
CODATACODATA
II
SS
UU

Liao, X, et al. 2019. A Column Styled Composable Schema Matcher
for Semantic Data-Types. Data Science Journal, 18: 25, pp. 1–15.
DOI: https://doi.org/10.5334/dsj-2019-025

RESEARCH PAPER

A Column Styled Composable Schema Matcher for
Semantic Data-Types
Xiaofeng Liao, Jordy Bottelier and Zhiming Zhao
System and Network Engineering Lab, Informatics Institute, University of Amsterdam, Amsterdam, NL
Corresponding author: Zhiming Zhao (editor@codata.org)

Schema matching exists as a long-standing challenge in many database related applications, such
as data integration, where two databases with different schema have to be integrated. With the
evolvement from database to big data, the schema matching has been enriched with various pur-
poses and application contexts, ranging from data integration, to service integration, to semantic
data clouding, until more recent exploratory data analysis over big data. These enriched contexts
increase the demand for schema matching between semantic data-types, such as XML, RDF etc.

The existing integration approaches have not dealt with the challenges of defining a relation
between XML and other semantic data-types. To address these challenges, this paper studies
the problem of schema mapping from XML to RDF in two folds. Firstly, testify the validity of
single matcher in a column based manner for the semantic data types. Secondly, testify the
validity of a highly configurable framework that utilizes hierarchical classification in order to
construct a composable pipeline.

We propose and implement a Reconfigurable pipeline for Semi-Automatic Schema Matching
(REPSASM), which aims to solve the customizability of the matching problem by providing an
environment in which a user can create, configure and experiment with their own schema-
matching procedure.

The experiments performed within this work show that the configurability and hierarchical
classification improves the matching result, and it proposes an algorithm to automatically opti-
mize such a hierarchy pipeline.

Keywords: Schema Matching; Semantic Data-types; XML; RDF

I. Introduction
Schema matching exists as a principle problem in many database related applications, such as data integra-
tion, where two databases with different schema have to be integrated. It is described as the task of identify-
ing semantically equivalent or similar elements in two different schema (Rahm and Bernstein, 2001).

With the development from database to big data, the schema matching problem has been enriched with
various purposes and application contexts, ranging from data integration, to service integration, to semantic
data clouding, until more recent exploratory data analysis over big data. These enriched contexts increase
the demand for schema matching between semantic data-types, such as XML, RDF etc.

As XML schema do not express semantics but rather the document structure, there is a lack of semantic
interoperability regarding current (XML-based) metadata standards. By using Semantic Web technologies,
ontologies can be created to describe the semantics of a particular metadata format. A problem is that the
existing XML data (compliant with a particular meta-data format) cannot be used by an ontology, implying
the need for a conversion of XML data to RDF instances (Davy Van et al., 2008).

Currently, schema matching is typically performed manually. Obviously, manually specifying schema
matches is a tedious, time-consuming, error-prone, and therefore expensive process.

This is a growing problem given the rapidly increasing number of web data sources and E-businesses to
integrate.

In this situation, automated data integration offers opportunities to solve these problems by letting
machines interpret the data and automatically create a mapping based on semantic or syntactic features.

https://doi.org/10.5334/dsj-2019-025
mailto:editor@codata.org

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 2 of 15

Automating part of or the entire processes of schema mapping can essentially accelerate the data inte-
gration procedure of human experts and thus reduce the overall time cost. However, several challenges
make such automated mapping difficult or even impossible. Many problems can occur during the mapping
process. Matches might not be found, or even worse, false positives are found. In addition, one data source
might not fully match with the other data source, data source A could contain information that does not
cohere with the data found in data source B. Source A could also contain less information than source B, in
which case a complete mapping is impossible.

Since completely automating the mapping process could be impossible in certain cases, human interpre-
tation can not be excluded from the mapping process. This is why this work focuses on semi-automating the
process, which could reduce the time cost for creating a mapping.

A semi-automated solution could be that a system predicts the mapping based on the schema contents,
a human expert could then evaluate the predicted mapping. There are many challenges and questions that
need answering when creating such a system.

This study will aim to answer the following question:

•	 Whether	the	column	mannered	schema	matching	method	can	also	be	applied	to	non-column	type	
data structures, such as XML to RDF?

•	 How	can	an	effective	semi-automated	schema	matching	pipeline	be	created	and	customized?

We propose and implement an reconfigurable pipeline for Semi-Automatic Schema Matching (REPSASM),
in this context as a chain of matchers that is used to classify data. The goal of such a pipeline in the schema
matching context should be to semi-automatically map new schema into a pre-defined global schema and
solve	the	cusomizability	of	the	matching	problem	by	providing	an	environment	in	which	a	user	can	creat,	
configure and experiment with their own schema-matching pipeline. We will refer to this pre-defined global
schema as the “target-schema” or simply “target”. We will refer to the new schema that need to be mapped
as the “source schema” or simply “source”.
The	 remainder	of	 the	paper	 is	organized	as	 follows.	 In	Section	 II,	we	briefly	present	 the	 related	work.	

Section III describes the challenges then introduces the design and implementation of the REPSASM system.
Section	IV	presents	experiments	setup	and	analyze	the	results.	Finally,	Section	V	concludes	this	paper.

II. Related Work
In this section, we present two research directions that are related to our paper: (1) Transforming or map-
ping	XML	data	to	RDF	ontology;	(2)	The	optimization	of	the	matching	process	and	the	automation	effort.

