
PRACTICE PAPER

CORRESPONDING AUTHOR:
Kenneth E. Schackart III

Global Biodata Coalition,
12 quai Saint-Jean 67080,
Strasbourg, France

schackartk1@gmail.com

KEYWORDS:
computational reproducibility;
open science; research
software; FAIR data; machine
learning workflow; biodata
resource inventory

TO CITE THIS ARTICLE:
Schackart III, K E, Imker,
H J and Cook, C E 2024
Detailed Implementation
of a Reproducible Machine
Learning-Enabled Workflow.
Data Science Journal, 23: 23,
pp. 1–14. DOI: https://doi.
org/10.5334/dsj-2024-023

Detailed Implementation
of a Reproducible Machine
Learning-Enabled Workflow

KENNETH E. SCHACKART III

HEIDI J. IMKER

CHARLES E. COOK

*Author affiliations can be found in the back matter of this article

ABSTRACT
Machine learning (ML) and advanced computational methods are powerful tools for
processing and deriving value from large data volumes. These methods are being
developed and deployed rapidly, but best practices are still evolving regarding code
and data standards, leading to irreproducibility of ML-enabled research. In this Practice
Paper, we describe our efforts to make a ML-enabled research project to create a global
inventory of biodata resources open and reproducible. To contribute to community
conversations on evolving norms and expectations, we present our experiences as a
practical, real-world case study that includes the implementation details as well as our
overall approach and subsequent decisions. Our goal in openly sharing this experience
is to provide a concrete example that others may consider as they look to vet, adapt,
and adopt similar strategies to make their own work open and reproducible.

mailto:schackartk1@gmail.com
https://doi.org/10.5334/dsj-2024-023
https://doi.org/10.5334/dsj-2024-023
https://orcid.org/0000-0002-1658-3699
https://orcid.org/0000-0003-4748-7453
https://orcid.org/0000-0002-4145-8048

2Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

1. INTRODUCTION
There is broad concern over the lack of reproducibility in science (Baggerly and Coombes 2009;
Peng and Hicks 2021), with many believing there is a crisis (Baker 2016). While the extent is
contested (Fanelli 2018; Leek and Jager 2017), concerns about scientific reproducibility are
ongoing, and flawed study designs and irreproducible analyses play a role. There have been
efforts to encourage better practices, such as pre-publication of study protocols, analysis plans,
and all code (Haring and Bell 2018). However, as argued in Haring (2018), while the different
biases in production and reporting of research are largely identifiable and modifiable, continued
methodological training for early career researchers is also crucial.

Use of machine learning (ML) in biosciences has proliferated so rapidly that it is difficult for
adoption of good practices and proper training to keep pace. Open Science practices, such as
public release of code and data, aim to remedy this (Walters 2020). While access to code and
data are necessary for reproduction of computational results, such access does not guarantee
that results can be reproduced. Indeed, the recent Ten Years Reproducibility Challenge
investigated the ability to rerun code and reproduce results from projects ten years or older,
and the issues involved resulted in a useful ‘reproducibility checklist’ (Perkel 2020). Additionally,
efforts have been made to set standards for reproducible code, including for ML, and they
serve as rubrics for assessing reproducibility (Heil et al. 2021). What seems lacking, however,
are detailed examples of practical implementations. This work provides such an example by
explaining how a ML-enabled study was planned and executed with reproducibility as an
explicit goal from the onset of the project.

In our example, the study is a ML-enabled inventory of biodata resources identified from the
scientific literature. Biodata resources are biological, life sciences, and biomedical databases
that archive research data generated by scientists, serving as the repositories of record for
particular data types; as well as knowledge bases that add value by aggregation, processing,
and expert curation. These resources are connected through extensive exchanges of data and
form a distributed global infrastructure. They are crucial for the entire life science research
endeavor and are used ubiquitously.

However, the infrastructure is not well-described. A number of existing resource registries, such
as re3data and FAIRsharing, have done a commendable job of cataloging resources either
through self-registration by the resource owner or through addition by a curator. However,
neither the number of resources nor their location has been systematically explored. A better
understanding of the scale of the infrastructure, as provided by this inventory, will aid funders
and other stakeholders in addressing challenges to sustainability faced by the infrastructure.
The methods and results of creating this inventory are fully described elsewhere (Imker et
al. 2023). However, during preparation of that manuscript we realized that there were many
additional details to share about how we attempted to design and implement a reproducible
workflow—details we wish we had found in the literature ourselves.

As context for this reproducibility case study, the following provides an outline of the research
project (Figure 1), and we invite readers to access the openly available article referenced above
for additional details. Briefly, the study first utilized the API of Europe PMC (europepmc.org)
(The Europe PMC Consortium 2015), which is a data resource that archives a large corpus of
medical and life sciences publications (Ferguson et al. 2021). Europe PMC provides both individual
(browser-based) and automated (API-based) queries. Our workflow started with a targeted
query to the Europe PMC API to retrieve the titles and abstracts of publications for which both
a URL and the word ‘data,’ ‘database,’ or ‘resource’ are present in the title and/or abstract. The
results of the query represented publications that might describe a biological (biodata) resource.
A 10% random subset of publications from this initial result was manually classified as describing
or not describing a biodata resource (see Imker et al. 2023 and additional documentation in
Imker and Schackart 2023). Those that did describe a biodata resource were curated to label
the resource’s common name (e.g., PDB) and full name (e.g., Protein Data Bank) (Berman et al.
2000). Recently, BERT (Bidirectional Encoder Representations from Transformers) performed well
on NLP tasks (Wolf et al. 2020). Several BERT models pre-trained on biomedical corpora (e.g.,
SciBERT, PubMedBERT, BioMed-RoBERTa-RCT, etc.) were selected from huggingface.co and fine-
tuned for the classification (predicting if the article describes a biodata resource) and named-
entity recognition (predicting common and full name) tasks. Further downstream processing was
performed, including URL extraction and HTTP status checking, before finalizing the inventory.

https://europepmc.org

3Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

During the study, a strong emphasis was placed on Open Science, reproducibility, and
robustness of the codebase and documentation for both philosophical reasons (in support of
Open Science) and practical reasons (enabling future updating of the inventory). The entire
process, from data splitting, model training and selection, to all downstream processing, is
encapsulated in a Snakemake workflow (Köster and Rahmann 2012). This allows reproduction
of the entire analysis with a single command. Strong standards of code quality were developed
and are enforced through the use of static code checking and automated testing. Additionally,
significant efforts were made to make all data products findable, accessible, interoperable, and
reusable (FAIR) (Wilkinson et al. 2016).

