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Climatic variables such as rainfall and temperature have nonlinear and non-stationary character-
istics such that analysing them using linear methods inconclusive results are found. Ensemble 
empirical mode decomposition (EEMD) is a data-adaptive method that is best suitable for data 
with nonlinear and non-stationary characteristics. The average monthly rainfall and tempera-
ture data for a selected region in South Africa are decomposed into intrinsic mode functions 
(IMFs) at different time scales using EEMD. The IMFs exhibit an inter-annual to inter-decadal 
variability. The influence of climatic oscillations such as El-Niño Southern Oscillation (ENSO) and 
quasi-biennial oscillation (QBO) is identified. The influence of temperature variability on rainfall 
is also shown at different time scales. Based on the results obtained, the EEMD method is found 
to be suitable to identify different oscillations in the rainfall and temperature data.
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1. Introduction
The annual variation of rainfall in Southern Africa, directly and indirectly, affect human livelihoods and eco-
system through droughts, temperature changes, water supply problems and reduced agricultural produc-
tion. Most of Southern Africa experience Austral summer rainfall (October to March) and north-eastern to 
south-western regions experience austral winter rainfall (May to August) (Dieppois et al., 2016). The summer 
and winter rainfall variability has been shown to be influenced by El Niño-Southern Oscillation (ENSO) and 
becomes nonlinear, with extreme weather conditions (Phillippon et al., 2012; Fauchereau et al., 2009; Kane, 
2009). The temperature in South Africa has increased by over one and half times more than the globally 
observed temperature increases (Kruger & Shongwe, 2004; DEA, 2011; Mackellar et al., 2014).

El Niño describes the warming of sea surface temperature that occurs periodically, typically concentrated 
in the central-east equatorial Pacific (Lehodey et al., 1997). La Niña is the term adopted which describes the 
opposite side of the fluctuations. The Niño 3.4 index is one of the key atmospheric indices used to gauge 
the strength of El Niño and La Niña. The other driver that has been shown to have an impact on weather 
patterns is the Quasi-Biennial Oscillation (QBO) (Begue et al., 2010). QBO is a regular variation of the winds 
that blow high above the equator. Strong winds in the stratosphere travel in a belt around the planet, and 
in about 14 months these winds completely change direction (Kane, 2009). In the study by Kane (2009), it 
was shown that the warming of climate and sea surface temperatures has an impact on the rainfall patterns. 
Due to the influences of these climatic drivers and others, the weather patterns become nonlinear and 
non-stationary such that linear models are sometimes inconclusive (Huang et al., 1999; Molla et al., 2006). 
Fourier based methods assume that the data is linear and the data must be strictly periodic which is not the 
case with climate data (Schulte, 2016).

Empirical mode decomposition (EMD), was introduced by Huang et al. (1998), which does not make 
assumptions about linearity and stationarity of the time series and it is best suitable to analyse climate data. 
The time series is decomposed into different time scales called intrinsic mode functions (IMFs), which can 
reveal intrinsic changes in the climate system (Huang et al., 1998; Wu et al., 2009). EMD has a challenge 
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of mixing the signals from one IMF to another, therefore, to cater for this, a noise assisted method named 
Ensemble Empirical Mode Decomposition (EEMD) was introduced (Wu et al., 2009).

EEMD has been applied widely in the hydrological and atmospheric studies. Chiew et al. (2005) applied EMD 
to annual streamflow to find significant oscillations in the data. Twenty unimpaired catchments from different 
parts of the world were used and 3, 6–7, 11–15 and 20–25 year oscillations in the stream flows were identified. 
In another study, the climate variability was observed in the case study of East and Central Africa, which was 
demonstrated by mapping the coupling between precipitation variables, inter-annual vegetation changes and 
the ENSO and Indian Ocean Dipole (IOD). EEMD was adopted because of its ability to breakdown normalised 
vegetation index (NDVI) series into multiple time scales components and its generic ability to be used with 
other time series analysis tools (Hawinkel et al., 2015, 2016). The Pacific Decadal Oscillation (PDO) is known to 
have an influence over East China’s annual and summer rainfall. Using EEMD the monthly rainfall influence 
of PDO was identified (Yang et al., 2017). The intrinsic oscillations in the land surface temperature of Wuhan, 
China were revealed using EEMD by decomposing the data into annual, inter-annual, noise and trend (Liu et al., 
2019). In South Korea several climate drivers have been shown to have an impact on the precipitation, however 
many studies did not take into consideration the inherent cycles in the long term precipitation. Using EEMD, 
cross-correlation and multiple linear regression on the influence of ENSO, QBO, Arctic Oscillation, Atlantic 
Meridional Mode and others was shown at the monthly level (Kim et al., 2018). Some notable applications of 
EEMD include finding the effects of temperature and precipitation trends in Plateau droughts (Sun & Ma, 2015) 
and identifying the variability of monthly precipitation in Iran (Alizadeh et al., 2019).

