuable rules from mined large rule sets based on objective 
rule evaluation indices. Some of these works suggest indices to discover interesting rules from a large number of 
rules. 
Focusing on interesting rule selection with objective indices, researchers have developed more than forty objective 
indices based on number of instances, probability, statistical values, information quantities, distance of rules or their 
attributes, and rule complexity (Hilderman, 2001; Tan, 2002; Yao, 1999). Most of these indices are used to remove 
meaningless rules rather than to discover ones of real interest to a human expert because they cannot include domain 
knowledge. In contrast, a dozen of subjective indices estimate how a rule fits with a belief, a bias, or a rule template 
formulated beforehand by a human expert. Although these subjective indices are useful to some extent in discovering 
really interesting rules because of their built-in domain knowledge, they depend on the precondition that a human 
expert is able to clearly formulate his/her interest. Although interestingness indices were verified as to their 
availabilities on each suggested domain, nobody has validated their applicability on other domains or their 
characteristics as related to the background of a given dataset. 
Ohsaki et al. (Ohsaki, 2004) investigated the relation between objective indexes and real human interests, taking 
actual data mining results and their evaluations by human experts. In this work, the comparison shows that it is 
difficult to predict real human interest with a single objective index. Based on this result, we find indications of the 
possibility of logical combination of the objective indices to predict actual human interest to experts more exactly. 
 

3  RULE EVALUATION SUPPORT WITH RULE EVALUATION MODEL BASED 
ON OBJECTIVE INDICES 
 
In practical data mining situations, costly rule evaluation procedures are repeatedly done by a human expert. In these 
situations, useful results of each evaluation such as focused attributes, interesting combinations, and valuable facts 
are not explicitly used by any rule selection system, but tacitly stored in the human expert. To address this problem, 
we suggest a method to construct rule evaluation models based on objective rule evaluation indices as a way to 
describe criteria used explicitly by a human expert, re-using previous human evaluations. Combining this method 
with the rule visualization interface, we have designed a rule evaluation support tool, which can carry out more exact 
rule evaluation with explicit rule evaluation models. 
 

3.1  Constructing a Rule Evaluation Model 
 

We considered the process of modeling rule evaluation of human experts as the process of clarifying the relationships 
between human evaluation and features of inputted if-then rules. Based on this consideration, we decided that the 
rule evaluation model construction process can be implemented as a learning task. Figure 1 shows the rule evaluation 
model construction process based on the re-use of human evaluations and objective indices for each mined rule. 
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Figure 1. Overview of the construction method of rule evaluation models. 
 

In the training phase, the attributes of a meta-level training data set are obtained by objective indices such as recall, 
precision, and other rule evaluation values. The human evaluation for each rule is combined as classes of each 
instance. To obtain this data set, a human expert has to evaluate the whole or a part of the input rules at least once. 
After obtaining the training data set, its rule evaluation model is constructed by using a learning algorithm. 
In the prediction phase, a human expert receives predictions for new rules based on their objective index values. 
Because rule evaluation models are used for predictions, we need to choose a learning algorithm with high accuracy 
similar to the current classification problems. 
 

3.2  A Tool to Support Rule Evaluation with Rule Evaluation Models 
 

Our rule evaluation support tool implements interactive support during the time a human expert evaluates rule sets 
from mining procedure. The first time analyzing a rule set with a totally new task, a human expert sorts them based 
on some objective indices. Then he/she evaluates the whole or part. On the other hand, if there are previous 
evaluation results by human experts for the same or similar problem of input rules, possible predictions of the rules 
can be displayed to a human expert. To obtain the rule set predictions, this tool uses the procedure of the construction 
of rule evaluation models. Then a human expert corrects the displayed predictions during his/her evaluation. With the 
corrected evaluations by a human expert, the system rebuilds a rule evaluation model. 
With the above procedures, our rule evaluation support tool provides rule evaluation support for a human expert as 
shown in Figure 2. 
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Figure 2. Overview of the visual rule evaluation support tool based on objective indices and rule evaluation models. 
A human expert can use this rule evaluation support tool both as both a passive support tool with sorting functions 
based on objective indices and an active support tool with predictions of rule evaluation models learned from a 
dataset based on objective indices. 
 
