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Abnormal pattern prediction has received a great deal of attention from both academia and 
industry, with various applications (e.g., fraud, terrorism, intrusion detection, etc.). In  practice, 
many abnormal pattern prediction problems are characterized by the simultaneous presence 
of skewed data, a large number of unlabeled data and a dynamic and changing pattern. In this 
paper, we propose a methodology based on semi-supervised techniques and we introduce a new 
metric – the Cluster-Score – for fraud detection which can deal with these  practical  challenges. 
Specifically,themethodologyinvolvestransmutingunsupervisedmodelsintosupervisedmodels
using theCluster-Scoremetric,which defines an objective boundary between clusters and
evaluatesthehomogeneityoftheabnormalities intheclusterconstruction.Theobjectives
are to increase the number of fraudulent claims detected and to reduce the proportion of 
claims investigated that are, in fact, non-fraudulent. The results from applying our  methodology 
considerably improved these objectives. The experiments were performed on a real world
 data-set and are the results of building a fraud detection system.
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1. Introduction
Predicting abnormalities in environments with highly unbalanced samples and a huge mass of unlabeled 
data is receiving more attention as new technologies are developed (e.g., time-series monitoring, medical 
conditions, intrusion detection, detecting patters in images, etc.). A typical example of such a situation is pro-
vided by fraud detection (Hodge, 2004, Weiss, 2004, Phua et al., 2010, Ahuja and Singh, 2017). In general, we 
only have partial information about fraud cases, as well as possibly some information about false positives, 
that is, cases that are considered suspicious but which prove to be cases of non-fraud. The problem here is 
that we cannot label these cases as “non-fraud” simply because they were initially considered suspicious. For 
this reason, we know nothing about non-fraud cases. Moreover, fraud tends to be an outlier problem, given 
that we are dealing with atypical values with respect to regular data. Hence, it is likely that we only dispose of 
information about an extremely small sample. Yet, it so transpires, that this information is extremely useful 
and should not be discarded. In contrast we have a considerable amount of data that may contain fraud and 
or non-fraud cases and, as such, we cannot treat these data using traditional supervised algorithms.

To represent this typical case we apply an innovative semi-supervised methodology to a real fraud case. 
Specifically, we draw on information provided by a leading insurance company as we seek to predict fraudu-
lent insurance claims.1 In general terms, fraud insurance claims fall into two categories: one, those that 
provide only partial or untruthful information in the policy contract; and, two, those that are based on mis-
leading or untruthful circumstances (including exaggerations). It has been estimated that cases of detected 
and undetected fraud represent up to 10% of all claims in Europe (The Impact of Insurance Fraud, 2013), 
accounting for around 10–19% of the payout bill.

 1 The study is part of the development of a fraud detection system that was implemented in 2018.
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In the sector, the main services contracted are automobile and property insurance, representing 76% of 
total claim costs. However, while many studies have examined automobile fraud detection (see, for exam-
ple, Artís et al., 1999 and 2002; Belhadji et al., 2000; Stefano and Gisella, 2001; Brockett et al., 2002; Phua 
et al., 2004; Viaene et al., 2007; Wilson, 2009; Nian et al., 2016), property fraud has been largely neglected, 
perhaps because detection is more difficult as witnesses are infrequent or they are typically cohabitants. 
One representative case is Bentley (2000) who uses fuzzy logic rules to detect suspicious property insurance 
claims in an unbalanced dataset of 98 fraudulent claims and 20,000 unknown cases. They got accuracy 
rates of 60% based on three artificial assumptions of 0%–5%–10% proportions of suspicious cases in the 
unknown claims.

In addition, private companies rarely share real fraud datasets and keep this information private to not 
reveal competitive details. Very small number of studies have therefore been implemented as fraud systems 
in insurance companies (few examples are Major and Riedinger, 1992; Cox, 1995).

Our main objective is therefore to present a variety of semi-supervised machine learning models applied 
to a fraud insurance detection problem. In so doing, we aim to develop a methodology capable of improving 
results in classification anomaly problems of this type. The key being to avoid making assumptions about the 
unknown fraud cases when resolving reoccurring practical problems (skewed data, unlabeled data, dynamic 
and changing patterns) since this can bias results.

Our reasoning for using semi-supervised models is best explained as follows. First, as pointed out by Phua, 
et al. (2010), skewed data is a challenge in many fraud studies. They find that more than 80% of the papers 
analyzed have a percentage of fraud cases below 30%. For instance Bentley’s (2000) study have only 0.5% 
fraud cases whilst 99.5% are unknown, and Foster and Stine (2004) use just 2,244 cases of bankruptcies 
compared to 2.9 million credit card transactions to predict personal bankruptcy. Statistically speaking, fraud 
can be considered a case of outliers, that is, points in the data-set that differ significantly from the remaining 
data. Outliers do not mean noise. We refer to outliers as observations that remarkably deviate from normal 
data. Fraud is typically classified as abnormal behavior or a sudden change of patterns and therefore differs 
from noise (Barnett and Lewis, 1994; Hodge and Austin, 2004; Weiss, 2004; Aggarwal, 2015). Thus, skewed 
and unlabeled data is a natural consequence. Such anomalies often result from unusual events that generate 
anomalous patterns of activity. Were we to use unsupervised models – that is, were we to assume that we are 
unable to distinguish between fraudulent and non-fraudulent cases – what we defined as outliers, noise or 
normal data would be subjective and we would have to represent that noise as a boundary between normal 
data and true anomalies without any information. But, as mentioned, the number of fraud cases detected is 
small; however, they constitute a useful source of information that cannot be discarded.

Second, supervised models are inappropriate because, in general, we face a major problem of claim misclas-
sifications when dealing with fraud detection (Artís et al., 2002) which could generate a substantial mass of 
unknown data. Fraud detection, typically, comprises two stages: first, it has to be determined whether the 
claim is suspicious or not (Viaene et al., 2007); and, second, all cases considered suspicious have to be exam-
ined by fraud investigators to determine whether the claim is fraudulent or not. This means that unsuspi-
cious cases are never examined, which is reasonable in terms of efficiency, especially if the process cannot be 
automatized. Insurance adjusters have little time to perform an exhaustive investigation. Yet, the process does 
provide us with partial information, that is, labels for what is a small sample. Clearly, using a supervised model 
in this instance adds bias to the confusion matrix. Essentially, we will detect severe bias in false negatives and, 
therefore, many cases which are in fact fraudulent will be predicted as being non-fraudulent (Phua et al., 
2004). Indeed, when using supervised algorithms we assume that the system in place is capable of discern-
ing perfectly between fraudulent and non-fraudulent claims, an outcome that in practice is infrequent and 
referred to in the literature as an “omission error” (Bollinger and David, 1997; Poterba and Summers, 1995).