In this study EEMD is used to decompose a 38-year rainfall and temperature data for a selected region in 
Western Cape, South Africa to reveal underlying physical signals. The influence of ENSO, QBO and tempera-
ture on the rainfall pattern is identified. The selected region chosen has been facing a lot of water challenges 
recently. There has been growing general interest in the winter rainfall mainly due to a threat of “day zero” 
in 2018 (Kruger et al., 2017; Maxmen, 2018; Wolski, 2018). However, very few studies have used statistical 
analysis to investigate the rainfall variability during winter. This is the first study that uses EEMD and syn-
chronisation to investigate the influence of ENSO and QBO on the rainfall pattern for the region. This paper 
is organized as follows: in section 2, the data set and methodology are described; in section 3, the analysis 
and discussion of the results is done and conclusion is done in section 4.

2. Data and Method
2.1 Data
The average monthly rainfall and temperature data were obtained from the South African Weather Service 
(SAWS) for the period 1980 to 2018 for an area between 18.2–19.2ºE and 33.5–34.5ºS, which contains 11 
weather stations as shown in Figure 1. The area selected receives winter rainfall from April to August. 

Figure 1: Study Area (square) in Western Cape South Africa with 10 weather stations.
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The data for Niño 3.4 and QBO is publicly available on Climate Explorer website (http://climexp.knmi.nl) 
 (Oldenborgh & Burgers, 2005).

Rainfall and temperature data from weather stations has challenge of having missing data. Therefore, to 
cater for the missing data multivariate imputation by chained equations (MICE) method is used to impute 
the missing data (Van Buuren & Groothuis-Oudshoorn, 2011). The MICE method was chosen for this study 
because it does not assume normal distribution of the data and it also assumes missing at random (MAR). 
The R package ‘mice’ developed by Van Buuren & Groothuis-Oudshoorn (2011) is used for imputation.

2.2 Ensemble Empirical Mode Decomposition
Empirical Mode Decomposition (EMD) is an adaptive time-frequency data representation technique, 
which requires only that the data must consist of a simple intrinsic mode of oscillations (Huang et al., 
1998). It is most suitable for nonlinear and non-stationary data. The EMD methodology is based on a shift-
ing process, which identifies local extrema (maxima and minima) and results in the formation of intrinsic 
mode functions (IMFs). In order to decompose a given time series xt into IMFs the following algorithm is 
used:

(i) Construct the upper max
tx  and lower min

tx  envelopes connecting via cubic spline interpolation all 
the maxima and minima of xt, respectively.

(ii) Compute 
max min 

2
t tx x

t tx x −Δ = − ;
(iii) Repeat steps (i) and (ii) for ∆xt until the resulting signal possess the properties that the number 

of extrema is equal (or differ at most by one) to the number of zero crossings, and the mean 
value between the upper and lower envelope is equal to zero at any point. Denote the resulting 
signal by ht (1), which is the first IMF.

(iv) Take the difference xt (1) = xt – ht (1) and repeat steps from (i) to (iii) to obtain the second IMF 
ht (2) (Huang et al., 1998; Guo et al., 2016).

The first IMF contain the highest fluctuations and this is subtracted from the original data and subse-
quent IMFs are then derived from the subtracted data. The IMFs and residual data approximate the origi-
nal data when they are summed together (Huang et al., 1998). A time series is decomposed into IMFs, 
ht (i) (i = 1,2, …n) and residual rt so that the original data is approximated by the sum of IMFs and residual.
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EMD has a challenge of mode mixing, where signals from one IMF is found in another. Therefore, a noise 
assisted method, Ensemble Empirical Mode Decomposition (EEMD), which consist of adding white noise 
before carrying out EMD algorithm was introduced (Wu & Huang, 2009). For a given time series xt an ensem-
ble of white noise of size m, εj (j = 1,2…,m), is introduced to each data point, xi, such that the ith “artificial” 
value becomes

   . i j iy xε= +  (2.2)

An average of the IMFs found from the data with noise becomes the final IMF, that is

 1

1
( ) ( )

m

t t
j

c i d j
m =
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 (2.3)

where dt (j) is the IMF of the time series with added noise, yt  and ct (i) is the final ith IMF for the original time 
series xt. The average of residuals from yt gives the final residual that is,

 1

1
( )

m

t t
j

r r j
m =

= ∑
 (2.4)

where j
tr  are residuals from the time series with added noise.