When we began the project, we turned to the literature for robust examples of reproducibility
that implemented both open data practices and code standards. Several articles contain
excellent conceptual overviews (e.g., Wilson et al. 2017; Gruning et al. 2018; and a recent
synthesis in Ziemann et al. 2023), and examples of efforts to implement Open Science practices,
including open data and/or computational reproducibility, have been reported from many
domains (e.g. Bush et al. 2022 in neuroimaging; Figueiredo et al. 2022 in ecology; and Kim
et al. 2018 in bioinformatics). These examples show how reports often focus on a few critical
aspects of implementing Open Science practices; for example, although Bush et al.’s work
didn’t provide the explicit code details we were interested in, it provides excellent administrative
considerations like accounting for trade-offs. Figueiredo et al. provides a clear and detailed ‘kit’
for using computational notebooks in order to both show the value of reproducible workflows as
well as enable their adoption. In Kim et al.’s article, they first describe their efforts to reproduce
a study in which the original authors had taken steps towards reproducibility, the challenges
faced despite those steps, and then their own iteration towards greater reproducibility. While
there is similarity between these efforts and our goals, when it comes to implementation, there
are many details which are inherently different, if described at all, because of variation in the
nature of the work and relevant packages and tools. Not surprisingly, we were unable to locate
implementation details that mapped exactly to our project and goals, so we adapted to fit
our scenario. As a ML project, we found Heil et al.’s rubrics especially helpful in providing a

Figure 1 Flowchart of overall
study design to identify
biodata resources from the
scientific literature. The fine-
tuning procedure is not shown.
Reproduced unmodified from
(Imker et al. 2023) under
Creative Commons Attribution
License.

4Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

framework for us to consider and specific goals to aim towards. We recognize that there are
other ways of attaining these goals, and projects that have subsequently cited Heil et al.’s
standards show this diversity (e.g., Wanner et al. 2023; Kaczmarzyk et al. 2023; and Heil et al.
2023). We offer our experience as just one example of how to make a computationally heavy
study reproducible and open. We provide the reasoning behind the various considerations,
which may be applicable to other research projects. We also provide specific examples of how
those were realized in this study.

2. HAVE A PLAN
‘A goal without a plan is just a wish,’ wrote Antoine de Saint-Exupéry in The Little Prince (de
Saint-Exupéry 1943). As with any other part of a research project, planning ahead makes
the path to achieving reproducibility as smooth as possible. To this end, early in the project
we developed an Open Science Implementation Plan (Imker and Schackart 2022). In this
document, we outlined the goals for reproducibility and how we planned to achieve them.
These goals were organized into four groups: reproducibility of methods, code standards, data
standards, and external review/validation (Figure 2).

By considering these topics early in the project, we explicitly defined what expectations we
had for our Open Science goals. Keeping these goals in mind helped ensure that the effort and
resources required to obtain them was anticipated and considered a core aspect of the project.
This minimized the accumulation of technical debt that would have been time-consuming and
difficult to address near the end of the project.

3. REPRODUCIBILITY OF METHODS
We found the reproducibility standards (bronze, silver, gold) defined by Heil et al. (2021)
useful for ranking reproducibility levels. In our case, bronze alone was not acceptable (data
published and downloadable, models published and downloadable, source code published
and downloadable). Obtaining silver was acceptable (bronze + dependencies set up in a single
command, key analysis details recorded, analysis components set to deterministic), but the
gold standard was our goal (silver + entire analysis reproducible with a single command).

3.1. MEETING THE BRONZE STANDARD

The bronze standard of reproducibility is characterized by having the following published and
downloadable: all data necessary for reproduction, trained models, and source code.

Data availability and, more broadly, FAIRness (findability, accessibility, interoperability, and
reusability) will be further discussed in a later section. To address the minimum requirements of
the bronze standard, all data are available for download from the project’s Github and Zenodo
repositories.

Figure 2 Graphical overview
of the objectives of the study
and the tools and methods
used to address them
regarding reproducibility, code
quality, and data standards.
The execution of these
objectives was assessed by
external review and validation.

5Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

Model availability is addressed in a few ways. All of the models used in this project were pre-
trained by other groups and made available on HuggingFaceHub (HFHub, https://huggingface.co/).
As part of model training, these pretrained models were fine-tuned to various tasks (sequence
classification and token classification). These fine-tuned models are made available on HFHub.

All source code is stored in two places. First, GitHub serves as a ‘living’ repository. An important
aspect of Open Science is providing a place for open discussion (and criticism) of methods. The
GitHub Issues system permits and encourages free and open commentary of computational
methods. However, GitHub repositories are not immutable. It is important to have the methods,
as described in the original publication, preserved and available, so the source code used to
obtain the results in the associated full publication mentioned above has been archived as a
code release on GitHub and also deposited into the Zenodo archive unmodified.

3.2. MEETING THE SILVER STANDARD

The silver standard requires, in addition to those aspects listed in the bronze standard, that
all dependencies can be installed and set up with a single command, key analysis details are
recorded, and all analysis components are deterministic (not random).

A common challenge for reproducibility is having simple installation procedures. To reach the
silver standard in this regard we wanted it to be possible to install all dependencies with a single
command. For Python-based projects that is often possible with the command ‘pip install -r
requirements.txt’ (pypi, n.d.). However, sometimes other dependencies not covered by pip need
to be installed. To simplify this step, we utilized Make (GNU Make v42.1) (GNU Make 1988). While
Make is a powerful tool intended for the control of executable files, we use it only for effectively
creating aliases for shell commands. In the case of installation, we provide a Make target called
‘setup’. By doing so, the user can simply type ‘make setup’ and shell commands are executed
to install all dependencies, including running pip (v21.1.2) for installing Python dependencies
(pypi, n.d.) and renv (v0.14.0) for installing R dependencies (Ushey 2022).

In addition to providing a simple pip install procedure we created a conda installation
procedure (Conda 2017). While using pip to install dependencies at the user level is sufficient in
isolated environments, such as Google Colab (https://colab.research.google.com/), it can lead
to conflicts on other systems if a virtual environment is not used. Conda (v22.9.0) provides an
isolated environment in which the project-specific dependencies are installed. By providing a
conda environment description (yaml) file, it is possible to recreate the conda environment in
a single command.

Beyond virtual environments, containers such as Docker (Merkel 2014) are often used for
documenting and sharing computational environments directly. However, containers can be
challenging to use in certain environments. We wanted this project to be reusable for people
with a wide range of technical skills, including those who may not have ready access to a robust
computational infrastructure. This is especially important when thinking of potential users on a
global scale, whose access to resources will be highly variable. This dependence on access to
computational resources has been noted as an important part of data democratization (Hook
and Porter 2021). Here, we designed this project to be run on Google Colab for its low barrier to
entry and its provision of graphics processing units (GPUs) for free use. Unfortunately, Colab does
not natively support common container services such as Docker. However, by providing several
options for dependency installation we hope that future users can find one to suit their needs.