Finally, when fraud investigators analyze claims, they base their analysis on a small suspicious subset from 
previous experience and tend to compare cases to what they consider to be “normal” transactions. As data 
volume and the velocity of operative processes increases exponentially, human analysis becomes poorly 
adapted to changing patterns (Lei and Ghorbani, 2012).

Clearly, the information provided in relation to cases considered suspicious is more likely to be specified 
correctly once we have passed the first stage in the fraud detection process. This information will be useful 
for a part of the distribution (i.e., it will reveal if a fraudulent claim has been submitted), which is why it is 
very important this information be taken into account. For this reason, fraud detection in insurance claims 
can be considered a semi-supervised problem because the ground truth labeling of the data is partially 
known. Not many studies have used hybrids of supervised/unsupervised models. Williams and Huang (1997) 
cluster data from a Medicare Insurance, treating each cluster as a class and use them to construct a decision 
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tree that generate decision rules. As a result, they are able to identify possible groups of interest for further 
investigation. Williams (1999) continues down the same line, using a system that is able to evolve with the 
progression of claims. Brockett et al. (1998) study automobile bodily injury insurance claims in over 387 
cases. They ask loss-adjusters and investigators to group the cases by level of suspiciousness, and later use 
Self Organizing Maps to cluster the data and re-label it. However, basing the construction of clusters on sub-
jective boundaries between fraud and non-fraud can bias the outcomes.

Other semi-supervised models use normal observable data to define abnormal behavioral patterns: Aleskerov 
et al. (1997) use past behavior as normal data to predict anomalies using Neural Networks. Kokkinaki (1997) 
detects atypical transactions based on users’ profiles normal behavior. Murad and Pinkas (1999) identify 
fraudulent patterns in phone-calls finding “significant deviation” from the normal data (which is based on 
profiling). Kim et al. (2003) use normal product sales to detect anomalous sales patterns. However, these 
studies assume we have information about normal behavior, which is not always the case, and, it is question-
able whether or not the normal observable data was correctly defined as normal in the first place.

We therefore seek to make three contributions to the literature: First, we apply semi-supervised  techniques 
to an anomaly detection problem while trying to solve three combined problems: skewed data, unlabeled 
data and change in patterns, without making any subjective assumption that can bias the results. 
Second, we create a metric based on the logic behind the F-Score which permit us to evaluate the purity of 
abnormalities in the clusters. Finally, we build a fraud detection system which is applied to an actual prop-
erty insurance claim fraud problem, using a real-world data-set provided by a leading insurance company.

2. Data
We use an insurance fraud data-set provided by a leading insurance company in Spain, initially for the period 
2015–2016. After sanitization, our main sample consists of 303,166 property claims, some of which have 
been analyzed as possible cases of fraud by the Investigation Office (IO).2

Of the cases analyzed by the IO, 48% proved to be fraudulent. A total of 2,641 cases were resolved as true 
positives (0.8% of total claims) during the period under study. This means we do not know which class the 
remaining 99.2% of cases belong to. However, the fraud cases detected provide very powerful information, 
as they reveal the way in which fraudulent claims behave. Essentially, they serve as the pivotal cluster for 
separating normal from abnormal data.

A data lake was constructed during the process to generate sanitized data. A data lake is a repository of 
stored raw data, which includes structured and unstructured data in addition to transformed data used to 
perform tasks such as visualizing, analyzing, etc. From the data lake, we obtain 20 bottles containing dif-
ferent types of information related to claims. A bottle is a subset of transformed data which comes from 
an extract-transform-load (ETL) process preparing data for analysis. These bottles contain variables derived 
from the company’s daily operations, which are transformed in several aspects. In total we have almost 1,300 
variables. We briefly present them in Table 1 to help explain which concepts were included in the model.

3. Methodology
If we have labeled data, the easiest way to proceed is to separate regular from outlier observations by employ-
ing a supervised algorithm. However, in the case of fraud, this implies that we know everything about the 
two classes of observation, i.e., we would know exactly who did and did not commit fraud, a situation that is 
extremely rare. In contrast, if we know nothing about the labeling, that is, we do not know who did and did 
not commit fraud, several unsupervised methods of outlier detection can be employed, e.g., isolation forest 
(Liu et al., 2008), one-class support vector machines (Schölkopf et al., 2001; Manevitz and Yousef, 2001) and 
elliptic envelopment (Rousseeuw and Driessen, 1999). However, they tend to be less precise and we have to 
assume some subjective boundary.

If, however, we have some label data about each class, we can implement a semi-supervised algorithm, 
such as label propagation (Zhu and Ghahramani, 2002) or label spreading (Zhou et al., 2004). Yet, these 
methods require that we have some information about every class in our problem, something that is not 
always possible. Indeed, disposing of label data information about each class is quite infrequent in certain 
practical problems. Additionally, we face the problem of unbalanced data, which means we rarely have clean 
and regular data representing the population. In fraud problems, as a norm, the data is highly imbalanced, 
which results in a high but biased success rate.

 2 The system applied before to detect fraud corresponds to a rule based methodology.
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In the light of these issues, we propose a semi-supervised technique that can assess not only a skewed data-
set problem but also one for which we have no information about certain classes. In this regard, fraud detec-
tion represents an outlier problem for which we can usually identify some, but not all, of the cases. We might, 
for example, have information about false positives, i.e., investigated cases that proved not to be fraudulent. 
However, simply because they have raised suspicions mean they cannot be considered representative of non-
fraudulent cases. In short, what we usually have are some cases of fraud and a large volume of unknown cases 
(among which it is highly likely cases of fraud are lurking).

Bearing this in mind, we propose the application of unsupervised models so as to relabel the target varia-
ble. To do this, we use a new metric that measures how well we approximate the minority class. We can then 
transform the model to a semi-supervised algorithm. On completion of the relabeling process, our problem 
can be simplified to a supervised model. This allows us not only to set an objective boundary but to obtain a 
gain in accuracy when using partial information, as Trivedi et al. (2015) have demonstrated.