The IMFs must be mutually orthogonal to each other. Higher orthogonality corresponds to less amount 
of information leakage. The index of orthogonality (IO) is used to calculate the orthogonality which is 
given by
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where i and j represents the ith and jth IMFs and n is the size of the IMF (Molla et al., 2006).

2.3 Synchronisation
Synchronisation of coupled oscillating systems means appearance of certain relations between their phases 
and frequencies (Rosenblum et al., 2001). Here we use this concept in order to reveal the interaction between 
rainfall and other climatic drivers. R package ‘synchrony’ is used which measures phase synchrony between 
quasiperiodic times series (Cazelles & Stone 2003). Time series that are phase synchronised or locked exhibit 
a modal distribution with a prominent peak at a given phase difference, whereas unrelated times series are 
characterized by a uniform or diffuse distribution.

3. Results and Discussion
The average monthly rainfall for the region located between 18.2–19.2ºE and 33.5–34.5ºS was standard-
ised for easy computation and comparison. The multivariate imputation by chained equations is used to 
impute the missing rainfall and temperature data. The data was decomposed until when there is at most one 
maximum and one minimum in the residual. From the standardised rainfall data, 7 IMFs were found and 
are shown in Figure 2. IMF 3 has a period of about 12 months which corresponds to an annual (seasonal) 

Figure 2: Decomposition of rainfall into IMF1 to 7 and residual using EEMD. The x-axis represents the time 
in years and y-axis represents the frequency. The graphs are labelled on the y-axis from IMF1 (first graph 
on the left) to RES (last graph on the bottom right) which is a graph of the residual. IMF1 captures the 
noise found in the rainfall data, IMF2 inter-annual oscillation, IMF3 annual oscillation, IMF4 2-years oscil-
lation, IMF5 4.5-year oscillation, IMF6 7-year oscillation and IMF7 16.5 year oscillation. The plot of the 
residual shows the general trend of the rainfall.
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oscillation, IMF 4 has a period of about 26 months which approximated a 2 year oscillation, IMF 5 has an 
oscillation of about 54 months (4.5 years) and IMF 6 captures a quasi-decadal oscillation (7 year period). 
Previous studies have used Wavelet Analysis, identified similar oscillations in the South African rainfall that 
were also found in this study (Kane, 2009; Dieppois et al., 2016). In these previous studies, winter rainfall 
was found to be having significant 2–3 year period and 3–4 year period which contributed to the rainfall 
variability. As compared to Wavelet Analysis, EEMD is adaptive, intuitive and does not use basis functions. 
Additionally, the impact of different climate drivers at different time scales can be shown. The graph on the 
bottom right of Figure 2 illustrates the residual plot, which shows the general trend of the rainfall. A study 
by Maúre et al. (2018) used several climatic models to predict the rainfall trend over Southern Africa under 
global warming and the study pointed to a decreasing daily rainfall for Western Cape, which is in agreement 
with the obtained residual plot.

The probability density function for each IMF is approximately normally distributed. The IMFs and resid-
ual are added together to reconstruct the data. The reconstructed data approximates the original data with 
Root Mean Square Error of order 10−14. This clearly shows that EMD is lossless decomposition with minimal 
data being lost in the decomposition and managing to capture most of the oscillations in the data.

It is noted that the maximum value of orthogonality between the IMFs is found to be approximately equal 
to 0.001 and it is way below the acceptable value of less than 0.1. The index of orthogonality for the IMFs is 
0.594 × 10–4 for rainfall, 0.154 × 10–6 for Niño 3.4 and 0.235 × 10–5 for QBO. It confirms that there is less 
amount of information leakage.

The cross-correlation between rainfall and QBO and Niño 3.4 shows that there is no correlation as shown 
in the auto-correlation function (ACF) plot in Figure 3. However, when the time series were decomposed 
correlation is identified for IMF 3 for both Niño 3.4 and QBO as shown in Figure 4. There is a correlation of 
rainfall’s IMF3 and Niño 3.4 index at lag –4, –5, –6, 2 and 3. These results confirm the influence of ENSO 
on the seasonal rainfall and also the quasi-biennial oscillation which is consistent with results found by 
Philippon et al. (2012) and Kane (2009). Additionally, the general pattern of the rainfall at different time 
scales is identified up to quasi-decadal oscillation.