4  PERFORMANCE COMPARISONS OF LEARNING ALGORITHMS FOR RULE 
MODEL CONSTRUCTION 
 

To predict human evaluation labels of a new rule based on objective indices more accurately, we have to construct a 
rule evaluation model with a higher predictive accuracy. 
In this section, we first present the result of an empirical evaluation with the dataset obtained from the result of a 
meningitis data mining (Hatazawa, 2000). Then, to confirm the performance of our approach on the other datasets, 
we evaluated five algorithms on ten rule sets obtained from ten UCI benchmark datasets (Hettich, 1998). Based on 
the experimental results, we discuss the following: accuracy of rule evaluation models, analysis of learning curves of 
the learning algorithms, and contents of the learned rule evaluation models. 
For evaluating the accuracy of the rule evaluation models, we have compared predictive accuracies on the entire 
dataset and Leave-One-Out validation. The accuracy of a validation dataset D is calculated with correctly predicted 
instances: 
 
Acc(D)=(Correct(D)/|D|)*100, where Correct(D) is the number of correctly predicted instances, and |D| is the size 
of the dataset. 
 
 The recall of class i on a validation dataset is calculated using correctly predicted instances about the class 
Correct(Di) as: 
 
 Recall(Di)=(Correct(Di)/|Di|)*100, where |Di| is the size of instances of class i. 
 
 Further, the precision of class i is calculated using the size of instances, which are predicted i as: 
 
 Precision(Di)=(Correct(Di)/Predicted(Di))*100. 
 
With regard to the learning curves, we obtained curves of accuracies of learning algorithms on the entire training 
dataset to evaluate whether each learning algorithm can perform in the early stage of rule evaluation process. 
Accuracies of randomly sub-sampled training datasets are averaged with 10 trials on each percentage of the subset. 
By observing the elements of the rule evaluation models on the meningitis data mining result, we consider the 
characteristics of the objective indices that are used in these rule evaluation models. 
In order to construct a dataset to learn a rule evaluation model, the values of the objective indices have been 
calculated for each rule by considering 39 objective indices as shown in Table 1. Thus, each dataset for each rule set 
has the same number of instances as the rule set. Each instance has 40 attributes including those of the class. 
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TheoryIndex Nabe (Abbreviation) [Reference of Literature]

P

Coverage (Coverage), Prevalence (Prevalence), Precision (Precision), Recall (Recall), Support
(Support),
Specificity (Specificity), Accuracy (Accuracy),Lift (Lift),Levarage (Leverage),
Added Value (Added Value) [Tan (2002)], Kloesgen's Interestingness (KI) [Kloesgen (1996)],
Relative Risk (RR) [Ali  (1997)], Brin's Interest (BI) [Brin (1997)], Brin's Conviction (BC) [Brin
(1997)],
Certainty Factor (CF) [Tan (2002)], Jaccard Coefficient (Jaccard) [Tan (2002)],
F-Measure (F-M) [Rijsbergen (1979)], Odds Ratio (OR) [Tan (2002), Yule's Q (YuleQ) [Tan
(2002)]

S Chi-Square Measure for One Quadrant (Chi-Square M1)[Goodman (1979)],
Chi-Square Measure for Four Quadrant (Chi-Square M4)[Goodman (1979)]

I

J-Measure (J-M) [Smyth (1991)], K-Measure (K-M) [Ohsaki (2004)], Mutual Information (MI)
[Tan (2002)],
Yao and Liu's Interestingness 1 based on one-way support (YLI1) [Yao (1999)],
Yao and Liu's Interestingness 2 based on two-way support (YLI2) [Yao (1999)],

N
Cosine Similarity (CSI) [Tan (2002)], Laplace Correction (LC) [Tan (2002)], Phi Corfficient
(Phi) [Tan (2002)],
Piatetsky-Shapiro's Interestingness (PSI) [Piatetsky-Shapiro (1991)]

D Gago and Bento's Interestingness (GBI) [Gago (1998)], Peculiarity (Peculiarity) [Zhong (2003)]  

Table 1. Objective rule evaluation indices for classification rules used in this research. P: Probability of the 
antecedent and/or consequent of a rule. S: Statistical variable based on P. I: Information of the antecedent and/or 
consequent of a rule. N: Number of instances included in the antecedent and/or consequent of a rule. D: Distance of 
a rule from the others based on rule attributes. 
 