3.1. Unsupervised Model Selection
We start with a data-set of 303,166 cases. The original data was collected for business purposes, therefore 
a lot of time was put into sanitizing the data-set. It is important to remark that we set aside a 10% random 
subset for final evaluation. Hence, our data-set consists of 270,479 non-identified cases and 2,370 cases of 
fraud.

The main problem we face in this unsupervised model is having to define a subjective boundary. We have 
partial information about fraud cases, but have to determine an acceptable threshold at which an unknown 
case can be considered fraudulent. When calculating unsupervised classification models, we reduce the 

Table 1: The 20 Data Bottles and their descriptions extracted from a Data Lake created for this particular 
case study.

Bottles Descriptions

ID ID about claims, policy, person, etc.

CUSTOMER Policyholder’s attributes embodied in insurance policies: name, sex, age, address, etc.

CUSTOMER_PROPERTY Customer related with the property data.

DATES Dates of about claims, policy, visits, etc.

GUARANTEES Coverage and guarantees of the subscribed policy.

ASSISTANCE Call center claim assistance.

PROPERTY Data related to the insured object.

PAYMENTS Policy payments made by the insured.

POLICY Policy contract data, including changes, duration, etc.

LOSS ADJUSTER Information about the process of the investigation but also about the loss adjuster.

CLAIM Brief, partial information about the claim, including date and location.

INTERMEDIARY Information about the policies’ intermediaries.

CUSTOMER_OBJECT_RESERVE The coverage and guarantees involved in the claim.

HISTORICAL_CLAIM Historical movements associated with the reference claim.

HISTORICAL_POLICY Historical movements associated with the reference policy (the policy involved in 
the claim).

HISTORICAL_OTHER_POLI-
CIES

Historical movements of any other policy (property or otherwise) related to the 
reference policy.

HISTORICAL_OTHER_CLAIM Historical claim associated with the reference policy (excluding the claim analyzed).

HISTORICAL_OTHER_POL_
CLAIM

Other claim associated with other policies not in the reference policy (but related to 
the customer).

BLACK_LIST Every participant involved in a fraudulent claim (insured, loss-adjuster, intermedi-
ary, other professionals, etc.)

CROSS VARIABLES Several variables constructed with the interaction between the bottles.
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dimensions to clusters. Almost every algorithm will return several clusters containing mixed-type data (fraud 
and unknown). Intuitively, we would want the fraud points revealed to be highly concentrated into just a 
few clusters. Likewise, we would expect some non-revealed cases to be included with them, as in Figure 1a. 
On the other hand, we would want to avoid situations in which abnormal and normal cases are uniformly 
distributed between groups, as in Figure 1b. Thus, a limit of some kind has to be defined. But, how many of 
the “unknown” cases can we accept as being fraudulent?

A boundary line might easily be drawn so that we accept only cases of detected fraud or we accept every 
possible case as fraudulent. Yet, we know this to be unrealistic. If we seek to operate between these two 
extremes, intuition tells us that we need to stay closer to the lower threshold, accepting only cases of fraud 
and very few more, as Figure 2 illustrates.

But once more, we do not know exactly what the correct limit is. In this way, however, we have created 
an experimental metric that can help us assign a score and, subsequently, define the threshold. This metric, 
which we shall refer to as the cluster score (CS), calculates the weighted homogeneity of clusters based on 
the minority and majority classes.

 2
2

1 2*(1 ) with 0,
1 2 *

C C
CS

C Cα α α α
α

= + > ∈
+

R

Essentially, it assigns a score to both the minority-class (C1) and the majority-class (C2) clusters based on 
the weighted conditional probability of each point. The CS expression clearly resembles the well-known 
F-Score,3 which is a measure of the test’s accuracy. Particularly, C1 and recall, and C2 and precision, pursue 

 3 F-Score is defined as 
2

2
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*
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Figure 1: Possible clusters. (a) shows a separable and compact cluster of the abnormal points. On the other 
side, (b) shows abnormal and normal cases uniformly distributed.

Figure 2: Schematic representation of the desired threshold which is expected to split high fraud probabil-
ity cases from low fraud probability cases.
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the same objectives, which in our case is to capture the maximum amount of fraud cases while also paying 
attention to the quality of those cases. The CS measure permits us to maximize homogeneity in the clusters. 
Since C1 and C2 are part of the same subset space, we have to make trade-offs (just as with recall and preci-
sion) between the optimization of C1 homogeneity and C2 homogeneity.

Moreover the α parameter allows us to maximize the homogeneity we are more concerned about. If for 
example, we want to obtain a more homogeneous C1 (the fraud cluster would include almost every possible 
case of revealed fraud), we can set a higher α, taking into account that it possibly makes the C2 homogene-
ity worse.

3.1.1. C1 Score
Suppose an unsupervised model generates J clusters: {C1, C2, …, CJ}. The number of cases in cluster Cj is 
denoted by nj.

The C1 score calculates the probability that a revealed (i.e., confirmed) fraud case belongs to cluster C j and 
this probability is weighted by the total number j

fraudn  of fraud cases in that cluster C j, divided by the total 
number of Nfraud of revealed fraud cases in the dataset.

 1
*

1 [0,1]

jJ jfraud
fraudjj

fraud

n
n

nC
N

=
= ∈
∑

Basically, we calculate the fraction of fraud cases in each cluster ( / )j j
fraudj n n  and we weight these fractions 

by the corresponding number of fraud cases in cluster )( j
fraudj n .

Our objective is to maximize C1. This means ensuring all revealed fraud cases are in the same clusters. The 
limit C1 = 1 implies that all J clusters only contain revealed fraud cases. Therefore, we have to balance this 
function with another function.

3.1.2. C2 Score
C2 is the counterpart of C1. The C2 score calculates the probability that an “unknown” case belongs to 
cluster C j and this probability is weighted by the total number ( )j

unknownn  of unknown cases in that cluster C j, 
divided by the total number of unknown cases in the data-set (Nunknown):

 1
*

2 [0,1]

jJ junknown
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n
n
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=
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∑

Notice that j j j
fraud unknownn n n+ = . The objective is the same as that above in the case of C1: to cluster the class 

of unknown cases without assigning revealed fraud cases to these clusters.