First, there are various approaches related to mapping or transforming XML data into RDF.
XML Schema (Biron et al., 2004) was designed as a language to make XML validation possible with more

expressiveness than DTDs (Bex et al., 2004). Using XML Schema, developers can define the structure, con-
straints and documentation of an XML vocabulary. In the Semantic Web, RDF was missing a standard
constraints validation language which covers the same features that XML Schema does for XML. Some alter-
natives were OWL (McGuinness et al., 2004) and RDF Schema (Brickley et al., 2014), however, they do not
cover completely what XML Schema does for XML (Tao et al., 2010).

Some approaches are proposed to measure the element similarity between schema. (Do and Rahm, 2002)
computes the name similarity between elements of two XML schema. (Yang and Powers, 2005) uses linguis-
tic taxonomy based on concept definitions in WordNet (Miller, 1995) to gain the most accurate semantics
for the element names. Some researchers (Nayak & Tran, 2007, Algergawy et al., 2010) employ supplemental
functions to calculate the similarity of a particular feature of a given schema. (Thuy et al., 2012) measures the
similarity between XML schema by computing both the structural and semantic aspects of XML elements.

(Thuy et al., 2013) proposes a technique to measure the similarity of duplicate element and based on the
similarity results, duplicates are transformed into appropriate RDF concepts.

(Klein, 2002, Thuy et al., 2007) both convert XML data to RDF data by using RDF Schema vocabularies.
(Amann et al., 2001) relies on DTD to define the meaning for every XML element and use XPath to map

information in XML documents to ontology.
(Davy Van et al., 2008) presents a generic approach for the transformation of XML data into RDF instances.

The transformation is based on the OWL ontology (which corresponds to the metadata format) and an XML
document containing rules that describe a mapping between the XML Schema and the OWL ontology.
(Garcia-Gonzalez	and	Labra-Gayo,	2018)	describes	a	solution	to	make	the	conversion	from	XML	Schema	to	

ShEx (Prud’hommeaux et al., 2014), which is proposed to fulfill the requirement of a constraints validation
language for RDF.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 3 of 15

(Breitling, 2009) presents a technique for making standard transformation between XML and RDF using
XSLT.

(Bischof et al., 2012) describes XSPARQL, which is a framework that enables the transformation between
XML and RDF based on XQuery and SPARQL and solves the disadvantages of using XSLT for these transfor-
mations. However, these works are not covering the schemata mapping problem.
To	our	best	knowledge,	this	is	a	first	work	utilizing	column	based	matcher	for	XML	to	RDF	matching.
Second, regarding the configurability of the matching process, there are already existing matchers such as

Automatch (Berlin and Motro, 2002), COMA (Do and Rahm, 2002), and SemInt (Li and Clifton, 2000). They
all focus on different aspects and implementations of schema matching.

COMA (Do and Rahm, 2002) follows a composite approach, which provides an extensible library of differ-
ent	matchers	and	supports	various	ways	for	combining	match	results.	The	system	utilizes	schema	informa-
tion, such as element and structural properties. COMA operates on XML structures and returns matches on
an element level.

Automatch (Berlin and Motro, 2002) is a single strategy schema matcher that uses a Naive Bayes matching
approach. It uses instance characteristics to match attributes from a relational source schema to a previously
constructed global schema.

SemInt (Li and Clifton, 2000) computes a feature vector for each database attribute with values ranging
from 0 to 1. Schematic data and instance data are both used in this process. These signatures are then used
to first cluster similar attributes from the first schema and then to find the best matching cluster for attrib-
utes from the second schema.

The framework in this work is most similar to Automatch. Automatch is a single strategy schema matcher
that uses a Naive Bayes matching approach.

Data in REPSASM is also matched to such a global schema. REPSASM however leaves room for implemen-
tation, the users can define and test their own strategies.

The current work in the schema matching field however is limited by a single implementation per matcher.
REPSASM differs from the presented matchers in the sense that it is not a fully functioning matcher upon
initiation.	Users	can	create	and	experiment	with	their	own	schema	matching	pipeline	in	order	to	customize	
it to fit their specific problem.

III. The REPSASM framework
A. Challenges and Requirements
The REPSASM framework has been designed bearing two consideration. The first is to be generic in order to
support users in trying different approaches to match schema. To be generic, it means that the framework
can process various data, including the common csv format, which is in the column based style, and the
semantic data types, like XML, RDF, etc.
The	second	consideration	is	to	experiment	with	creating	and	customizing	an	effective	schema	matching	

pipeline	for	a	given	dataset	to	see	if	customization	leads	to	an	improved	matching	result.	In	order	to	do	this	
the framework should therefore be highly flexible in several places:

•	 The	framework	should	allow	a	user	to	pass	any	structure	or	element	data	from	a	source	or	target	
schema to the framework for pre-processing.

•	 It	should	be	possible	within	the	framework	to	create	a	pipeline	of	matchers	which	the	user	can	
configure.

B. Architecture
In order to satisfy the requirements from the previous section, the architecture has been split into two sepa-
rate components depicted in Figures 1 and 2.