We applied five learning algorithms to these datasets to compare their performances as a rule evaluation model 
construction method. We used the following learning algorithms from Weka (Witten, 2000): C4.5 decision tree 
learner (Quinlan, 1993) called J4.8, neural network learner with back propagation (BPNN) (Hinton, 1986), support 
vector machines (SVM) (Platt, 1999), classification via linear regressions (CLR) (Frank, 1998), and OneR (Holte, 
1993). 
 

4.1  Constructing Rule Evaluation Models for an Actual Datamining Result 
 

In this case study, we have considered 244 rules, which are mined from six datasets about six types of diagnostic 
problems as shown in Table 2. In these datasets, appearances of meningitis patients were considered as attributes and 
the diagnosis of each patient as a class. Each rule set was mined with its proper rule induction algorithm composed 
by a constructive meta-learning system called CAMLET (Hatazawa, 2000). For each rule, we labeled three 
evaluations (I: Interesting, NI: Not-Interesting, NU: Not-Understandable) according to evaluation comments 
provided by a medical expert. 
 

 
 
 

Dataset #Att. #Class #Mined rules #'I' rules #'NI' rules #'NU' rules
Diag 29 6 53 15 38 0
C_Course 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult_find 31 2 24 3 18 3
TOTAL - - 244 48 187 9  

Table 2. Description of the meningitis datasets and the results of the datamining 
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4.1.1  Comparison of Classification Performances 
 

In this section, we present the result of the accuracy comparison over the entire dataset, recall of each class label, and 
their precision. Because Leave-One-Out holds just one test instance and the remaining as the training dataset 
repeatedly for each instance of a given dataset, we can evaluate the performance of a learning algorithm to a new 
dataset without any ambiguity. 
The results of the performances of the five learning algorithms to the entire training dataset and the results of 
Leave-One-Out are also shown in Table 3. All the Accuracies, Recalls of I and NI, and Precisions of I and NI are 
higher than those of the predicting default labels. 
 

I NI NU I NI NU I NI NU I NI NU
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Leave-One-Out

Acc. Recall PrecisionAcc. Recall Precision
Over the entire training dataset

 

Table 3. Accuracies (%), Recalls (%), and Precisions (%) of the five learning algorithms. 
 

As compared to the accuracy of OneR, the other learning algorithms achieve equal or higher performances using 
combinations of multiple objective indices than by sorting with a single objective index. With regard to the Recall 
values over class I, BPNN has achieved the highest performance. The other algorithms exhibit lower performance 
than that of OneR because they tend to be learned classification patterns for the major class NI. 
The accuracy of Leave-One-Out demonstrates the robustness of each learning algorithm. The Accuracy (%) of these 
learning algorithms ranges from 75.8% to 81.9%. However, these learning algorithms have not been able to classify 
the instances of class NU because it is difficult to predict a minor class label in this dataset. 
 

4.1.2  Learning Curves of the Learning Algorithms 
 

Since the rule evaluation model construction method requires the mined rules to be evaluated by a human expert, we 
have investigated learning curves of each learning algorithm to estimate a minimum training subset to construct a 
valid rule evaluation model. The table in the upper portion of Figure 3 shows the accuracies to the entire training 
dataset with each subset of training dataset. The percentage of achievements of each learning algorithm compared 
with their accuracy over the whole dataset is shown in the lower section of Figure 3. 
As observed in these results, SVM and CLR, which use hyper-planes, obtained an achievement ratio greater than 
95% using less than 10% of training subset. Although a decision tree learner and BPNN could determine better 
classifiers to the entire dataset than the hyper-plane learners, they need more training instances to determine accurate 
classifiers. 
 