3.1.3. Cluster Score
Individually maximizing C1 and C2 leaves us in an unwanted situation. Basically, they are both trying to be 
split. Therefore, when we maximize one, we minimize the other. If we maximize both together, this results 
in a trade-off between C1 and C2, a trade-off in which we can choose. Moreover, as pointed out above, we 
actually want to maximize C1 subject to C2. Consequently, the fraud score is constructed as follows:

 2
2

1 2*(1 ) with 0,
1 2 *
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CS

C Cα α α α
α

= + > ∈
+
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If α = 1, C1 and C2 will have the same weight. But if we assign α > 1, this will reduce the weight of C2 (if 
α < 1, this will reduce the weight of C1). It is important to highlight that the actual function of the cluster 
score is to choose between algorithms (based on the purity of the cluster construction) and α is the way to 
balance C1 and C2.

In conclusion, with this CS we have an objective parameter to tune the unsupervised model because it 
permits us to homogeneously evaluate not only different algorithms but also their parameters. While it is 
true that there exists a variety of internal validation indices, this metric differs in that it can also exploit 
information about the revealed fraud cases. That is, we take advantage of the sample that is labeled fraud to 
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choose the best algorithm, something that internal validation indices are not able to accomplish. The only 
decision that remains for us is to determine the relevance of α. A numerical example can be consulted in 
Appendix 1.

We should stress that each time we retrieve more information about the one-class cases that have been 
revealed, this threshold improves. This is precisely where the entropy process of machine learning appears. 
As fraud is a dynamic process that changes patterns over the time, using this approach the algorithm is 
capable of adapting to those changes. In the one-class fraud problem discussed above, we start with an 
unknown distribution for which some data points are known (i.e., the fraud sample). Our algorithms, using 
the proposed CS metric, will gradually get closer to the best model that can fit these cases of fraud, while 
maintaining a margin for undiscovered cases. Now, if we obtain new information about fraud cases, our 
algorithms will readjust to provide the maximum CS again. As the algorithms work with notions based on 
density and distances, they change their shapes to regularize this new information.

Once the best unsupervised model is attained (i.e., the model that reaches the maximum CS), we need 
to decide what to do with the clusters generated. Basically, we need to determine which clusters comprise 
fraudulent and which comprise non-fraudulent cases. The difficulty is that several clusters will be of mixed-
type: e.g., minority-class points (fraud cases) and unidentified cases, as in Figure 3a, where the 0s are uni-
dentified cases and the 1s are minority-class points.

In defining a threshold for a fraud case, we make our strongest assumption. Here, we assume that if a 
cluster is made up of more than 50% of fraud cases, this cluster is a fraud cluster, otherwise, it is a non-fraud 
cluster. The distinction introduced is clear: The non-fraud cluster is no longer an unidentified cluster. By 
introducing this assumption, we state that they are actually non-fraudulent cases. This definition acts as the 
key for our transition into a semi-supervised model. The assumption may seem unrealistic but, as we will see 
later, the best unsupervised models are capable of generating clusters with a proportion greater than 95% 
of fraud cases. We can, therefore be even more stringent with this assumption.

As Figure 3b shows, cluster 1, being composed of more than 50% fraud cases, now forms part of the more 
general fraud cluster, together, obviously, with the fraud cases already detected. The remaining cases that do 
not belong to such a dense fraud cluster are now considered non-fraud cases.

As mentioned, before applying the unsupervised algorithm, we had to make a huge effort to sanitize the 
original data since it was collected for business purposes. This included: handling categorized data, trans-
forming variables, bad imputation, filtering, etc. at each bottle level. Finally, we transformed the 20 bottles 
at a claim level and put them together in a unique table which formed our model’s input.

After that, before using this data as input, we made some important transformations. First, we filled the 
missing values given that many models are unable to work with them. There are simple ways to solve this, 

Figure 3: Cluster Example Output. (a) shows an example of a cluster algorithm output over a sample of data 
points. (b) shows how the Cluster Score choose the points that are relabeled as fraud cases (points inside 
the doted line).
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like using the mean or the median value of the distribution. Since we did not want to modify the original 
distribution, we implemented a multi-output Random Forest regressor (Breiman, 2001), to predict the miss-
ing values based on the other columns. The idea was, for each column that had missing values, we used 
the column as a target variable. We trained with the part without missing values, and by using the other 
features, we predicted the target variable.

We iterated this process in every column that had missing values (0.058% of the total values were miss-
ing). We also measured the performance of this technique using the R-squared, which is based on the resid-
ual sum of squares. Our R-squared was 89%.

Second, we normalized the data to, later, be able to apply a Principal Component Analysis (PCA), and also 
because many machine-learning algorithms are sensible to scale effects. Those using Euclidean distance are 
particularly sensitive to high variation in the magnitudes of the features. In this case, we used a robust scale 
approach4 that is less affected by outliers since it uses the median value and the interpercentile ranges (we 
chose 90%–10%). In general, standard normalization is a widely use method. However, as in this case we 
are paying special attention to outliers, a mean approach might not be the best option. Outliers can often 
influence the sample mean/variance in a negative way. The robust scale approach removes the median and 
scales the data according to a quantile range. Centering and scaling happen independently on each feature 
by computing the relevant statistics on the samples in the training set. Median and interquartile range are 
then stored to be used on test/new data.

Third, we applied Principal Component Analysis to resolve the high dimensionality problem (we had 
almost 1,300 variables). This method reduces confusion in the algorithms and solves any possible collinear-
ity problems. PCA decomposes the data-set in a set of successive orthogonal components that explain a max-
imum amount of the data-set’s variance. When setting a data-set’s variance threshold, a trade-off between 
over-fitting and getting the variation in the data-set is made. We chose a threshold of 95% (recommended 
threshold is between 95% and 99%), which resulted in 324 components. After this transformations, the 
unsupervised algorithm can thus be summarized as seen in Algorithm 1.

The main reason is that it has a low noise sensitivity as it ignores small variations in the background (based 
on a maximum variation basis). While it is true that there are several non-linear formulations for dimension-
ality reduction that may get better results, some studies have actually found that non-linear techniques are 
often not capable of outperforming PCA. For instance Van Der Maaten et al. (2009) compared PCA versus 
twelve non-linear dimensionality reduction techniques on several data-sets and they couldn’t conclude that 
the non-linear techniques outperformed PCA.

 4 We use the formulation Z = (x – xmedian)/(p90 – p10).

Algorithm 1: Unsupervised algorithm

Data: Load transformed data-set. Oversample the fraud cases in order to have the same amount as the 
number of unknown cases.