The pre-processing components are called feature builders, and the matching components are called
matcher classes. Based on the requirement, we designed functional components which will be discussed in
the upcoming sections. Globally, the framework works in a schema matching context using the following
steps:

•	 Data	Collection:	Collect	all	the	column	data	from	the	target	schema	for	the	features	builders.
•	 Feature	Building:	Build	feature	vectors	for	the	target	schema	column	data.
•	 Matcher	Building:	Use	the	feature	vectors	to	train	a	matching	component.
•	 Building	a	pipeline:	Build	a	pipeline	of	matchers.
•	 Load	the	pipeline:	Load	the	pipeline	into	the	schema	matcher.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 4 of 15

There are already options for each step created in the framework, but a user is free to implement their own.
If they want to build a pipeline of matchers and still be able to use all of the provided methods they should
however stick to the given format of methods specified in the framework for each class.

1) Data Collector: The first component in the system is the optional data collector. It is optional because
the user can also provide data manually. The data collector itself was designed to support an experimenta-
tional setup. It has configurable options which allow a user to change one variable within the test setup at
a time and then run experiments using the collected data.

2) Features: Feature components in the system are designed to further pre-process the target schema data
and to store this within the framework for later usage. The data collected by the Data Collector (or ones
own data) should be used first by the feature builders. Since this project focuses on learning-based schema
matching, the feature builders that have been implemented are used to transform the target schema col-
umn	data	in	feature	vectors	per	column	upon	initialization.	The	output	of	the	feature	builders	here	is	a	list	
of feature vectors and a list of target values (classes). Features should be designed according to the classifi-
cation needs. Feature builders can be adapted to pre-process any kind of data, and already allow a user to
experiment with different algorithms. The feature builders that will be discussed below have been designed
to pre-process data for the experiments that will be performed. A user should adapt feature builders accord-
ing to the data in their target schema.

Figure 1: REPSASM System Architecture.

Figure 2: REPSASM Schema Matching Architecture.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 5 of 15

The goal of a feature is to process the data in such way that a matcher can differentiate between the differ-
ent columns in the processed data. There are four feature builders already implemented in the framework:

Fingerprint: This feature class calculates the datapoints based on the character distributions and n-grams
of the inserted column data. For each column, all characters present are counted, as well as the N-grams,
and	then	the	result	is	normalized.	N-grams	are	re-occurring	sequences	of	N	characters.	They	can	be	used	to	
find patterns in words.

Syntax Feature Model: Based on a combinations of the features used in (Nadeau and Sekine, 2007), the
syntax feature model is a simple instance-based feature class that checks whether or not the following data
is present:

•	 Instance	starts	with	a	capital	letter.
•	 Instance	contains	multiple	words.
•	 Instance	contains	multiple	capitalized	words.
•	 Instance	is	all	uppercased.
•	 Instance	has	special	character	(x).
•	 Instance	has	letter	suppercase.
•	 Instance	has	letters	lowercase.
•	 Instance	has	digits.
•	 Instance	is	a	digit.

Distributional Representation: The previously presented features are more syntax based, however, lots of
schema contain only textual data. In these cases, a distributional representation generated by a word-
embedding model would be more useful. Therefore we already build in a feature which simply creates
a corpus out of the instances found in the column. These can later be used by natural language models
or word embedding models. The Word2Vec language model (Mikolov et al., 2013) computes the feature
vector for every word in a corpus in 200 dimensions. Preliminary experiments determined that these
parameters (a uni-gram model with 200 dimensions) would result in the highest accuracy. The Word2Vec
model that has already been implemented in REPSASM uses a uni-gram model, this means that every
single word is added to the model as opposed to a bi-gram model where only combinations of two words
are added.

When training the matchers, the corpus for every column in a class is ran through the model. The feature
vectors that are outputted by the model are used as training data for a classifier. Upon classification, a corpus
is created from a source-schema column.

Number Feature: Lastly, lots of databases contain columns which are solely populated by numbers. These
can be hard to separate since their ranges could heavily overlap. Already implemented in REPSASM is a
feature class that builds a feature vector based upon the average number in a column, again the character
distribution, the average length of the numbers and wether or not it is an integer or a float.

3) Matchers: After	the	features	and	the	targets	are	computed,	they	can	be	utilized	by	the	matchers	to	clas-
sify data. Matchers can consist of rules, or machine learning components. Data from multiple features can
be combined by a single matcher or multiple smaller components can classify the data in order to make a
prediction. This means these classes can act as a hybrid and as a composite matcher. Matchers can perform
differently on different datasets. It would be useful for a user to test their implementation and configura-
tion of a matcher on the initial training data in order to get an indication on how well the matcher can
perform on test data. This is why each matcher component can be tested by a test class which implements
a	k-fold	test.	During	a	k-fold	test,	all	the	target-schema	column	data	is	randomly	divided	into	k	equal	sized	
sub-samples. Of the k sub-samples, a single sub-sample is used as the validation data for testing the model,
and the remaining sub-samples are used as training data. Such a test can be used to determine if a specific
matcher	can	recognize	the	given	classes	with	high	accuracy.	For	each	feature	class	there	is	also	an	imple-
mented	matcher	class	in	the	framework.	If	a	user	wants	to	utilize	his	own	matcher	class	within	the	entire	
framework (as opposed to use a single matcher as a stand alone), the user should follow the formats and
implementations stated by the framework. These requirements were put on the matcher classes in order for
them to all function within the matching pipeline. As long as these requirements are satisfied, any matching
algorithm can be implemented. The default classifier (a Support Vector Machine) for each matcher can be
overwritten based on the users needs. The machine learning components inside matchers should be trained
upon initiation.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 6 of 15