%training
  sample 10 20 30 40 50 60 70 80 90 100

J4.8 73.4 74.7 79.8 78.6 72.8 83.2 83.7 84.5 85.7 85.7
BPNN 74.8 78.1 80.6 81.1 82.7 83.7 85.3 86.1 87.2 86.9
SMO 78.1 78.6 79.8 79.8 79.8 80.0 79.9 80.2 80.4 81.6
CLR 76.6 78.5 80.3 80.2 80.3 80.7 80.9 81.4 81.0 82.8
OneR 75.2 73.4 77.5 78.0 77.7 77.5 79.0 77.8 78.9 82.4  

%training
sample 10 20 30 40 50 60 70 80 90 100

J4.8 82.7 85.3 92.8 88.7 93.2 92.7 93.2 92.9 94.0 97.9
BPNN 84.6 86.6 90.4 90.2 92.2 91.9 92.7 93.9 94.2 89.8
SMO 93.3 92.7 96.8 96.1 95.9 95.8 96.3 96.0 96.3 97.3
CLR 88.3 89.6 94.4 94.0 94.3 94.1 94.1 94.2 94.3 97.3
OneR 88.4 84.0 92.4 91.4 92.0 92.3 93.4 92.7 92.1 96.3  
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Figure 3. Learning curves of Accuracies (%) on the learning algorithms over subsampled training dataset: The left 
table shows accuracies (%) of each training dataset to the entire dataset. The left graph shows their achievement 
ratios (%). The right table shows recalls (%) and the graph shows their achievement ratios (%). 
 
In order to eliminate known ordinary knowledge from a large rule set, the non-interesting rules need to be classified 
correctly. The right upper table in Figure 3 shows percentage of Recalls on NI. The right lower chart in Figure 3 also 
shows the percentage of achievements of Recall of NI and compares it with the Recall of NI of the entire training 
dataset. From this result, we can eliminate the NI rules with rule evaluation models from SVM and BPNN although 
only 10% of rule evaluations are conducted by a human expert. This fact is guaranteed with no less than 80% 
precision for all learning algorithms. 
 

4.1.3  Rule Evaluation Models on the Actual Datamining Result Dataset 

 

In this section, we present rule evaluation models for the entire dataset learned using OneR, J4.8 and CLR. This is 
because they are represented as explicit models such as a rule set, a decision tree, and linear model set. 
 

 

Figure 4. Learned models for the meningitis data mining result dataset. 
 
Figure 4 shows rule evaluation models for the actual data mining results: The rule set of OneR is shown in Figure 4 
(a), Figure 4 (b) shows the decision tree learned with J4.8, and Figure 4 (c) shows linear models used to classify each 
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Figure 5. Top 10 frequencies of the indices used by the models of each learning algorithm with 10000 bootstrap 
samples of the meningitis datamining result dataset and executions. 
 
As shown in Figure 4 and Figure 5, the indices used in the learned rule evaluation models are not only taken from a 
group of indices that increase with correctness of a rule but also from different groups of indices. YLI1, Laplace 
Correction, Accuracy, Precision, Recall, Coverage, PSI and, Gini Gain are indices which are formally used on the 
models. The latter indices are GBI and Peculiarity, which sum up the difference in antecedents between one rule and 
the other rules in the same rule set. This corresponds to the comments provided by the human expert who said that he 
evaluated these rules not only according to their correctness but also to their interestingness based on his expertise 
 

4.2  Constructing Rule Evaluation Models on Artificial Evaluation Labels 
 

We have also evaluated our rule evaluation model construction method using rule sets obtained from five datasets of 
the UCI machine learning repository to confirm the lower limit performances on probabilistic class distributions. 
We selected the following ten datasets: Anneal, Audiology, Autos, Balance-scale, Breast-cancer, Breast-w, Colic, 
Credit-a, Waveform, and Letter. With these datasets, we obtained rule sets with bagged PART, which repeatedly 
executes PART (Frank, 1998) to the bootstrapped training subsample datasets. For these rule sets, we calculated 39 
objective indices as attributes of each rule. With regard to the classes of these datasets, we used three class 
distributions with multi-nomial distribution. Table 4 shows the process flow diagram for obtaining these datasets and 
their description with three different class distributions. The class distribution for "Distribution I" is 
P=(0.3,0.35,0.35) where pi is the probability of class i. Thus, the number of class i instances in each dataset Dj 
become piDj. Similarly, the probability vector of "Distribution II" is P=(0.3,0.5,0.2) and that of "Distribution III" is 
P=(0.3,0.65,0.05). 
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L1 L2 L3
(0.30) (0.35) (0.35)