Sufficient documentation of ‘key analysis details’ is subjective. To satisfy this requirement, in
addition to an overview README that describes the entire repository, we provide README files
in every directory within the repository. These explain what the various files/scripts are and how
they relate to each other. Since 2021 GitHub supports the use of Mermaid, a JavaScript-based
diagramming and charting tool (Sveidqvist 2014), in markdown files, which we leverage to
create informative flowcharts illustrating workflow logic.

An often overlooked key to reproducibility in computational methods, particularly ML methods,
is seeding pseudo-random processes such that they are deterministic (Ahmed and Lofstead
2022; Heil et al. 2021). The random numbers generated by pseudo-random number generators
can have significant effects on the trained model and model performance (Ahmed and Lofstead
2022). So, to make the process reproducible, we added options to use seeding to make the
processes deterministic.

https://huggingface.co/
https://colab.research.google.com/

6Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

3.3. MEETING THE GOLD STANDARD

The gold standard implies that the entire analysis can be run with a single command (Heil et
al. 2021). Such single-command analyses require the use of a workflow manager, of which
there are several options. We utilize Snakemake (v7.1.1), which facilitates automation through
the definition of ‘rules’ or steps that take inputs and generate outputs. By stating what outputs
are desired Snakemake creates a directed acyclic graph of which rules must be executed to
create the specified output. For instance, in this project we specify that we would like the
final output file to contain the classified articles along with extracted metadata. If the final
output is not present, Snakemake executes all necessary steps in the pipeline including data
splitting, model training and comparison, classification and Named Entity Recognition (NER),
and all downstream processing. With the help of a Make alias, the Snakemake workflow for
reproducing all results can be run with the single command ‘make train_and_predict’.

It is important to be able to reproduce all results from the raw data to final results, including
model training. However, model training is resource intensive, and may require the use of
specialized hardware such as a GPU for training to be performed in a reasonable amount of
time. Requiring that all models be trained to reproduce results may be a practical challenge to
reproducibility. To minimize the computational resources necessary for reproduction all fine-
tuned models are available in HFHub. If the fine-tuned models are downloaded and present
when Snakemake is run then Snakemake will not execute model training.

4. BEYOND REPRODUCIBILITY
The goal of reproducibility is to allow anyone to reproduce the results of published research. We have
provided, as described above, a system that allows the results of the inventory of global biodata
resources to be reproduced. However, this project was also designed to allow the entire analysis
to be rerun periodically. Strictly speaking, this goes beyond reproduction since the underlying
data is expected to change as more publications are added to the corpus of literature archived in
Europe PMC, so the methods developed need to be generalizable. Generalizability benefits from
the same considerations as reproducibility but tends to include additional challenges.

We approached generalizability with the same standards as reproducibility and wanted to make
updating the inventory possible with a single command. To this end we designed a second
Snakemake workflow for periodically updating the inventory. For this process the trained models
can be automatically obtained from Zenodo using the setup command. The previously best
performing models for each task are used, which eliminates the need for retraining and evaluation.

5. CODE STANDARDS
We’ve taken the philosophy that the results of a computational research project are no more
trustworthy than the code used to produce them. Trustworthiness of code is dependent on
code quality, including considerations such as readability and robustness. In this section we
will describe the measures taken to ensure code quality such as code formatting, static code
checking, and automated testing.

5.1. CODE FORMATTING

To accomplish Open Science, accessibility of code should not be limited to code being publicly
available. True accessibility requires that code also be readable and well documented. A good
first step is to utilize a code formatter, which all modern programming languages have. We used
yapf v0.31.0 to format all of the Python code in this project (Google Inc.). Similarly, Snakemake
files were formatted with snakefmt v0.6.0, and R files were formatted with styler v1.7.0 (Hall
and Letcher 2020; Müller et al. 2021). These steps are meant to ensure that all components of
the project are readably formatted and documented to maximize their ease of use for others.

5.2. STATIC CODE CHECKING

Another measure taken to increase code robustness is static code checking. Again, the code
checking tools available will depend on the language. We utilize the linters pylint v2.8.2 and
flake8 v.3.9.2 to check all Python code to ensure that community code standards are upheld
and to detect code smell (patterns indicative of potential problems) (Thénault 2001; Ziade and

7Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

Cordasco 2011, p. 8). Many of the items that these linters consider can greatly improve code
quality and readability. Some examples of considerations of the linters are: line lengths must
be limited to predefined thresholds, within any context (e.g., a function) there should not be too
many variables, and all functions should have docstrings. These, and many other requirements,
encourage developers to write cleaner, more readable code.

Additionally, while type annotations are not required in the Python community, we implemented
them as they provide a number of benefits. Type annotations provide built-in documentation
by defining the data types of all inputs and outputs of functions. A lesser discussed benefit
of type annotations is that they provide an enhanced integrated development environment
(IDE) experience since the IDE has more knowledge of the variables and can give better help
messages, syntax highlighting, and autocompletion. The final benefit of type annotations is
prevention of unforeseen bugs when they are used in conjunction with a static type checker.
We used mypy v0.812 to check type compatibility within all our Python code (Lehtosalo 2012).
This can significantly reduce the chances of encountering bugs that occur not at compile time
(since Python is interpreted and dynamically typed), but instead at runtime, which can be more
difficult to resolve and may not show up until running the code at a later time.

While static code checking has many benefits, programmers need not strictly adhere to all
suggestions made by the code checkers. Luckily, most tools are configurable. Importantly, the
user can disable certain warnings. To ensure portability of these configurations, most code
checkers allow for configurations to be defined in a resource configuration (rc) file rather than in
global or user settings. Accordingly, we have included our rc files in the GitHub repository so that
when someone else runs the code checkers on our published code they yield the same results.

5.3. TESTING

A crucial software engineering practice that is often absent from research code is testing.
Testing in all of its forms: unit, integration, and end-to-end, defines the specifications of a piece
of software and ensures that the software meets those specifications when the tests pass. This
has numerous benefits that cannot be understated.

One of the primary benefits is that tests serve as a contract, which is a form of documentation.
A unit test of a function explicitly states what kinds of input are expected and what kinds of
outputs will be produced. For documentation, the only thing better than telling what a function
does (through comments and docstrings) is showing through tests (asserting that when
certain inputs are provided, the expected output is returned). While the descriptions provided
in docstrings and comments are what the developer intends the software to do, a passing test
demonstrates that it indeed does what was intended. Conversely, anything not covered in the
test cases is where the contract ends. Tests ensure that the code can do what it says.