4) Outlier Detection: Another problem in schema matching is the detection of outliers. Outliers are in
this case columns that contain data that is not part of the training set, and therefore does not have to be
mapped.	If	outliers	are	not	recognized	but	present,	they	will	always	be	mapped	incorrectly.	Each	class	in	the	
framework comes with its own outlier detector. After a matcher classifies data, a specifically trained binary
classifier	is	used	to	classify	the	same	data.	This	binary	classifier	is	trained	to	recognize	if	data	for	that	par-
ticular class is an inlier or an outlier. Outlier data is generated by randomly combining the computed feature
vectors from other target-schema classes.

5) Building Pipelines: We introduce the hierarchical classification system that uses these classes and allows
a user to configure their schema-matching pipeline. It is useful to be able to reproduce such pipeline when
iteratively	configuring	and	optimizing	it.	To	accommodate	this,	the	configuration	of	the	entire	classification	
pipeline is stored in the Column Classification Configurator (CCC) object. A user first has to add feature
builders to the configuration. After these feature builders are added, a user can add matcher classes which
utilize	 these	 feature	builders.	This	was	done	 in	order	 to	allow	a	user	 to	easily	experiment	with	different	
features and matchers. We will first recap on how the implementation of a single matcher works before we
discuss how an entire pipeline of matchers can be created.

Upon initiation of the framework there is the training phase in which the features which were added to
the	CCC	collect	their	data.	Data	is	utilized	to	train	machine	learning	components	which	will	be	utilized	to	
classify columns based on their feature vectors.

After the matching component is trained, this tiny set up can already be used to classify columns.
All columns should obviously be ran through the feature builder and matcher in order to create a map-

ping for a schema.
When two columns contain syntactical similar information, it is possible that confusion can occur between

them during the matching-phase. This can be solved by using a different feature class which could possibly
aid in correctly distinguishing the two columns upon classification. Because of this, a user should be able
to specify within the framework that a specified matcher should be called when a certain class is predicted.
REPSASM allows a user to define pipelines, or ‘match trees’. The concept is explained using Figure 3.

When a matcher is added to the CCC, it is also inserted into the match tree according to the specification
of the user. A user can define if data should be sent to a different matcher depending on the classification
result of the previous matcher.

Figure 3: Classifying a Column Using the Match Tree.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 7 of 15

Matchers	are	trained	upon	initialization,	before	they	are	added	to	the	entire	tree.	With	the	shown	code,	we	
first tell the CCC to create an initial matcher which is a Fingerprint matcher. We then add a Number matcher.
This matcher is called when the main matcher predicts that the inserted data belongs to the ‘number’ class.
If this is the case, than the data is sent to this matcher for further classification. In Figure 3, match block 1
pipes column data to match block 2 in case the column is classified as the ‘Number’ class. Data is piped to
match block 3 if the data is classified as part of the ‘Place’ class. This setup can be used to classify column
data more specifically following the tree-structure.

A pipeline should be fitted specifically for a single global target schema. The outlier detectors can be called
in the tree leaves upon classification time to check if a column should be mapped or if it is an outlier. The
concept of classifying data in such a tree structure has been inspired by the hierarchical classification field
(Silla and Freitas, 2011). Hierarchical classification has not yet been applied in a schema matching context,
but could reduce the amount of errors as opposed to a single classifier (Silla and Freitas, 2011, Sun and Lim,
2001).

6) Loading the Pipeline: The	match	tree	which	the	user	can	create	and	customize	using	the	CCC	can	be	
loaded into the schema matcher component. The schema matching component reads a source schema and
calls the methods from the match tree in order to classify column data and create a mapping. By introducing
this schema-matching class we separate the mapping of actual schema from the task of building, custom-
izing	and	using	the	pipeline.	This	is	done	so	the	match	tree	can	also	be	used	outside	of	a	schema	matching	
context even though this is out of scope for this project.

IV. Experiments
We introduce experiments to answer the following main-question:
How	can	an	effective	semi-automated	schema	matching	pipeline	be	created	and	customized	for	a	given	

dataset?
Therefore we aim our experiments at performance of the previously discussed features and matchers.
We	hope	to	find	rough	guidelines	that	users	can	follow	in	order	to	optimize	their	own	schema-matching	

pipeline.
Since outlier detection is optional and addresses a different kind of matching problem (namely the prob-

lem of excluding columns from the mapping), the experiments will be ran twice, once using the imple-
mented outlier detection, and once not using the implemented outlier detection.

The experiments that will be performed are designed to test if and how a schema matching pipeline can
be	optimized	for	a	given	dataset.	To	test	if	a	hierarchical	classification	pipeline	can	improve	the	matching	
result we will first test the performance of each individual matching component. After that, we will test if
we	can	optimize	the	classification	result	within	these	single	components	already	by	tweaking	the	configura-
tion for these components. We will then show how a hierarchical classification pipeline can be created and
fitted to a dataset. Finally, we will test if this pipeline improves the matching result by comparing it to the
initial experiment.