1 for k ∈ K = {model1, model2, …} where K is a set of unsupervised models. do

2 for i ∈ I where I is a matrix of parameter vectors containing all possible combinations of the 
 parameters in model k do

3 We fit the model k with the parameters i to the oversampled data-set.

4 We get the J clusters: {C1, C2, …, C J} for the combination {k, i }, i.e., 1 2
, , , ,{ , ,..., }J

k i k i k i k iC C C C=

5 For Ck,i we calculate C1 Score and C2 Score and we obtain the cluster score CSk,i, based on the 
acceptance threshold t*.

6 Save the cluster score result CSk,i ∈ CSK,I, where CSK,I is the cluster score vector for each pair {k, i}.

7 end

8 end

9 Choose the optimal CS* where CS* = max{CSK,I}

10 Relabel the fraud variable using the optimal clustering model derived from CS*. Each unknown case in 
a fraud cluster is now equal to 1, known fraud cases are equal to 1 and remaining cases are equal to 0.
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3.2. Supervised Model Selection
We now have a redefined target variable that we can continue working with by applying an easy-to-handle 
supervised model. The first step involves re-sampling the fraud class to avoid unbalanced sample problems. 
Omitting this step, means that our model could be affected by the distribution of classes, the reason being 
that classifiers are in general more prone to detect the majority class rather than the minority class. We, 
therefore, oversample the data-set to obtain a 50/50 balanced sample. We use two oversampling methods, 
Adaptive Synthetic Sampling Approach (ADASYN) by He et al. (2008), and balanced subsampling. ADASYN 
finds the n-nearest neighbors in the minority class for each of the samples in the class. It creates random 
samples from the connections and adds a random small value to the points in order to scatter them and 
break the linear correlation with the parent point. The balanced subsample method on the other hand, does 
not need to create synthetic points since the samples used are already balanced. The balanced samples are 
obtained by using weights inversely proportional to class frequencies for each iteration in a supervised tree 
based algorithm.

The second step, involves conducting a grid search and a Stratified 5-fold cross-validation (CV) based on 
the F-Score5 to obtain the optimal parameters for three different models: extreme randomized tree -ERT- 
(Geurts et al., 2006), gradient boosting -GB- (Freund and Schapire, 1996) and a light XGB -LXGB- (Ke et al., 
2017). Cross-validation is a great way to avoid over-fitting, i.e., failing to predict new data. We train using k – 1 
folds (data subsets) and we validate our model by testing it on the remaining fold. To prevent an imbalance 
problem in the folds, we use a stratified k-folds strategy which returns subsets containing approximately the 
same distribution of classes as the original data-set.

We have to be careful not to over-fit the model during the cross-validation process, particularly when using 
oversampling methods. Step one and step two, therefore have to be executed simultaneously. Oversampling 
before cross-validating would generate samples that are based on the total data-set. Consequently, for each 
k – 1 training fold, we would include very similar instances in the remaining test fold, and vice versa. This is 
resolved by first, stratifying the data, and then oversampling the k – 1 folds, without taking into account the 
validation fold. Finally, we concatenate all the predictions.

Additionally, we combine the supervised models using stacking models. Stacking models is combining dif-
ferent classifiers, applied to the same data-set, and getting different predictions that can be “stacked” up to 
produce one final prediction model. The idea is very similar to k-fold cross validation, dividing the training 
set into several subsets or folds. For all k – 1 folds, predictions are obtained by using all the supervised mod-
els (called the base models). The predictions are stored to be used as features for the stacking model in the 
full training data-set. Finally, a new model (the stacking model or the Meta model) is fitted to the improved 
data-set. The stacking model can discern whether a model performs well or poorly, which is very useful 
since one model might have high performance when predicting fraud, but not when predicting non-fraud, 
and vice versa. The combination of both could therefore improve the results. We try three different ways of 
combining classifiers, modifying the Meta model: GB and LXGB with Meta ERT, GB and ERT with Meta LXGB, 
and LXGB and ERT with Meta GB.

Once we have the optimal parameters for each model, we calculate the optimal threshold that defines the 
probability of a case being fraudulent or non-fraudulent, respectively.

Finally, we identify the two models that perform best on the data-set – the best acting as our main model 
implementation, the other controlling that the predicted claims are generally consistent. The algorithm can 
be summarized as seen in Algorithm 2.

4. Results
4.1. Performance
Table 2 shows the main unsupervised modeling results of the tuning process. We tried different combina-
tions of distance based models, density based models and outlier models: Mini-Batch K-Means (Sculley, 2010), 
Isolation Forest (Liu, 2008), DBSCAN (Ester et al., 1996), Gaussian Mixture and Bayesian Mixture (Figueiredo 
and Jain, 2002). Mini-batch K-Means is not only much faster than the other models, it also provides the 
best results. It is similar to K-Means++, both using the Euclidean distance between points as the objective 
function, however it can also reduce computation time. Subsets of the input data are taken and randomly 
sampled in each iteration, converging more quickly to a local solution.

 5 The F-Score was constructed using β = 2, as we needed to place greater weight on the recall.
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C1 indicates that the minority-class (fraud) clusters comprise approximately 96.59% of minority data 
points on a weighted average. In contrast, C2 indicates they are made up of 96.59% of unknown cases. As 
can be seen in Table 3, more than 95% of the cases in the central cluster are fraudulent (well above our 
50% assumed threshold), but it also contains an additional 6,047 unknown cases (Cluster 0 now contains 
an additional 5,890 cases, and Cluster 1 an additional 157 cases). This is our core fraud cluster and the one 
we use when renaming the original labels.

After relabeling the target variable (with the Mini-Batch K-Means output), we calculate the supervised 
models performance using Stratified 5-Fold CV on the data-set. The results of each of the supervised models 
and of the stacking models is shown in Table 4.

As can be appreciated, we have two recall values. The cluster recall is the metric derived when using the 
relabeling target variable. The original recall emerges when we recover the prior labeling (1 if it was fraud, 

Algorithm 2: Supervised algorithm.

Data: Load relabeled data-set.

1 for modeli ∈ M′ = {M, S} where M is the set of supervised individual models M and S the set of stacking 
models from M do

2 for {traink, testk} folds in the Stratified k-Folds do

3 We apply PCA to folder traink and save the weights/parameters.

4 if Oversample==True then train′k = oversample (traink) where oversampling is applied to 50/50 
using the ADASYN method.

5 else train′k = train′k and the balanced subsampling option is activated.