From an Open Science perspective testing is particularly valuable. Not only does testing provide
more detailed documentation than could ever be provided in an article’s methods section, but
it facilitates community feedback and contributions. Making changes to software always poses
the risk of disrupting previous functionality. When considering applying community feedback or
contributions this is problematic. However, with strong test coverage, developers can have more
confidence that updates do not introduce breaking changes, as long as all previously passed
tests still pass. Indeed, they provide a clear avenue for addressing bugs which may be caught
by the community. Developers can add another test case that exposes the bug, then modify the
code such that the new test and all previous ones pass. This is effectively amending the contract
provided by the tests so that it is more comprehensive. Without tests in place developers would
have to check that the code still behaves as described manually. Such checking is so error prone
that many researchers may be hesitant to implement changes suggested by others.

Of course, adding strong test coverage does require more work than, for instance, implementing
static code checks or formatting. Without tests, though, code must be manually assessed to
ensure that a given piece of software is able to perform its intended task, and there is a barrier
to implementing community feedback. Further, a lack of tests is a form of technical debt, and
the price is paid when trying to refactor or fix bugs.

Pytest v6.2.4 was used as a testing framework for all Python code in this project (Krekel 2004).
Pytest plugins for flake8, pylint, and mypy are used to include static code checks of each file
as part of the test suite (pytest-flake8 v1.0.7, pytest-pylint v0.18.0, pytest-mypy v0.8.1) (Bader

8Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

2016; Gee 2015; Lockhert, 2015). This makes it such that the test suite cannot pass without all
static checks passing. Additionally, most functions have associated tests, and most scripts also
have end-to-end tests that ensure that they properly reject bad inputs and produce correct
output when given good input. While we aim to have good test coverage, some functions and
scripts are not comprehensively tested. This is generally the case for functions/scripts that take a
very long time to run, such as the actual process of model training. Additionally, the Snakemake
workflows developed are not formally tested using an automated testing framework, although
it would be best to do so and we may implement this at a later time.

5.4. CONFIGURABILITY

Our aim was that the users of code, whether for reproducibility, generalization, or separate
implementation, would not need to edit source code to change its behavior within the intended
use cases. Parameters that may change could be supplied as inputs/arguments instead. Often,
this means that paths to input files should not be hard-coded but rather passed in when calling
a script. In terms of ML projects, this also often applies to hyperparameters.

One solution to this is to use parameterization extensively and, in order to make the analyses
reproducible, to store the parameters used in configuration (config) files. By doing so, others
can see what parameters were used to generate the results. This process additionally gives
future users a clear indication of what parameters are likely okay to change, all without them
having to edit any source code.

We store a large number of parameters in config files such as input/output directories, training
parameters, and locations of fine-tuned models. To train a new model and compare its performance
to existing models, a new row need simply be added to a tab-separated config file. The README
file in the config/ directory describes the acceptable ranges of values allowed in the config files,
such as a description of what kind of models are compatible with the existing workflow.

Snakemake also makes extensive use of config files, and the config files described here are
formatted such that Snakemake can utilize them when executing the workflow. So, to change
the behavior of the workflow (again, within the expected range of uses), only config files need to
be edited.

6. DATA STANDARDS
6.1. SOURCE SELECTION

Both code and data were integral components of this project and both required consideration
for reproducible outcomes. To create an open inventory as a product we aimed to reuse and
create data that aligned with the FAIR guiding principles (Wilkinson et al. 2016). The primary
data source needed was bibliographic metadata. There are several commercial sources of
bibliographic metadata such as Dimensions (Digital Science), Scopus (Elsevier), and Web of
Science (Clarivate Analytics). However, these resources require a subscription which would
limit others’ ability to reproduce and reuse our workflow and neither are they openly licensed.
Therefore, we opted to use the open metadata available from Europe PMC as the data source
for creating the inventory. Although not as exhaustive as the commercial options mentioned,
Europe PMC covers a large swath of the life sciences; as of October 2023, high quality,
interoperable metadata, including titles and abstracts, was available for over 40 million articles.
Additionally, Europe PMC offers robust and well-documented APIs that facilitate access and are
especially useful for a reproducible pipeline. Although we know that some biodata resources
will be missed due to articles being published outside of the ~4000 journals available in Europe
PMC, we felt that this tradeoff was justified in order to optimize openness and reproducibility.

6.2. ADDRESSING DATA FINDABILITY AND ACCESSIBILITY

Depending on context, anyone interested in reusing the data from this project might wish to
start at different points. We therefore offer multiple options. The exact query string we used
can be rerun to obtain results from Europe PMC. Additionally, since bibliographic databases may
change slightly over time (e.g. records added, removed, or corrected), query results themselves
(PMID, title, abstract) may be of use to reproduce our results using the exact same data. There is
also the labeled training data that was used to train the various models, a preliminary inventory

9Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

that is subjected to selective review by a curator, and, finally, the primary data product for this
project is the final inventory itself. The query string, query results, training data, preliminary
inventory, and the final inventory are all available within the project’s GitHub repository and
were archived for long-term preservation and persistent reference in an associated Zenodo
deposition once the article was accepted for publication. Zenodo provides a DOI and relies on
the DataCite metadata schema, which allows the dataset to be found within Zenodo’s search
interface, DataCite’s central metadata store, and via internet search engines such as Google.

6.3. ADDRESSING DATA INTEROPERABILITY

For the final inventory, we retained unique article identifiers (PMIDs) to allow easy extraction
of additional metadata or for access to the full text, when available, from either Europe PMC or
PubMed Central. Additionally, we logged URL status codes per specification RFC 9110 (Fielding
et al. 2022), extracted countries from author affiliations following ISO 3166 (ISO 3166 n.d.),
and retained geo coordinates for IP address look-ups, when available. While it would have been
ideal to include a persistent identifier for the biodata resources located (e.g., ROR ID or DOI),
most resources do not have an identifier, which perfectly illustrates the challenge of trying to
locate these resources in the first place.

6.4. ADDRESSING DATA REUSABILITY

In addition to the efforts towards interoperability described above, we also maintained a
structured format throughout and used the CSV format for preservability and to ensure ease of
reuse. These files are accompanied by a plaintext README file that includes a description of each
variable as well as data collection details and licensing. By using open data from Europe PMC,
we were able to release the data with CC0 licensing, thus allowing the broadest reuse possible.
Together, this documentation, the repository’s Github history, and Zenodo’s commitment to
long-term archiving all provide provenance.