A. Dataset
The dataset that will be used is the CKAN-CERIF dataset. CKAN is an open-source data management system
(DMS) for powering data hubs and data portals. This data catalogue system is often used by public institu-
tions to share their data with the general public. The Common European Research Information Format
(CERIF) is a data model that allows for a meta-data representation of research entities. Both models are not
in csv format. The CKAN dataset consists of XML files while the CERIF dataset consists of RDF files. CKAN
model data can be partially mapped to CERIF data. The goal of the experiments performed with these data-
sets are to research if REPSASM can also be applied to non-column type data structures. It is useful to know
this because data integration also often occurs for these (non-column) types of data. The mapping of the
CKAN data to the CERIF model has already been done manually.

The XML files are converted using the Parker convention. The Parker convention ignores XML-attributes
and simply recreates the XML structure but in json. This conversion was chosen because attributes were not
present in the CKAN-XML data. The RDF-files are converted by unpacking the RDF and recursively looping
through the RDF-tree, starting at the root, and adding the instances to the json dictionary.

All values in the json dictionaries were removed from the tree-like structures and placed in a column
structure by using the path to the tree-leafs as a new column name. This conversion is presented in the fol-
lowing example:

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 8 of 15

json_data = {
main_key: {
key_1 : value_1 ,
key_2 : value_2 }
second_key: {
key_1 : value_3 ,
key_2 : value_4
} }

column_structure = [
(main_key_key_1 , value_1),
(main_key_key_2 , value_2),
(second_key_key_1 , value_3),
(second_key_key_1 , value_4)
]

By doing this for all the XML and RDF files and accumulating values with the same column name, we do end
up with a column structure. This can be used by REPSASM. Eliminating the tree structure does remove the
meaning of each key in the tree. With this experimental setup we’d like to see if the tree-type data is still
classifiable based on the tree-leafs, and with that testing if REPSASM can be applied to non-column database
data.

The CERIF data is the target schema, and will therefore be used to train a pipeline. The problem however
is that a lot of values in the CERIF model are generated from the CKAN data. The generation of data happens
during the mapping process and is done by combining multiple elements from the CKAN data into a single
CERIF element. The generation of such values is something that REPSASM can not do and is out of scope
for this project. To still create a mapping that could be used during the experiments, all column data from
both datasets was compared. If two columns from both datasets contained largely the same information,
we consider them to be a match, and we give the CKAN column the appropriate label (column name) from
the CERIF column. If a column from the CKAN data did not match with any CERIF column we consider it
to be an outlier. The mapping and labeling of the CKAN data was done by using all the data, but for the
experiments all data is separated before any of the previously discussed conversions (flattening of the tree-
structures) were performed into a learn set and a test set. Since the transformation of a tree-structure to a
column structure by using the tree-path as a column name often ends up with an abnormally long column
name, it was decided that for the experiments and results large column labels will be abstracted using the
mapping rules in Table 1.

The statistics of the CERIF learn set is shown in Figure 4. The statistics of the CKAN test set is shown in
Figure 5.

B. Metrics
For every experiment we can test two aspects of the framework:

•	 How	well	are	columns	classified	(and	therefore	mapped)	when	we	can	assume	they	are	inliers?
•	 How	well	are	columns	classified	when	we	have	to	deal	with	outliers?

These two aspects are not only tested to measure the performance of the matchers, but also to measure the
influence of outliers on the result. This is important for two reasons. First of all, by testing these two aspects
independently we get an indication of how well the outlier detection is working. Secondly, outliers are by
far the most occurring class in both datasets, therefore, if the outlier detection does not perform very well,
the results will be heavily influenced.

As in many other machine learning applications, the metrics precision, recall, F-measure and accuracy will
be used to validate the performance of the pipeline. The metrics are computed using the following outcome
variables:

•	 False	Negatives	(A):	Inlieris	detected	as	an	outlier	or	column	is	classified	incorrectly,	and	therefore	
mapped incorrectly.

•	 True	Positives	(B):	Column	is	mapped	to	the	correct	outcome.
•	 False	Positives	(C):	Column	is	classified	incorrectly	or	seen	as	inlier	while	it	is	an	outlier.
•	 True	Negatives	(D):	Column	is	not	part	of	the	dataset	and	the	outlier	is	correctly	detected.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 9 of 15

Figure 4: Number of instances per class in the CERIF learn set.

Table 1: Column mapping between CKAN and CERIF.

A is_source_of_has_classification_has_term

B is_destination_of_has_source_is_source_of_has_destination_has_URI

C is_dstination_of_has_source_is_source_of_has_destination_type

D is_source_of_has_destination_type

E is_destination_of_has_source_is_source_of_has_endDate

F has_identifier_is_source_of_has_endDate

H has_identifier_has_id_value

I is_destination_of_has_source_has_identifier_has_URI

J is_destination_of_has_source_has_identifier_type

K is_destination_of_type

M is_destination_of_has_source_is_source_of_has_destination_has_name

N is_destination_of_has_source_type

O is_destination_of_has_classification_type

P has_identifier_has_URI

Q is_source_of_has_classification_type

R has_identifier_is_source_of_has_classification_type

S is_destination_of_has_endDate

T is_destination_of_has_startDate

V is_destination_of_has_source_has_identifier_has_id_value

X is_source_of_has_endDate

Y has_identifier_is_source_of_has_startDate

a is_destination_of_has_source_is_source_of_has_classification_type

b is_destination_of_has_source_is_source_of_type

c is_destination_of_has_source_is_source_of_has_startDate

d has_identifier_is_source_of_type

e is_source_of_has_startDate

has_description has_description

has_identifier_label has_identifier_label

has_identifier_type has_identifier_type

has_name has_name

is_source_of_type is_source_of_type

label label

type type

unknown unknown

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 10 of 15

C. Experiment 1: Baseline
Before experiments with the entire classification pipeline, we will measure the performance of each indi-
vidual	matcher,	so	we	can	later	determine	if	building	and	optimizing	a	hierarchical	classification	pipeline	
improves the matching result.