6 Fit the modeli in train′k, where modeli ∈ M′ = {M, S}.

7 Transform testk with PCA’s weights/parameters and get predicted probabilities pk of testk using 
modeli.

8 Save the probabilities pk in Pi, where Pi is the concatenation of modeli’s probabilities.

9 end

10 for ∀ti ∈ [0, 1], where t is a probability threshold of the modeli to consider a case as fraudulent do

11 if Pi ≥ ti  then Pi = 1

12 else Pi = 0

13 Using Pi, where now Pi is a binary list, we calculate,  
2

, 2
*(1 ) *
*

i t

precision recall
FScore

recall precision
b

b
= +

+
 with β = 2.

14 Save FScorei,t in FScorei, a list of vectors of modeli with FScore results for each t.

15 end

16 We get FScorei* = max{FScorei(t)}.

17 end

Table 2: Unsupervised model results.

Model n Clusters C1 C2 CS (α = 2)

Mini-Batch K-Means 4 96.6% 96.6% 96.6%

Isolation Forest 2 51.5% 51.1% 51.4%

DBSCAN 2 50.2% 49.8% 50.1%

Gaussian Mixture 5 95.0% 95.0% 96.3%

Bayesian Mixture 6 96.5% 96.4% 96.5%
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0 otherwise). As can be seen, the results are strikingly consistent. We are able to predict fraud cluster with 
a recall of up to 89–97% in every case. But, more impressively yet, we can capture the original fraud cases 
with a recall close to 98%. The precision is slightly lower, but in almost all cases it is higher than 67%. These 
are particularly good results for a problem that began as an unsupervised high-dimensional problem with 
an extremely unbalanced data-set.

 The two best models are both extreme randomized trees: the first uses balanced subsampling -ERT-ss- (i.e., 
for every random sample used during the iteration of the trees, the sample is balanced by using weights 
inversely proportional to class frequencies), and serves here as our base model; the second uses an ADASYN 
oversampling method-ERT-os- and serves as our control model.

4.2. Investigation Office Validation
At the outset, we randomly set aside 10% of the data (30,317 claims). In this final step, we want to go further 
and examine these initial claims as test data. Our results are shown in Table 5.

As can be appreciated, the control model (Table 5b) has a recall of 97% while the base model (Table 5a) 
has an impressive recall of 100%. However, the real added value depends on the non-investigated fraud 
cases, i.e., cases not previously detected but which would boost our results if shown to be fraudulent (non-
investigated predicted as fraud). We, therefore, sent these cases to the IO for analysis.

The IO investigated 367 cases (at the intersection between the ERT-ss and ERT-os models). Two fraud 
investigators analyzed each of these cases, none of which they had previously seen as the rule model had 
not detected them.

Of these 367 cases, 333 were found to present a very high probability of being fraudulent. This means 
that only 34 could be ruled out as not being fraudulent. Recall that from the original sample of 415 
cases, the fact that 333 presented indications of fraud means we have a precision of 88%. In short, we 
managed to increase the efficiency of fraud detection by 122.8%. These final outcomes are summarized 
in Table 6.

Table 3: Oversampled Unsupervised Mini-Batch K-Means.

Clusters Fraud Percentage

0 0 2%

0 1 98%

1 0 99%

1 1 1%

2 0 100%

2 1 0%

3 0 1%

3 1 99%

Table 4: Supervised model results.

Model Cluster 
Recall

Original 
Recall

Precision F-Score

ERT-ss 0.9734 0.9840 0.6718 0.8932

ERT-os 0.9647 0.9819 0.6937 0.8948

GB 0.9092 0.9376 0.6350 0.8369

LXGB 0.8901 0.9249 0.7484 0.8576

Stacked-ERT 0.8901 0.9283 0.7524 0.8587

Stacked-GB 0.8947 0.9287 0.7630 0.8649

Stacked-LXGB 0.9180 0.9464 0.6825 0.8588
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4.3. Dynamic Learning
One of the challenges in fraud detection is that it is a dynamic process which can change its patterns over 
time. A year later, we retest the model with new data. We now have 519,921 claims to evaluate. We initially 
start out with a similar proportion of fraud cases (0.88%)- we are now able to train with 4,623 fraud cases 
to further improve results.

First, we recalculate the unsupervised algorithm, getting a Cluster-Score of 96.89%. As can be seen in 
Table 7, Cluster 0 contains almost every normal case. On the other hand, we can clearly distinguish two fraud 
clusters: Cluster 1, in which 99.31% are fraud cases, and Cluster 2, in which 97.36% are fraud cases. Our 50% 
threshold therefore becomes insignificant again.

Using the Extreme Randomized Subsampled approach (ERT-ss) and the Extreme Randomized oversampled 
with ADASYN (ERT-os), and the Stratified 5-fold cross validation approach we retrain the model. Table 8 
shows the main results.

The base model greatly improves the homogeneity of the fraud and non-fraud clusters. In particular, it 
provides a gain of 33% in the precision score and of 6.2–6.8% in the F-Score.

Table 6: Base Model Final Results.

Original Value Prediction Cases

Non-Investigated Non-Fraud 29.631

Fraud Non-Fraud 0

Non-Fraud Fraud (415 – 333) = 82

Fraud Fraud (271 + 333) = 604

Table 7: Oversampled Unsupervised Mini-Batch K-Means.

Clusters Fraud Percentage

0 0 99.4%

0 1 0.6%

1 0 0.7%

1 1 99.3%

2 0 2.6%

2 1 97.4%

Table 5: Model Robustness Check.

Original Value Prediction Cases

Non-Investigated Non-Fraud 29.631

Fraud Non-Fraud 0

Non-Investigated Fraud 415

Fraud Fraud 271

(a) ERT-ss Robustness Check

Original Value Prediction Cases

Non-Investigated Non-Fraud 29.656

Fraud Non-Fraud 8

Non-Investigated Fraud 390

Fraud Fraud 263

(b) ERT-os Robustness Check
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5. Conclusion
This paper has sought to offer a solution to the problems that arise when working with highly unbalanced 
data-sets for which the labeling of the majority of cases is unknown. In such cases, we may dispose of a few 
small samples that contain highly valuable information. Here, we have presented a fraud detection case, 
drawing on the data provided by a leading insurance company, and have tested a new methodology based 
on semi-supervised fundamentals to predict fraudulent property claims.