Finally, to further extend the potential for reuse, we plan to provide identified biodata resources
to Europe PMC as community annotations. This will allow easy bulk access to the identified
resources as well as their associated articles. The annotations can be used for several purposes,
for example, mining articles with full text available or analysis of the intersection between
these annotations and the many other annotation types available within Europe PMC.

7. EXTERNAL REVIEW/VALIDATION
In the Open Science Implementation Plan that we drafted (see Section 2 above), we also
included a desire to have a party external to the team review the products of the study. Working
within a team inherently provides a mechanism for internal feedback, but review by another
person outside of the project helps reveal implicit knowledge developed during the project that
would otherwise remain hidden to potential reusers. For example, team members may, without
realizing it, adopt terms or abbreviations that are not well-known outside of the project.

This section of the Open Science Implementation Plan was not particularly well-developed
beyond acknowledging that such a review would be ideal, as noted by others (Coburn and
Johnston 2020; Heil et al. 2021), and that this role is included in the CRediT taxonomy (Allen
et al. 2019). As we moved closer to having products finalized, we had a better sense of what
sorts of reviews will be most valuable. We recruited an individual who reviewed the code and
documentation in detail and ran nearly all the code available in the open archive. We budgeted
40 hours for this work, which was easily consumed given review effort required. Others may
wish to allocate even more resources to this activity, which we found extremely helpful for
identifying errors and pointing out gaps in our documentation. We formally acknowledge this
effort here as well as in the associated article.

8. DISCUSSION
Here we have described the efforts that were taken to develop a methodology for obtaining
and updating a biodata resource inventory with Heil et al.’s gold standard of reproducibility, a
robust codebase, and complying with FAIR data standards.

10Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

8.1 FROM PRINCIPLES TO PRACTICE

We, and many others, are committed to Open Science and see the imperative of reproducibility.
Putting these principles into practice on a complex project presented an opportunity for us
to work through philosophical, organizational, and technical details. We were successful
in meeting the goals outlined in the Open Science Implementation Plan established at the
beginning of the project. Installation of dependencies and reproduction of the entire analysis
can each be performed with a single command, and analysis steps are fully documented. All
code passes static code checks for formatting, linting, and type compatibility. Much of the
code was formally tested with unit and integration tests. The core data products, such as the
labeled training data and preliminary inventory, are present in GitHub and in Zenodo, with
accompanying documentation.

The methodologies used in this work are not novel on their own. Wherever possible, we looked
to existing tools and practices. The automation employed to make reproduction simple relies
on the widely used Snakemake workflow manager. It is also common practice in software
engineering disciplines to leverage static code checking and testing as we have done. Regarding
data standards, we looked to the FAIR principles. The purpose of this report is to provide an
example of how a research project that utilizes computational methods, particularly ML, can
be implemented to maintain robustness and strive for a high level of reproducibility. However,
we recognize that there are numerous ways to accomplish this and do not mean to claim our
implementation is failproof.

8.2 FROM DETAILS TO DECISIONS

When we began the project, we were especially interested in finding implementation details.
How exactly does one make it possible to re-run an entire analysis with a single command? How
exactly does one make data ‘interoperable’? Although we knew these details would be different
in our case, concrete examples can provide clarity and inspiration. As the project progressed
and we learned by doing, our questions evolved to focus on the choices that must be made.
One example is the tradeoff of using only open data versus a more extensive commercial data
source, which would likely have yielded a larger, but in our estimation less useful, inventory.
Many of the trickiest decisions involved accounting for the diverse interests of, and the resources
available to, potential reusers, now and into the future.

There were also ambitions that we had at the start of the study that are now future directions
because we chose to devote time developing a robust workflow instead. This required principled
project management and caused, even as we write this, some amount of wistfulness. In the
end, we could not do it ‘all’, and we fully appreciate that others must decide for themselves
where to place their efforts. Such decisions required us, and will require others, to devote a
substantial amount of time to think through and implement. We were able to do this only
because of our team’s collective belief that these efforts were worth the resources invested.

8.3 LIMITATIONS

Certain improvements could be made, such as using a more robust package manager like poetry
and using git hooks to automatically run tests upon committing to git. Importantly, test coverage
is lacking in some areas, especially for portions that involve heavy computation such as model
training. Still, the current test coverage is enough to increase confidence in the code’s behavior.
As Peng (2011) noted, ‘Given the barriers to reproducible research, it is tempting to wait for a
comprehensive solution to arrive.’ Thus we thought our experiences may be helpful to share.

Possibly the greatest limitation, or threat to long-term reproducibility, was the decision to
not use containers as a trade-off to be compatible with Google Colaboratory. In the current
configuration, all dependencies are listed in a requirements.txt file and must be installed to
run the code. However, it is possible that dependencies become unavailable or incompatible
in future. Containers mitigate this problem by packaging all dependencies with the code,
eliminating this concern.

A key consideration is how generalizable the efforts and methods toward reproducibility
presented here are to other research projects, methods, and domains. Fortunately, most of the
methods and tools here are not specific to natural language processing pipelines, and therefore

11Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

generalize well to most computational research tasks. For example, workflow managers such
as Snakemake can be applied to data analysis pipelines in general. Additionally, the more
conceptual steps, like creating the Open Science Implementation Plan at the start of a project,
could be broadly applied.

9. CONCLUSION
Through articulating our goals early on and dedicating time and resources, we were able
to accomplish our Open Science and reproducibility goals. Throughout this case study, we
provided details on the steps we took to make the code clean and robust and the data FAIR.
We invested considerable effort into ensuring reproducibility, with the intent that both the
methods and outputs would be of use to us and others. Our first update of the inventory,
initiated approximately one year after project completion, only required modification to the
Colab notebooks to account for Google Colaboratory changes, but otherwise functioned as
expected. With this promising, albeit early, success, we remain cautiously optimistic that the
work is durable. By presenting our experiences, we hope this Practice Paper provides a helpful
example for others to consider as they work to build greater reproducibility in their research.

DATA ACCESSIBILITY STATEMENT
Code and data generated during the course of the project are archived in Zenodo along with
associated documentation (https://zenodo.org/doi/10.5281/zenodo.10105161). The final
inventory and associated data dictionary are available as a separate Zenodo deposit (https://
zenodo.org/doi/10.5281/zenodo.10105947). Readers may visit HuggingFaceHub (https://
huggingface.co/globalbiodata/inventory_2022_all_models/tree/main) to access the fine-
tuned models. Additionally, all materials are available on GitHub, which may be updated after
this publication (https://github.com/globalbiodata/inventory_2022/). All other software used is
openly available and shown Table 1.