The result of this experiment will be used as a baseline for further experiments with both datasets. The
results of the inlier and outlier experiments are shown in Figures 6 and 7 respectively. Each test was ran 5
times and the average results are presented.

Figure 6: Inlier test on the CKAN-CERIF dataset. Accuracy was averaged over 5 tests with 31 classes. Number
of simulated columns per class: 15.

Figure 7: Outlier Test on the CKAN-CERIF dataset. Scores were averaged over 5 tests with 31 classes. Number
of simulated columns per class: 15.

Figure 5: Number of instances per class in the CKAN Test set.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 11 of 15

Here the fingerprint matcher performs the worst, and the Word2vec Model outperforms all matchers. This
result could be caused by multiple factors. First of all there is the imbalance in the test-sets to consider. If
matchers perform well on the most occurring classes, accuracy will of course be higher. A good example here
is the CKAN-CERIF datasets. The has_name class, and class H are by far the most occurring in the test set, and
the Syntax Feature Model matcher performs very well on distinguishing these exact two classes from the
others. The fingerprint matcher performs well on the class V but since this class is less occurring, the confu-
sion in the more prominent classes significantly affects the result.

Accuracy increases when outliers have to be detected for the CKAN-CERIF dataset for the fingerprint
matcher. This is because of the imbalance in the test set. Since outliers are often identified correctly, and
outliers are the most occurring class in the test set, accuracy will rise because the portion of correctly detec-
tion outliers simply outweighs the portion of incorrectly classified inliers. The precision heavily dropped in
the CKAN-CERIF experiment when the outlier detection was turned on, and this is the result of the high
confusion between outliers and inliers. The both baseline experiments do however show that certain match-
ers are more capable of classifying specific classes, supporting the hypothesis that piping data to specific
matchers could reduce confusion within a classification pipeline. Since not all data is classified correctly, the
experiments show that an improvement can be made to the classification process.

D. Experiment 2: Pipeline
The aim of this experiment is to test the hypothesis that hierarchical classification could improve the match-
ing result. Previous experiments show that outliers heavily influence the results of the experiments due to
both their sheer portion of occurrences in the test sets, and the inaccuracy of the implemented outlier detec-
tors. The outliers are only detected at the leaf matchers of the entire match-tree, and until those leaves are
reached, data is treated as an inlier, a better outlier detection algorithm could therefore immediately heavily
influence the results. Because of this, we will fit the pipeline according to the inlier results, and after this is
done measure the overall performance with the outlier detection included.

Figure 8	shows	a	representation	of	the	complete	and	finalized	pipeline	that	was	the	result	of	the	entire	
experiment.

Figure 8:	Finalized	Fitted	Pipeline	for	the	CKAN-CERIF	dataset.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 12 of 15

The following properties can be observed from the CKAN-CERIF data set:

•	 No	distinguishment	can	made	between	the	classes	e and Y. After looking at their actual class
names we could see that both classes consisted of dates, with most of them being the same, there-
fore we accept in this implementation that this class is classified incorrectly.

•	 The	classes	V,	e	and	Y	are	distinguished	perfectly	from	all	others	by	the	Fingerprint	matcher.
•	 The	Fingerprint	matcher	does	not	classify	any	of	the	data	as	a	class	that	does	not	occur	in	the	test	

set, all others do.
•	 The	class	has_description	is	classified	perfectly	the	Word2Vec	matcher	only	holds	confusion	with	

classes V and label.
•	 For	class	H	the	SyntaxFeatureMatcher	only	holds	confusion	with	only	class	M	for	the	has_name	

class.

Using these properties we can easily find the optimal matcher configuration. The optimal configuration is
as follows:

•	 First	we	use	the	Fingerprint	matcher	to	first	extract	classes	V,	e	and	Y	from	all	others.	Only	the	
classes M, H, has_description, and has_name name are passed on to the next sub-matcher. The
Fingerprint matcher has to be used first because it is the only matcher that does not classify any of
the data as a class that does not occur in the test set.

•	 The	Word2Vec	matcher	is	used	to	extract	the	classes	M	and	has_description.	All	other	data	is	
passed to the next sub-matcher.

•	 Lastly	the	Syntax	Matcher	makes	the	final	classification.

The results of the inlier and outlier experiments are shown in Figures 9 and 10 respectively. The result
depicted in Figure 10, is interesting. All scores dropped heavily except for the recall. We can see that outli-
ers are again detected less accurately. The rise in recall is because inliers in the test set are classified more
accurately.

Here we also see the downside of applying REPSASM to a flattened tree structure data. The instances of
both tree leaves are highly similar but have a different meaning depending on the path to the leaf. REPSASM
can not differ between these because it only used the actual leaf data. Perhaps a different feature builder or
matcher could have classified it correctly.