At the outset, the Investigation Office (IO) did not investigate many cases (around 7,000 cases from a total 
of 303,166). Of these, only 2,641 were actually true positives (0.8% of total claims), with a success rate of 
48%. Thanks to the methodology devised herein, which continuously readapts to dynamic and changing 
patterns, we can now investigate the whole spectrum of cases automatically, obtaining a total recall of 96% 
and a precision of 89–92%. In spite of the complexity of the initial problem, where the challenge was to 
detect fraud dynamically without knowing anything about 99.2% of the sample, the methodology described 
has been shown to be capable of solving the problem with great success.

Additional File
The additional file for this article can be found as follows:

•	 Appendix. Practical Example. DOI: https://doi.org/10.5334/dsj-2019-035.s1

Acknowledgement
The author would like to thank to Cristina Rata and Joan-Ramon Borrell for constructive criticism of the 
manuscript.

Competing Interests
The author has no competing interests to declare.

References
Aggarwal, CC. 2015. Outlier analysis. In Data mining. Springer, pp. 237–263. DOI: https://doi.org/10. 

1007/978-3-319-14142-8_8
Ahuja, MS and Singh, L. 2017. Online fraud detection-a review. International Research Journal of  Engineering 

and Technology, 4(7): 2509–2515.
Aleskerov, E, Freisleben, B and Rao, B. 1997. Cardwatch: A neural network based database mining system 

for credit card fraud detection. In Computational Intelligence for Financial Engineering (CIFEr). IEEE, pp. 
220–226.

Barnett, V and Lewis, T. 1994. Outliers in statistical data. Wiley Chichester.
Belhadji, EB, Dionne, G and Tarkhani, F. 2000. A model for the detection of insurance fraud. The Geneva 

Papers on Risk and Insurance-Issues and Practice, 25(4): 517–538. DOI: https://doi.org/10.1111/1468-
0440.00080

Table 8: Base Model with the machine-learning process applied.

Period Jan 15–Jan 17 Jan 15–Jan 18

Claims 303,166 519,921

Observed Fraud 2,641 4,623

Cluster Score 96.59% 96.89%

Recall Score ERT-ss 97.34% 96.31%

Precision Score ERT-ss 67.18% 89.35%

F-Score ERT-ss 89.32% 94.84%

Recall Score ERT-os 96.47% 96.44%

Precision Score ERT-os 69.37% 92.18%

F-Score ERT-os 89.48% 95.56%

https://doi.org/10.5334/dsj-2019-035.s1
https://doi.org/10.1007/978-3-319-14142-8_8
https://doi.org/10.1007/978-3-319-14142-8_8
https://doi.org/10.1111/1468-0440.00080
https://doi.org/10.1111/1468-0440.00080


Palacio: Abnormal Pattern PredictionArt. 35, page 14 of 15  

Bentley, PJ. 2000. Evolutionary, my dear Watson investigating committee-based evolution of fuzzy rules 
for the detection of suspicious insurance claims. In Proceedings of the 2nd Annual Conference on Genetic 
and Evolutionary Computation. Morgan Kaufmann Publishers Inc., pp. 702–709.

Bollinger, CR and David, MH. 1997. Modeling discrete choice with response error: Food stamp participa-
tion. Journal of the American Statistical Association, 92(439): 827–835. DOI: https://doi.org/10.1080/0
1621459.1997.10474038

Breiman, L. 2001. Random forests. Machine learning, 45(1): 5–32. DOI: https://doi.org/10. 
1023/A:1010933404324

Brockett, PL, Derrig, RA, Golden, LL, Levine, A and Alpert, M. 2002. Fraud classification using 
 principal component analysis of ridits. Journal of Risk and insurance, 69(3): 341–371. DOI: https://doi.
org/10.1111/1539-6975.00027

Brockett, PL, Xia, X and Derrig, RA. 1998. Using Kohonen’s self-organizing feature map to uncover 
automobile bodily injury claims fraud. Journal of Risk and Insurance, pp. 245–274. DOI: https://doi.
org/10.2307/253535

Cox, E. 1995. A fuzzy system for detecting anomalous behaviors in healthcare provider claims. Intelligent 
Systems for Finance and Business, pp. 111–134.

Ester, M, Kriegel, H-P, Sander, J and Xu, X. 1996. A density-based algorithm for discovering clusters in 
large spatial databases with noise. In Kdd, Vol. 96, pp. 226–231.

Europe, I. 2013. The impact of insurance fraud. Brussels: Insurance Europe.
Figueiredo, MAT and Jain, AK. 2002. Unsupervised learning of finite mixture models. Transactions on 

 pattern analysis and machine intelligence, 24(3): 381–396. DOI: https://doi.org/10.1109/34.990138
Foster, DP and Stine, RA. 2004. Variable selection in data mining: Building a predictive model for 

bankruptcy. Journal of the American Statistical Association, 99(466): 303–313. DOI: https://doi.
org/10.1198/016214504000000287

Freund, Y and Schapire, RE. 1996. Experiments with a new boosting algorithm. In ICML, Vol. 96. Citeseer, 
pp. 148–156.

Geurts, P, Ernst, D and Wehenkel, L. 2006. Extremely randomized trees. Machine learning, 63(1): 3–42. 
DOI: https://doi.org/10.1007/s10994-006-6226-1

He, H, Bai, Y, Garcia, EA and Li, S. 2008. ADASYN: Adaptive synthetic sampling approach for imbalanced 
learning. In IJCNN (World Congress on Computational Intelligence). IEEE, pp. 1322–1328.

Hodge, V and Austin, J. 2004. A survey of outlier detection methodologies. Artificial intelligence review, 
22(2): 85–126. DOI: https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

Ke, G, Meng, Q, Finley, T, Wang, T, Chen, W, Ma, W, Ye, Q and Liu, T-Y. 2017. Lightgbm: A highly efficient 
gradient boosting decision tree. In Advances in Neural Information Processing Systems, pp. 3146–3154.

Kim, J, Ong, A and Overill, RE. 2003. Design of an artificial immune system as a novel anomaly detector 
for combating financial fraud in the retail sector. In Evolutionary Computation, Vol. 1. IEEE, pp. 405–
412.

Kokkinaki, AI. 1997. On atypical database transactions: identification of probable frauds using machine 
learning for user profiling. In Knowledge and Data Engineering Exchange Workshop, 1997. Proceedings. 
IEEE, pp. 107–113.