ACKNOWLEDGEMENTS
The authors would like to thank Ana-Maria Istrate with the Chan Zuckerberg Initiative for her
contributions to developing the machine learning methods used in the project as well as CZI
colleagues Dario Taraborelli, Donghui Li, and Gully Burns for their support and feedback on early

NAME DESCRIPTION REFERENCE

conda Package and environment management system (Conda 2017)

flake8 Python linter (static code checking) (Ziade and Cordasco 2011)

Make Build automation tool, used here for creating shell
command aliases

(GNU Make 1988)

Mermaid Diagram generator for Markdown (Sveidqvist 2014)

mypy Static type checker for Python (Lehtosalo 2012)

pip Package manager for Python (pypi n.d.)

pylint Python linter (static code checking) (Thénault 2001)

pytest Python testing framework (Krekel 2004)

pytest-flake8 Pytest plugin to run flake8 (Lockhert 2015)

pytest-mypy Pytest plugin to run mypy (Bader 2016)

pytest-pylint Pytest plugin to run pylint (Gee 2015)

renv Dependency manager for R (Ushey 2022)

snakefmt Code formatter for Snakemake (Hall and Letcher 2020)

Snakemake General-purpose workflow manager (Köster and Rahmann 2012)

styler Code formatter for R (Müller et al 2021)

yapf Code formatter for Python (Google Inc.)

Table 1 Glossary of Software.

https://zenodo.org/doi/10.5281/zenodo.10105161
https://zenodo.org/doi/10.5281/zenodo.10105947
https://zenodo.org/doi/10.5281/zenodo.10105947
https://huggingface.co/globalbiodata/inventory_2022_all_models/tree/main
https://huggingface.co/globalbiodata/inventory_2022_all_models/tree/main
https://github.com/globalbiodata/inventory_2022/

12Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

versions of the study. We also thank Ken Youens-Clark formerly at The University of Arizona,
Alise Ponsero at The University of Helsinki, and Bonnie Hurwitz at The University of Arizona for
their mentorship of Kenneth Schackart. Additionally, we thank the Europe PMC team, especially
Aravind Venkatesan, Mohamed Selim, and Melissa Harrison, for their guidance and expertise.
Finally, we would like to acknowledge Jodie Forbes for detailed review of the associated code
and documentation.

FUNDING INFORMATION
This work was funded by the Global Biodata Coalition (globalbiodata.org), a coalition of research
funding organizations working towards sustainability of biodata resources worldwide.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR CONTRIBUTIONS
KES – Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing – original draft, Writing – review & editing

HJI – Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project
administration, Validation, Writing – original draft, Writing – review & editing

CEC – Conceptualization, Data curation, Funding acquisition, Supervision, Writing – original
draft, Writing – review & editing

AUTHOR AFFILIATIONS
Kenneth E. Schackart III orcid.org/0000-0002-1658-3699
Global Biodata Coalition, 12 quai Saint-Jean 67080, Strasbourg, France; Department of Biosystems
Engineering, The University of Arizona, Tucson, Arizona 85721, USA

Heidi J. Imker orcid.org/0000-0003-4748-7453
Global Biodata Coalition, 12 quai Saint-Jean 67080, Strasbourg, France; University Library, University of
Illinois at Urbana-Champaign, Urbana, Illinois 31821, USA

Charles E. Cook orcid.org/0000-0002-4145-8048
Global Biodata Coalition, 12 quai Saint-Jean 67080, Strasbourg, France

REFERENCES
Ahmed, H and Lofstead, J 2022 Managing Randomness to Enable Reproducible Machine Learning. In:

Proceedings of the 5th International Workshop on Practical Reproducible Evaluation of Computer

Systems. New York, NY, USA: Association for Computing Machinery. pp. 15–20. DOI: https://doi.

org/10.1145/3526062.3536353

Allen, L, O’Connell, A and Kiermer, V 2019 How can we ensure visibility and diversity in research

contributions? How the Contributor Role Taxonomy (CRediT) is helping the shift from authorship to

contributorship. Learned Publishing, 32(1): 71–74. DOI: https://doi.org/10.1002/leap.1210

Bader, D 2016 pytest-mypy: Mypy static type checker plugin for Pyest. Available at https://github.com/

realpython/pytest-mypy [Last accessed 22 November 2022].

Baggerly, K A and Coombes, K R 2009 Deriving chemosensitivity from cell lines: Forensic bioinformatics

and reproducible research in high-throughput biology. The Annals of Applied Statistics, 3(4): 1309–

1334. DOI: https://doi.org/10.1214/09-AOAS291

Baker, M 2016 1,500 scientists lift the lid on reproducibility. Nature, 533(7604): 452–454. DOI: https://doi.

org/10.1038/533452a

Berman, H M, Westbrook, J, Feng, Z, Gilliland, G, Bhat, T N, Weissig, H, Shindyalov, I N and Bourne, P
E 2000 The Protein Data Bank. Nucleic Acids Research, 28(1): 235–242. DOI: https://doi.org/10.1093/

nar/28.1.235

Bush, K A, Calvert, M L and Kilts, C D 2022 Lessons learned: A neuroimaging research center’s

transition to open and reproducible science. Frontiers in Big Data, 5. DOI: https://doi.org/10.3389/

fdata.2022.988084

Coburn, E and Johnston, L 2020 Testing our assumptions: Preliminary results from the Data Curation

Network. Journal of eScience Librarianship, 9(1). DOI: https://doi.org/10.7191/jeslib.2020.1186

https://globalbiodata.org
https://orcid.org/0000-0002-1658-3699
https://orcid.org/0000-0002-1658-3699
https://orcid.org/0000-0003-4748-7453
https://orcid.org/0000-0003-4748-7453
https://orcid.org/0000-0002-4145-8048
https://orcid.org/0000-0002-4145-8048
https://doi.org/10.1145/3526062.3536353
https://doi.org/10.1145/3526062.3536353
https://doi.org/10.1002/leap.1210
https://github.com/realpython/pytest-mypy
https://github.com/realpython/pytest-mypy
https://doi.org/10.1214/09-AOAS291
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.3389/fdata.2022.988084
https://doi.org/10.3389/fdata.2022.988084
https://doi.org/10.7191/jeslib.2020.1186

13Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

Conda 2017 Available at https://www.anaconda.com [Last accessed 22 November 2022].

Country Codes – ISO 3166 n.d. Available at https://www.iso.org/iso-3166-country-codes.html.

de Saint-Exupéry, A 1943 Le petit prince [The little prince]. Verenigde State van Amerika: Reynal &

Hitchkock (US), Gallimard (FR).