Anneal 95 33 39 23 41.1
Audiology 149 44 58 47 38.9
Autos 141 30 48 63 44.7
Balance-scale 281 76 102 103 36.7
Breast-cancer 122 41 34 47 38.5
Breast-w 79 29 26 24 36.7
Colic 61 19 18 24 39.3
Credit-a 230 78 73 79 34.3
Waveform 518 146 192 180 37.1
Letter 6340 1908 2163 2269 35.8

(0.30) (0.50) (0.20)
Anneal 95 26 47 22 49.5
Audiology 149 44 69 36 46.3
Autos 141 40 72 29 51.1
Balance-scale 281 76 140 65 49.8
Breast-cancer 122 40 62 20 50.8
Breast-w 79 29 36 14 45.6
Colic 61 19 35 7 57.4
Credit-a 230 78 110 42 47.8
Waveform 824 240 436 148 52.9
Letter 6340 1890 3198 1252 50.4

(0.30) (0.65) (0.05)
Anneal 95 26 63 6 66.3
Audiology 149 49 91 9 61.1
Autos 141 41 95 5 67.4
Balance-scale 281 90 178 13 63.3
Breast-cancer 122 42 78 2 63.9
Breast-w 79 22 55 2 69.6
Colic 61 22 36 3 59.0
Credit-a 230 69 150 11 65.2
Waveform 824 246 529 49 64.2
Letter 6340 1947 4062 331 64.1

#Class labels
%Def. class

Distribution III

Distribution II

Distribution I

#Mined
Rules

 

Table 4. Flow diagram to obtain datasets and the datasets of the rule sets learned from the UCI benchmark datasets. 
 

4.2.1  Accuracy Comparison on Classification Performances 
 

In the above mentioned datasets, we have used the five learning algorithms to estimate if their classification results 
reach or exceed the accuracies of that of just predicting each default class. The left table of Table 5 shows the 
accuracies of the five learning algorithms applied to each class distribution of the three datasets. As shown in Table 5, 
J4.8 and BPNN always perform better for just predicting a default class. However, their performances suffer from 
probabilistic class distributions for larger datasets such as Waveform and Letter. 
 
 
 

Data Science Journal, Volume 6, Supplement, 10 May 2007

S293



J4.8 BPNN SVM CLR OneR
Anneal 74.7 71.6 47.4 56.8 55.8
Audiology 47.0 51.7 40.3 45.6 52.3
Autos 66.7 63.8 46.8 46.1 56.0
Balance-scale 58.0 59.4 39.5 43.4 53.0
Breast-cancer 55.7 61.5 40.2 50.8 59.0
Breast-w 86.1 91.1 38.0 46.8 54.4
Colic 91.8 82.0 42.6 60.7 55.7
Credit-a 57.4 48.7 35.7 39.1 54.8
Waveform 46.5 46.4 37.6 39.8 54.9
Letter 36.8 36.4 30.1 36.6 52.1

J4.8 BPNN SVM CLR OneR
Anneal 68.4 66.3 56.8 60.0 56.8
Audiology 60.4 61.1 43.6 55.0 56.4
Autos 63.1 64.5 52.5 53.2 57.4
Balance-scale 61.6 57.7 49.8 55.2 58.0
Breast-cancer 68.0 70.5 47.5 58.2 59.8
Breast-w 89.9 93.7 49.4 58.2 62.0
Colic 77.0 78.7 57.4 62.3 67.2
Credit-a 61.3 59.1 41.3 52.6 56.1
Waveform 61.2 57.8 52.9 53.0 59.7
Letter 51.0 51.0 50.4 50.4 57.0