Figure 9: Inlier test on the CKAN-CERIF dataset. Accuracy was averaged over 3 tests.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 13 of 15

V. Conclusion
REPSASM prototype has been designed to allow implementation for all of them so a user can experiment
with	building	a	customized	pipeline	configuration.	In	order	to	match	schema,	a	user	can	first	of	all	create	
individual matchers based on a single or multiple match criterion (a hybrid matcher). A user can also com-
bine the results of multiple hybrid matchers into a composite matcher. The match criterion can consist of
element- or structure-level schema data. The decision making components in these algorithms can base
their decision on either a set of rules and constraints, linguistic data, or machine learning. The performance
of any pipeline should be measured by the portion of correctly mapped columns or instances. Depending on
what the specific goal is, the user could configure the pipeline to have either a higher precision (only predict
cases of which you are very certain and classify others as unknown) or a higher recall (predict as much as
possible, don’t detect outliers). A user should choose his or her optima solution.

The results indicated that collecting the instances in the tree leaves into a column and collectively classify-
ing all the tree leaves together produces good accuracy (91%).

A limitation of the framework is however shown by the CKAN-CERIF dataset: The framework can not han-
dle data that is largely generated during a mapping process.

A limitation which was present in the experiments, but should be investigated in future work, is the detec-
tion of outliers. By allowing users to implement their own outlier detection algorithms in the match-tree
leafs	they	can	experiment	with	correctly	detecting	outliers	after	their	classification	pipeline	is	optimized	for	
all	inliers.	It	is	shown	that	REPSASM	can	aid	in	creating	an	optimized	schema-matching	pipeline	by	enabling	
a user to implement sub-matchers for classes that contain confusion among each other.

The framework can also finds its use outside of a schema matching context. Users could use the configur-
able	pipeline	structure	to	experiment	with	optimizing	hierarchical	classification	within	any	environment.	
The contribution of REPSASM is also more valuable if the pipeline structure can be used for experimentation
outside	of	the	schema	matching	context.	Even	though	actually	utilizing	REPSASM	for	this	purpose	is	out	
of scope for this research project, it should still be possible because it adds more value to the contribution.
Therefore,	creating	and	configuring	the	pipeline	should	be	independent	of	utilizing	it	for	schema	matching.

Acknowledgement
This	research	is	supported	by	the	European	Unions	Horizon	2020	research	and	innovation	program	under	
grant agreements 654182 (EN-VRIPLUS project), 824068 (ENVRI-FAIR), and 825134 (ARTICONF). The first
author also acknowledge the support from National Natural Science Foundation of China under grant agree-
ment 61762062.

Figure 10: Outlier test on the CKAN-CERIF dataset. Scores were averaged over 3 tests.

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-TypesArt. 25, page 14 of 15

Competing Interests
The authors have no competing interests to declare.

References
Algergawy, A, Nayak, R and Saake, G. 2010. Element similarity measures in xml schema matching. Infor-

mation Sciences 180(24): 4975–4998. DOI: https://doi.org/10.1016/j.ins.2010.08.022
Amann, B, Fundulaki, I, Scholl, M, Beeri, C and Vercoustre, A-M. 2001. Mapping xml fragments to com-

munity web ontologies. WebDB 2001-International Workshop on the Web and Databases, pp. 97–102.
Berlin, J and Motro, A. 2002. Database schema matching using machine learning with feature selection.

International Conference on Advanced Information Systems Engineering, Springer, pp. 452–466.
Bex, GJ, Neven, F and Van den Bussche, J. 2004. Dtds versus xml schema: a practical study. Proceedings of

the 7th international workshop on the web and databases: colocated with ACM SIGMOD/PODS 2004, ACM,
pp. 79–84. DOI: https://doi.org/10.1145/1017074.1017095

Biron, PV, Malhotra, A, WWW Consortium, et al. 2004. Xml schema part 2: Datatypes.
Bischof, S, Decker, S, Krennwallner, T, Lopes, N and Polleres, A. 2012. Mapping between rdf and xml with

xsparql. Journal on Data Semantics 1(3): 147–185. DOI: https://doi.org/10.1007/s13740-012-0008-7
Breitling, F. 2009. A standard transformation from xml to rdf via xslt. Astronomische Nachrichten: Astro-

nomical Notes 330(7): 755–760. DOI: https://doi.org/10.1002/asna.200811233
Brickley, D, Guha, RV and McBride, B. 2014. Rdf schema 1.1. W3C recommendation 25: 2004–2014.
Davy Van, D, Chris, P, Gaëtan, M, Erik, M and Rik Van de, W. 2008. Xml to rdf conversion: A generic

approach. 2008 International Conference on Automated Solutions for Cross Media Content and Multi-
Channel Distribution, pp. 138–144.

Do, H-H and Rahm, E. 2002. Coma: A system for flexible combination of schema matching approaches.
Proceedings of the 28th International Conference on Very Large Data Bases, VLDB ’02, VLDB Endowment,
pp. 610–621. URL: http://dl.acm.org/citation.cfm?id=1287369.1287422. DOI: https://doi.org/10.1016/
B978-155860869-6/50060-3

Garcia-Gonzalez, H and Labra-Gayo, JE. 2018. Xmlschema2shex: Converting xml validation to rdf valida-
tion. Semantic Web (Preprint): 1–19. DOI: https://doi.org/10.3233/SW-180329

Klein, M. 2002. Interpreting xml documents via an rdf schema ontology, Database and expert systems appli-
cations. 2002 proceedings 13th international workshop on IEEE, pp. 889–893.