Fanelli, D 2018 Is science really facing a reproducibility crisis, and do we need it to? Proceedings of the

National Academy of Sciences, 115(11): 2628–2631. DOI: https://doi.org/10.1073/pnas.1708272114

Ferguson, C, Araújo, D, Faulk, L, Gou, Y, Hamelers, A, Huang, Z, Ide-Smith, M, Levchenko, M, Marinos,
N, Nambiar, R, Nassar, M, Parkin, M, Pi, X, Rahman, F, Rogers, F, Roochun, Y, Saha, S, Selim, M,
Shafique, Z, Sharma, S, Stephenson, D, Talo’, F, Thouvenin, A, Tirunagari, S, Vartak, V, Venkatesan,
A, Yang, X and McEntyre, J 2021 Europe PMC in 2020. Nucleic Acids Research, 49(D1): D1507–D1514.

DOI: https://doi.org/10.1093/nar/gkaa994

Fielding, R, Nottingham, M and Reschke, J 2022 RFC 9910 HTTP Semantics. Internet Engineering Task

Force. Available at https://www.doi.org/10.17487/RFC9110.

Figueiredo, L, Scherer, C and Sarmento Cabral, J 2022 A simple kit to use computational notebooks

for more openness, reproducibility, and productivity in research. PLOS Computational Biology, 18(9):

e1010356. DOI: https://doi.org/10.1371/journal.pcbi.1010356

Gee, C 2015 pytest-pylint: pytest plugin for running pylint against your codebase. Available at https://

github.com/carsongee/pytest-pylint [Last accessed 22 November 2022].

GNU Make 1988. Available at https://www.gnu.org/software/make/ [Last accessed 22 November 2022].

Google Inc. yapf: A formatter for Python files 2004. Available at https://github.com/google/yapf [Last

accessed 22 November 2022].

Grüning, B, Chilton, J, Köster, J, Dale, R, Soranzo, N, van den Beek, M, Goecks, J, Backofen, R,
Nekrutenko, A and Taylor, J 2018 Practical computational reproducibility in the life sciences. Cell

Systems, 6(6): 631–35. DOI: https://doi.org/10.1016/j.cels.2018.03.014

Hall, M and Letcher, B 2020 Snakefmt: The uncompromising Snakemake code formatter. Available at

https://github.com/snakemake/snakefmt [Last accessed 22 November 2022].

Haring, R and Bell, R J 2018 Lack of research reproducibility, the rise of open science and the need for

continuing education in research methods. Climacteric, 21(5): 413–414. DOI: https://doi.org/10.1080/

13697137.2018.1476968

Heil, B J, Crawford J and Greene, C S 2023 The effect of non-linear signal in classification problems using

gene expression. PLoS Computational Biology, 19(3): e1010984. DOI: https://doi.org/10.1371/journal.

pcbi.1010984

Heil, B J, Hoffman, M M, Markowetz, F, Lee, S-I, Greene, C S and Hicks, S C 2021 Reproducibility

standards for machine learning in the life sciences. Nature Methods, 18(10): 1132–1135. DOI: https://

doi.org/10.1038/s41592-021-01256-7

Hook, D W and Porter, S J 2021 Scaling scientometrics: Dimensions on Google BigQuery as an

infrastructure for large-scale analysis. Frontiers in Research Metrics and Analytics, 6. Available at

https://www.frontiersin.org/articles/10.3389/frma.2021.656233 [Last accessed 3 February 2023].

Imker, H J and Schackart, K E 2022 Open Science implementation plan for the biodata resource

inventory. Zenodo. DOI: https://doi.org/10.5281/zenodo.7392518

Imker, H J and Schackart, K E 2023 Manual review process for the biodata resource inventory. Zenodo.

DOI: https://doi.org/10.5281/zenodo.7768363

Imker, H J, Schackart, K E, III, Istrate, A-M and Cook, C E 2023 A machine learning-enabled open

biodata resource inventory from the scientific literature. PLOS ONE, 18(11): 1–28. DOI: https://doi.

org/10.1371/journal.pone.0294812

Kaczmarzyk, J R, Gupta, R, Kurc, T M, Abousamra, S, Saltz, J H and Koo, P K 2023 ChampKit:

A framework for rapid evaluation of deep neural networks for patch-based histopathology

classification. Computer Methods and Programs in Biomedicine, 239. DOI: https://doi.org/10.1016/j.

cmpb.2023.107631

Kim, Y-M, Poline, J-B and Dumas, G 2018 Experimenting with reproducibility: A case study of robustness

in bioinformatics. GigaScience, 7(7). DOI: https://doi.org/10.1093/gigascience/giy077

Köster, J and Rahmann, S 2012 Snakemake—a scalable bioinformatics workflow engine. Bioinformatics,

28(19): 2520–2522. DOI: https://doi.org/10.1093/bioinformatics/bts480

Krekel, H 2004 pytest: The pytest framework makes it easy to write small tests, yet scales to support

complex functional testing. Available at https://github.com/pytest-dev/pytest [Last accessed 22

November 2022].

Leek, J T and Jager, L R 2017 Is Most Published Research Really False? Annual Review of Statistics and Its

Application, 4(1): 109–122. DOI: https://doi.org/10.1146/annurev-statistics-060116-054104

Lehtosalo, J 2012 mypy: Optional static typing for Python. Available at https://github.com/python/mypy

[Last accessed 22 November 2022].

Lockhert, T 2015 pytest-flake8: Pytest plugin to run flake8. Available at https://github.com/tholo/pytest-

flake8 [Last accessed 22 November 2022].

https://www.anaconda.com
https://www.iso.org/iso-3166-country-codes.html
https://doi.org/10.1073/pnas.1708272114
https://doi.org/10.1093/nar/gkaa994
https://www.doi.org/10.17487/RFC9110
https://doi.org/10.1371/journal.pcbi.1010356
https://github.com/carsongee/pytest-pylint
https://github.com/carsongee/pytest-pylint
https://www.gnu.org/software/make/
https://github.com/google/yapf
https://doi.org/10.1016/j.cels.2018.03.014
https://github.com/snakemake/snakefmt
https://doi.org/10.1080/13697137.2018.1476968
https://doi.org/10.1080/13697137.2018.1476968
https://doi.org/10.1371/journal.pcbi.1010984
https://doi.org/10.1371/journal.pcbi.1010984
https://doi.org/10.1038/s41592-021-01256-7
https://doi.org/10.1038/s41592-021-01256-7
https://www.frontiersin.org/articles/10.3389/frma.2021.656233
https://doi.org/10.5281/zenodo.7392518
https://doi.org/10.5281/zenodo.7768363
https://doi.org/10.1371/journal.pone.0294812
https://doi.org/10.1371/journal.pone.0294812
https://doi.org/10.1016/j.cmpb.2023.107631
https://doi.org/10.1016/j.cmpb.2023.107631
https://doi.org/10.1093/gigascience/giy077
https://doi.org/10.1093/bioinformatics/bts480
https://github.com/pytest-dev/pytest
https://doi.org/10.1146/annurev-statistics-060116-054104
https://github.com/python/mypy
https://github.com/tholo/pytest-flake8
https://github.com/tholo/pytest-flake8