J4.8 BPNN SVM CLR OneR
Anneal 74.7 70.5 67.4 70.5 73.7
Audiology 65.8 67.8 63.8 64.4 67.1
Autos 85.1 73.8 68.1 70.2 73.8
Balance-scale 70.5 69.8 64.8 65.8 69.8
Breast-cancer 71.3 77.0 66.4 65.6 77.9
Breast-w 74.7 86.1 73.4 68.4 74.7
Colic 70.5 77.0 65.6 60.7 73.8
Credit-a 70.9 70.0 65.2 65.2 71.3
Waveform 74.4 69.3 64.2 64.2 69.3
Letter 64.1 64.3 64.1 64.1 68.3

Distribution I

Distribution II

Distribution III

   

J4.8 BPNN SVM CLR OneR
Anneal 20 14 17 29 29
Audiology 21 18 65 64 41
Autos 38 28 76 77 70
Balance-scale 12 14 15 15 32
Breast-cancer 16 17 22 41 22
Breast-w 7 10 10 18 14
Colic 8 8 9 22 14
Credit-a 9 12 16 30 28
Waveform 60 52 46 355 152
Letter 189 217 - 955 305

J4.8 BPNN SVM CLR OneR
Anneal 29 20 16 42 46
Audiology 36 45 - 61 67
Autos 49 39 49 123 88
Balance-scale 81 84 69 221 168
Breast-cancer 31 28 102 40 46
Breast-w 14 11 23 30 26
Colic 24 20 36 42 36
Credit-a 51 74 - 134 109
Waveform 251 355 763 - 533
Letter 897 >1000 451 - >1000

J4.8 BPNN SVM CLR OneR
Anneal 54 58 64 76 -
Audiology 64 73 45 76 107
Autos 66 102 84 121 98
Balance-scale 118 103 133 162 156
Breast-cancer 50 31 80 92 80
Breast-w 44 36 31 48 71
Colic 28 24 46 30 42
Credit-a 118 159 - - 173
Waveform 329 425 191 - 601
Letter >1000 >1000 998 >1000 >1000

Distribution I

Distribution II

Distribution III

 

Table 5. Accuracies (%) on entire training datasets labeled with three different distributions (left table). Number of 

minimum training sub samples for outperforming the Accuracy (%) of default class (right table). 

 

4.2.2  Evaluation of Learning Curves 
 

Similar to the evaluations of the learning curves on the meningitis rule set, we have estimated minimum training 
subsets for a valid model, which works better for just predicting a default class. The right table in Table 5 shows the 
sizes of the minimum training subsets, which can help construct more accurate rule evaluation models than 
percentages of a default class formed by each learning algorithm. With smaller datasets, these learning algorithms 
have been able to construct valid models with less than 25% of the given training datasets. However, for larger 
datasets such as Waveform and Letter, they need more training subsets to construct valid models because their 
performance with the entire training dataset fall to the percentages of default class of each dataset as shown in the 
left table in Table 5. 
 

5  CONCLUSION 
 

In this paper, we have described the evaluation of five learning algorithms for a rule evaluation support method with 
rule evaluation models to predict evaluations for an if-then rule based on objective indices by re-using evaluations by 
a human expert. Based on the performance comparison of the five learning algorithms, rule evaluation models have 
achieved higher accuracies for just predicting each default class. Considering the difference between the actual 
evaluation labeling and the artificial evaluation labeling, it is shown that the evaluation of the medical expert 
considered particular relations between an antecedent and a class another antecedent in each rule. By using these 
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learning algorithms for estimating the robustness of a new rule with Leave-One-Out, we have achieved accuracy 
greater than 75.8%. By evaluating learning curves, SVM and CLR were observed to have achieved an achievement 
ratio greater than 95% using less than 10% of the subset of the training dataset, which includes certain human 
evaluations. These results indicate the availability of this rule evaluation support method for a human expert. 
In the future, we will introduce a selection method of learning algorithms to construct a proper rule evaluation model 
according to each situation. We also apply this rule evaluation support method to estimate other data mining results 
such as decision tree and rule set and combine them with objective indices, which evaluate all the mining results. 
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