Li, W-S and Clifton, C. 2000. Semint: A tool for identifying attribute correspondences in heterogene-
ous databases using neural networks. Data & Knowledge Engineering 33(1): 49–84. DOI: https://doi.
org/10.1016/S0169-023X(99)00044-0

McGuinness, DL, Van Harmelen, F, et al. 2004. Owl web ontology language overview. W3C recommenda-
tion 10(10): 2004.

Mikolov, T, Sutskever, I, Chen, K, Corrado, GS and Dean, J. 2013. Distributed representations of words
and phrases and their compositionality. Advances in neural information processing systems, pp. 3111–
3119.

Miller, GA. 1995. Wordnet: a lexical database for english. Communications of the ACM 38(11): 39–41. DOI:
https://doi.org/10.1145/219717.219748

Nadeau, D and Sekine, S. 2007. A survey of named entity recognition and classification. Lingvisticae Inves-
tigationes 30(1): 3–26. DOI: https://doi.org/10.1075/li.30.1.03nad

Nayak, R and Tran, T. 2007. A progressive clustering algorithm to group the xml data by structural and
semantic similarity. International Journal of Pattern Recognition and Artificial Intelligence 21(4): 723–743.
DOI: https://doi.org/10.1142/S0218001407005648

Prud’hommeaux, E, Labra Gayo, JE and Solbrig, H. 2014. Shape expressions: an rdf validation and trans-
formation language. Proceedings of the 10th International Conference on Semantic Systems, ACM, pp.
32–40. DOI: https://doi.org/10.1145/2660517.2660523

Rahm, E and Bernstein, PA. 2001. A survey of approaches to automatic schema matching. The VLDB Journal
10(4): 334–350. DOI: https://doi.org/10.1007/s007780100057

Silla, CN and Freitas, AA. 2011. A survey of hierarchical classification across different application domains.
Data Mining and Knowledge Discovery 22(1): 31–72. DOI: https://doi.org/10.1007/s10618-010-0175-9

Sun, A and Lim, E-P. 2001. Hierarchical text classification and evaluation. Proceedings 2001 IEEE Interna-
tional Conference on Data Mining, pp. 521–528.

Tao, J, Sirin, E, Bao, J and McGuinness, DL. 2010. Integrity constraints in owl. AAAI.

https://doi.org/10.1016/j.ins.2010.08.022
https://doi.org/10.1145/1017074.1017095
https://doi.org/10.1007/s13740-012-0008-7
https://doi.org/10.1002/asna.200811233
http://dl.acm.org/citation.cfm?id=1287369.1287422
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.1016/B978-155860869-6/50060-3
https://doi.org/10.3233/SW-180329
https://doi.org/10.1016/S0169-023X(99)00044-0
https://doi.org/10.1016/S0169-023X(99)00044-0
https://doi.org/10.1145/219717.219748
https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1142/S0218001407005648
https://doi.org/10.1145/2660517.2660523
https://doi.org/10.1007/s007780100057
https://doi.org/10.1007/s10618-010-0175-9

Liao et al: A Column Styled Composable Schema Matcher for Semantic Data-Types Art. 25, page 15 of 15

Thuy, PTT, Lee, Y-K and Lee, S. 2012. S-trans: Semantic transformation of xml healthcare data into owl
ontology. Knowledge-Based Systems 35: 349–356. DOI: https://doi.org/10.1016/j.knosys.2012.04.009

Thuy, PTT, Lee, Y-K and Lee, S. 2013. A semantic approach for transforming xml data into rdf ontology.
Wireless Personal Communications 73(4): 1387–1402. DOI: https://doi.org/10.1007/s11277-013-1256-z

Thuy, PTT, Lee, Y-K, Lee, S and Jeong, B-S. 2007. Transforming valid xml documents into rdf via rdf schema.
Next Generation Web Services Practices, 2007. NWeSP 2007. Third International Conference on, IEEE, pp.
35–40. DOI: https://doi.org/10.1109/NWESP.2007.23

Yang, D and Powers, DM. 2005. Measuring semantic similarity in the taxonomy of wordnet. Proceedings of
the Twenty-eighth Australasian conference on Computer Science-Volume 38, Australian Computer Society,
Inc., pp. 315–322.

How to cite this article: Liao, X, Bottelier, J and Zhao, Z. 2019. A Column Styled Composable Schema Matcher for
Semantic Data-Types. Data Science Journal, 18: 25, pp. 1–15. DOI: https://doi.org/10.5334/dsj-2019-025

Submitted: 23 February 2019 Accepted: 14 May 2019 Published: 24 June 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.

 OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity
Press.

https://doi.org/10.1016/j.knosys.2012.04.009
https://doi.org/10.1007/s11277-013-1256-z
https://doi.org/10.1109/NWESP.2007.23
https://doi.org/10.5334/dsj-2019-025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	I. Introduction
	II. Related Work
	III. The REPSASM framework
	A. Challenges and Requirements
	B. Architecture

	IV. Experiments
	A. Dataset
	B. Metrics
	C. Experiment 1: Baseline
	D. Experiment 2: Pipeline

	V. Conclusion
	Acknowledgement
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Table 1