14Schackart et al.
Data Science Journal
DOI: 10.5334/dsj-2024-
023

TO CITE THIS ARTICLE:
Schackart III, K E, Imker,
H J and Cook, C E 2024
Detailed Implementation
of a Reproducible Machine
Learning-Enabled Workflow.
Data Science Journal, 23: 23,
pp. 1–14. DOI: https://doi.
org/10.5334/dsj-2024-023

Submitted: 09 December 2023
Accepted: 08 April 2024
Published: 29 April 2024

COPYRIGHT:
© 2024 The Author(s). This is an
open-access article distributed
under the terms of the Creative
Commons Attribution 4.0
International License (CC-BY
4.0), which permits unrestricted
use, distribution, and
reproduction in any medium,
provided the original author
and source are credited. See
http://creativecommons.org/
licenses/by/4.0/.

Data Science Journal is a peer-
reviewed open access journal
published by Ubiquity Press.

Merkel, D 2014 Docker: Lightweight linux containers for consistent development and deployment. Linux j,

239(2): 2.

Müller, K, Walthert, L and Patil, I 2021 styler: Non-invasive pretty printing of R code. Available at https://

github.com/r-lib/styler [Last accessed 22 November 2022].

Peng, R D 2011 Reproducible Research in Computational Science. Science, 334(6060): 1226–1227. DOI:

https://doi.org/10.1126/science.1213847

Peng, R D and Hicks, S C 2021 Reproducible Research: A Retrospective. Annual Review of Public Health,

42(1): 79–93. DOI: https://doi.org/10.1146/annurev-publhealth-012420-105110

Perkel, J M 2020 Challenge to scientists: does your ten-year-old code still run? Nature, 584(7822): 656–

658. DOI: https://doi.org/10.1038/d41586-020-02462-7

pypi n.d. Python Package Index – PyPI. Available at https://pypi.org/ [Last accessed 22 November 2022].

Sveidqvist, K 2014 Mermaid: Generation of diagrams like flowcharts or sequence diagrams from text in a

similar manner as markdown. Available at https://github.com/mermaid-js/mermaid/ [Last accessed

22 November 2022].

The Europe PMC Consortium 2015 Europe PMC: a full-text literature database for the life sciences and

platform for innovation. Nucleic Acids Research, 43(D1): D1042–D1048. DOI: https://doi.org/10.1093/

nar/gku1061

Thénault, S 2001 Pylint: It’s not just a linter that annoys you! Available at https://github.com/PyCQA/pylint

[Last accessed 22 November 2022].

Ushey, K 2022 renv: Project Environments. Available at https://rstudio.github.io/renv/ [Last accessed 6

January 2023].

Walters, W P 2020 Code sharing in the Open Science era. Journal of Chemical Information and Modeling,

60(10): 4417–4420. DOI: https://doi.org/10.1021/acs.jcim.0c01000

Wanner, J, Cuellar, L K, Rausch, L, Berendzen, K W, Wanke, F, Gabernet, G, Harter, K and Nahnsen,
S 2023 nf-root: A best-practice pipeline for deep learning-based analysis of apoplastic pH in

microscopy images of developmental zones in plant root tissue. bioRxiv, 2023.01.16.524272. DOI:

https://doi.org/10.1101/2023.01.16.524272

Wilkinson, M D, Dumontier, M, Aalbersberg, Ij J, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten,
J-W, da Silva Santos, L B, Bourne, P E, Bouwman, J, Brookes, A J, Clark, T, Crosas, M, Dillo, I,
Dumon, O, Edmunds, S, Evelo, C T, Finkers, R, Gonzalez-Beltran, A, Gray, A J G, Groth, P, Goble, C,
Grethe, J S, Heringa, J, ’t Hoen, P A C, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, S J, Martone, M E,
Mons, A, Packer, A L, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, S-A, Schultes,
E, Sengstag, T, Slater, T, Strawn, G, Swertz, M A, Thompson, M, van der Lei, J, van Mulligen, E,
Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B 2016 The FAIR

Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1): 160018.

DOI: https://doi.org/10.1038/sdata.2016.18

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L and Teal, T K 2017 Good enough practices in

scientific computing. PLoS Computational Biology, 13(6): e1005510. DOI: https://doi.org/10.1371/

journal.pcbi.1005510

Wolf, T, Debut, L, Sanh, V, Chaumond, J, Delangue, C, Moi, A, Cistac, P, Rault, T, Louf, R, Funtowicz, M,
Davison, J, Shleifer, S, von Platen, P, Ma, C, Jernite, Y, Plu, J, Xu, C, Le Scao, T, Gugger, S, Drame,
M, Lhoest, Q and Rush, A 2020 Transformers: state-of-the-art Natural Language Processing. In:

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations. Online: Association for Computational Linguistics. pp. 38–45. DOI: https://doi.

org/10.18653/v1/2020.emnlp-demos.6

Ziade, T and Cordasco, I 2011 Flake8: Your tool for style guide enforcement. Available at https://github.

com/PyCQA/flake8 [Last accessed 22 November 2022].

Ziemann, M, Poulain, P and Bora, A 2023 The five pillars of computational reproducibility: bioinformatics

and beyond. Briefings in Bioinformatics, 24(6). DOI: https://doi.org/10.1093/bib/bbad375

https://doi.org/10.5334/dsj-2024-023
https://doi.org/10.5334/dsj-2024-023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/r-lib/styler
https://github.com/r-lib/styler
https://doi.org/10.1126/science.1213847
https://doi.org/10.1146/annurev-publhealth-012420-105110
https://doi.org/10.1038/d41586-020-02462-7
https://pypi.org/
https://github.com/mermaid-js/mermaid/
https://doi.org/10.1093/nar/gku1061
https://doi.org/10.1093/nar/gku1061
https://github.com/PyCQA/pylint
https://rstudio.github.io/renv/
https://doi.org/10.1021/acs.jcim.0c01000
https://doi.org/10.1101/2023.01.16.524272
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/PyCQA/flake8
https://github.com/PyCQA/flake8
https://doi.org/10.1093/bib/bbad375