Cross-correlation can be used only when the time series is stationary, the Augmented Dicky Fuller Test 
(ADF) and Phillips-Perron Unit Root Test shows that IMF 4 to 7 are not stationary therefore cross-correlation 
cannot be used. The synchronisation does not require that the time series to be stationary hence it was used 
to identify any relationship for those IMFs. These IMFs found are further synchronised with Niño 3.4 and 
QBO and the results are shown in Figure 5 below. The results show that there is weak coupling between 
the original rainfall time series and Niño 3.4 or QBO. However, there is phase-locking identified for IMF 5 
for Niño 3.4, since there is a clear peak. These results for Niño 3.4 shows that there may be an influence of 
ENSO on the rainfall pattern. This is in agreement with the results that were found by Philippon et al. (2012), 
which found that there was a significant association between ENSO and winter rainfall. They showed that 
there is a strong correlation of the May-June-July season with ENSO than any other period of the year. In 
this study using EEMD, the correlation is further done at a monthly level than seasonal level. The clear peak 

Figure 3: Cross-correlation for rainfall with Niño 3.4 and QBO. The x-axis represents the time gap in months 
and y-axis represents the correlations. The spikes that are above or below the dotted blue line indicate 
significant correlation. In the left graph shows that there is correlation of rainfall and Niño 3.4 index at 
lag –14 to –19. The right graph shows that there is no correlation of rainfall and QBO. The raw data is not 
showing any association of ENSO and QBO with rainfall data.
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on the histogram of rainfall’s IMF6 and QBO (Figure 5) shows that there is phase locking. This QBO signal 
identified is in agreement with a study by Kane (2009) which also identified the presence of QBO and it was 
shown that it contributed significantly to the variability of the winter rainfall for the same region.

Temperature for the selected region was also decomposed into 7 IMFs and a residual. There is weak cou-
pling between the original rainfall time series and temperature as shown in Figure 6 below. However, phase 
locking is observed for IMF 1 and IMF5, since there is a clear peak for both of them. IMF1 captures the noise 
found in the signal and IMF5 is a 4.5-year oscillation. The phase-locking in IMF1 suggest that the tempera-
ture variability may have an impact on the rainfall patterns. The synchronisation on IMF5 shows that the 
temperature changes may have a long term impact on the rainfall variability.  This is consistent with other 
studies that have used different climatic models to find the impact of increasing temperature (Maúre et al., 
2018; Nangombe et al., 2018; Nikulin et al., 2018). These models predict that there will be an increase in 
extreme rainfall patterns. In our study, we have managed to show the direct impact of increasing tempera-
ture using historical data.

Figure 5: Histogram plot of synchronisation of rainfall, QBO and Niño 3.4 index IMFs. The x-axis represents 
the phase difference in radians and y-axis represents the frequency. The plots shows a clear peak for rain-
fall IMF5 with Niño 3.4 IMF5 (top right) which shows that there is phase locking. The last graph on the 
bottom right is a plot of rainfall’s IMF6 and QBO IMF6 which shows that there is phase locking since there 
is a clear peak.

Figure 4: Cross-correlation for IMF3 with Niño 3.4 and QBO. The x-axis represents the time gap in months 
and y-axis represents the correlations. The spikes that are above or below the blue line indicate significant 
correlation. In the left graph shows that there is correlation of rainfall’s IMF3 and Niño 3.4 index at lag 
–4, –5, –6, 2 and 3. The right graph shows that there is correlation of rainfall’s IMF3 and QBO at lag –1 
and –2.
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4. Conclusions
The effectiveness of EEMD to analyse nonlinear and non-stationary data was demonstrated. The rainfall and 
temperature data were decomposed into IMFs and residual data, which summed up to the original data. The 
decomposed IMFs found can be used with other methods such as regression and neural networks to predict 
the impact of climate drivers in the future. EEMD was effective in isolating the data into different timescales 
and therefore the variability of the rainfall pattern was identified, in the end, evidence of the effect of ENSO 
and QBO was provided. Cross-correlation and phase synchronisation was used to find the relationship of the 
IMFs from the different time series under study. It will be of interest for future studies to carry out a study 
for a longer period to find the pattern of the rainfall over decades.
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• Niño 3.4 Index. A measurement of the strength of El-Niño and La-Niña. DOI: https://doi.org/ 
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• Rainfall Data. Original rainfall data for the study area and the decomposed rainfall into IMFs. 
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• Temperature Data. Original temperature data for the study area and the decomposed temperature 
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Figure 6: Histogram plot of the synchronisation of rainfall IMFs and temperature IMFs. The x-axis repre-
sents the phase difference in radians and y-axis represents the frequency. The plots shows a clear peak 
for Rainfall and Temperature for IMF1 (second graph on top), and IMF5 (bottom right). This shows that 
there is phase locking for these IMFs. IMF1 captures the noise in the data and IMF5 captures the 4.5 year-
oscillation in the data.
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