Lei, JZ and Ghorbani, AA. 2012. Improved competitive learning neural networks for network intrusion and 
fraud detection. Neurocomputing, 75(1): 135–145. DOI: https://doi.org/10.1016/j.neucom.2011.02.021

Liu, FT, Ting, KM and Zhou, ZH. 2008. Isolation forest. In International Conference on Data Mining. IEEE, pp. 
413–422. DOI: https://doi.org/10.1109/ICDM.2008.17

Major, JA and Riedinger, DR. 1992. A hybrid knowledge/statistical-based system for the detection of 
fraud. International Journal of Intelligent Systems, 7(7): 687–703. DOI: https://doi.org/10.1002/int. 
4550070709

Manevitz, LM and Yousef, M. 2001. One-class svms for document classification. Journal of Machine  Learning 
research, 2: 139–154.

Murad, U and Pinkas, G. 1999. Unsupervised profiling for identifying superimposed fraud. In European 
Conference on Principles of Data Mining and Knowledge Discovery. Springer, pp. 251–261. DOI: https://
doi.org/10.1007/978-3-540-48247-5_27

Nian, K, Zhang, H, Tayal, A, Coleman, T and Li, Y. 2016. Auto insurance fraud detection using unsuper-
vised spectral ranking for anomaly. The Journal of Finance and Data Science, 2(1): 58–75. DOI: https://
doi.org/10.1016/j.jfds.2016.03.001

https://doi.org/10.1080/01621459.1997.10474038
https://doi.org/10.1080/01621459.1997.10474038
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1111/1539-6975.00027
https://doi.org/10.1111/1539-6975.00027
https://doi.org/10.2307/253535
https://doi.org/10.2307/253535
https://doi.org/10.1109/34.990138
https://doi.org/10.1198/016214504000000287
https://doi.org/10.1198/016214504000000287
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1016/j.neucom.2011.02.021
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1002/int.4550070709
https://doi.org/10.1002/int.4550070709
https://doi.org/10.1007/978-3-540-48247-5_27
https://doi.org/10.1007/978-3-540-48247-5_27
https://doi.org/10.1016/j.jfds.2016.03.001
https://doi.org/10.1016/j.jfds.2016.03.001


Palacio: Abnormal Pattern Prediction Art. 35, page 15 of 15

Phua, C, Alahakoon, D and Lee, V. 2004. Minority report in fraud detection: classification of skewed data. 
Acm sigkdd explorations newsletter, 6(1): 50–59. DOI: https://doi.org/10.1145/1007730.1007738

Phua, C, Lee, V, Smith, K and Gayler, R. 2010. A comprehensive survey of data mining-based fraud detec-
tion research. arXiv preprint arXiv:1009.6119.

Rousseeuw, PJ and Driessen, KV. 1999. A fast algorithm for the minimum covariance determinant estima-
tor. Technometrics, 41(3): 212–223. DOI: https://doi.org/10.1080/00401706.1999.10485670

Schölkopf, B, Platt, JC, Shawe-Taylor, J, Smola, AJ and Williamson, RC. 2001. Estimating the sup-
port of a high-dimensional distribution. Neural computation, 13(7). DOI: https://doi.org/10. 
1162/089976601750264965

Sculley, D. 2010. Web-scale k-means clustering, In Proceedings of the 19th international conference on World 
wide web. ACM, pp. 1177–1178. DOI: https://doi.org/10.1145/1772690.1772862

Stefano, B and Gisella, F. 2001. Insurance fraud evaluation: a fuzzy expert system. In Fuzzy Systems, 2001. 
The 10th IEEE International Conference, Vol. 3. IEEE, pp. 1491–1494.

Trivedi, S, Pardos, ZA and Heffernan, NT. 2015. The utility of clustering in prediction tasks. arXiv preprint 
arXiv:1509.06163.

Van Der Maaten, L, Postma, E and Van den Herik, J. 2009. Dimensionality reduction: a comparative. 
Journal of Machine Learning Research, 10(66–71): 13.

Viaene, S, Ayuso, M, Guillen, M, Van Gheel, D and Dedene, G. 2007. Strategies for detecting fraudulent 
claims in the automobile insurance industry. European Journal of Operational Research, 176(1): 565–583. 
DOI: https://doi.org/10.1016/j.ejor.2005.08.005

Weiss, GM. 2004. Mining with rarity: a unifying framework. ACM Sigkdd Explorations Newsletter, 6(1): 7–19. 
DOI: https://doi.org/10.1145/1007730.1007734

Williams, GJ. 1999. Evolutionary hot spots data mining. In Pacific-Asia Conference on Knowledge  Discovery 
and Data Mining. Springer, pp. 184–193. DOI: https://doi.org/10.1007/3-540-48912-6_26

Williams, GJ and Huang, Z. 1997. Mining the knowledge mine. In Australian Joint Conference on Artificial 
Intelligence. Springer, pp. 340–348. DOI: https://doi.org/10.1007/3-540-63797-4_87

Wilson, JH. 2009. An analytical approach to detecting insurance fraud using logistic regression. Journal of 
Finance and Accountancy, 1: 1.

Zhou, D, Bousquet, O, Navin Lal, T, Weston, J and Scholkopf, B. 2004. Learning with local and global 
consistency. In Advances in neural information processing systems, pp. 321–328.

Zhu, X and Ghahramani, Z. 2002. Learning from labeled and unlabeled data with label propagation. 
Technical report, CMU-CALD-02-107. Carnegie Mellon University.

How to cite this article: Palacio, SM. 2019. Abnormal Pattern Prediction: Detecting Fraudulent Insurance Property 
Claims with Semi-Supervised Machine-Learning. Data Science Journal, 18: 35, pp. 1–15. DOI: https://doi.org/10.5334/
dsj-2019-035

Submitted: 06 December 2018        Accepted: 03 July 2019        Published: 17 July 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.
 

     OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity 
Press.

https://doi.org/10.1145/1007730.1007738
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1016/j.ejor.2005.08.005
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1007/3-540-48912-6_26
https://doi.org/10.1007/3-540-63797-4_87
https://doi.org/10.5334/dsj-2019-035
https://doi.org/10.5334/dsj-2019-035
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1. Introduction 
	2. Data 
	3. Methodology 
	3.1. Unsupervised Model Selection 
	3.1.1. C1 Score 
	3.1.2. C2 Score 
	3.1.3. Cluster Score 

	3.2. Supervised Model Selection 

	4. Results 
	4.1. Performance 
	4.2. Investigation Office Validation 
	4.3. Dynamic Learning 

	5. Conclusion 
	Additional File 
	Acknowledgement
	Competing Interests 
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Figure 1
	Figure 2
	Figure 3
	Algorithm 1
	Algorithm 2

