
CODATACODATA
II
SS
UU

Al Aghbari, Z, et al. 2019. GeoSimMR: A MapReduce Algorithm for Detecting 
Communities based on Distance and Interest in Social Networks. Data Science 
Journal, 18: 13, pp. 1–20. DOI: https://doi.org/10.5334/dsj-2019-013

RESEARCH PAPER

GeoSimMR: A MapReduce Algorithm for Detecting 
Communities based on Distance and Interest in 
Social Networks
Zaher Al Aghbari1, Mohammed Bahutair2 and Ibrahim Kamel2
1 Department of Computer Science, University of Sharjah, AE
2 Department of Electrical and Computer Engineering, University of Sharjah, AE
Corresponding author: Zaher Al Aghbari (zaher@sharjah.ac.ae)

Analyzing social networks has received a lot of reviews in the recent literature. Many papers 
have been proposed to provide new techniques for mining social networks to help further study 
this huge amount of data. However, to the best of our knowledge, none of them considered 
the semantic meaning of the nodes interests while clustering the network. In this work, we 
propose a new algorithm, namely GeoSim, for clustering users in any social network site into 
communities based on the semantic meaning of the nodes interests as well as their relationships 
with each other. Moreover, this paper proposes a parallel version of the GeoSim algorithm that 
utilizes the MapReduce model to run on multiple machines simultaneously and get faster results. 
The two versions of the algorithm (centralized and parallel) are examined thoroughly to test 
their performance. The experiments show that both versions of the GeoSim algorithm achieve 
high community detection accuracy and scale linearly with the size of the cluster.
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I. Introduction
Social network sites, such as Facebook, have played a great role in our daily lives due to its ability to link 
users regardless of their geographical location (Tang et al., 2014). With this huge popularity of social network 
sites, a great need for techniques to process this tremendous amount of data has increased. Many research 
works have proposed techniques and algorithms to extract information from the data held in the social 
network sites.

A social network can be represented by a graph, in which users are the nodes in the graph and the rela-
tions (or friendship) between users are the edges (Kheirkhahzadeh et al., 2016). A node in a social network 
could also have a list of attributes that defines the interests of that particular user. As a result of this increas-
ing importance of social networks, several studies have proposed different techniques for mining social 
networks.

A crucial aspect of such networks is the community detection problem (Sun et al., 2012 and Tobias et al., 
2014). Community detection aims to divide the social network into groups. These groups consist of nodes 
that are highly related to each other. Community detection has a lot of applications such as recommenda-
tions, influence analysis and customer segmentation (Qi et al., 2012). Most of the proposed community 
detection algorithms cluster the network based solely on the linkage behavior between the nodes. However, 
in the real world, the relatedness of users does not depend only on the relation between the users. Another 
key factor to obtain a more accurate measure of how two nodes are related is by comparing the interests of 
both nodes. On the other hand, if only the interests of the nodes are considered to measure closeness, the 
fact that two nodes that are close to each other does not necessarily mean they are related.

One way to get the relatedness of two nodes is by calculating the geodesic distance between the nodes. 
The geodesic distance between any two given nodes is obtained by the number of hops between them. So, 
if the two nodes, A and B, are connected directly to each other, then each one of them is a hop away from 
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the other. This is the closest distance any two nodes can get from each other. On the other hand, if there is a 
node in the middle, i.e. node A connected to a random node and the random node is connected to node B, 
then nodes A and B are two hops away from each other. When the distance between the two nodes increases, 
i.e. more hops in the middle, the probability of them knowing each other decreases and therefore their 
relatedness decreases as well.

While geodesic distance provides a relatively good measure of the relatedness, it is not adequate to fully 
get a sense of how much a node knows the other node. To further enhance this measure, the interests of 
each node should also be taken into consideration to give a more accurate estimate of the relatedness 
between the nodes. For instance, node A is connected directly to nodes B and C. Node A has very similar 
interests to that of B but only little to that of C. Taking the geodesic distance only to measure the relatedness 
between nodes A and B and A and C will not give a clear result since we have direct links in both cases. If the 
interests are taken into account, we can then calculate the interests similarity between each pair of nodes to 
get a more refined estimate for the relatedness.

The contribution of this paper is to devise a new algorithm to detect communities in a given social net-
work based on the geodesic locations of the nodes and the similarities between their interests (GeoSim 
Algorithm). The nodes in the resulting communities are strongly connected and their interests are very 
similar in terms of their semantic meaning. Furthermore, based on the GeoSim algorithm, we propose 
a parallel version of the algorithm that utilizes Hadoop, a MapReduce framework, since social networks are 
typically very large and a single-machine-processing is simply insufficient.

The rest of the paper is organized as follows. Section II gives some of the related work on community 
detection. A brief description about the MapReduce model is given in Section III. In Section IV the GeoSim 
algorithm is introduced. Section V presents the parallel version of the algorithm, called GeoSimMR. The 
experiment results are discussed in Section VI. Finally, we conclude the paper in Section VII.

II. Literature Review
Many approaches have been proposed that divide a social network into communities. Rosvall and Bergstrom 
(Rosvall and Bergstrom 2008) propose an information-theoretic algorithm for detecting communities. Their 
approach depends on a random walker that traverses the network and records the nodes it visits. Afterward, 
each visited node is given a Huffman code based on how frequently the walker visited that node. The walk is 
then described by concatenating the codewords of the visited nodes. Since the walker would probably stay 
a longer time in a single cluster, one can describe the walk using a fewer number of bits by creating a two-
level coding. This is carried out by Huffman coding clusters and the nodes in each cluster separately. Doing 
this means that codewords can be reused by different nodes in different clusters which will result in fewer 
bits to describe the random walk.

Blondel et al. (2008) present another technique that creates a hierarchy of communities. Their algorithm 
comprises of two phases. In the first phase, the algorithm treats each node as a community. Then, given a 
node and its neighbors, it calculates the power of its neighbors to include that node into their respective 
community. In the second phase, a new graph is formed by treating each community from the first phase as 
a single node. Edges between communities are transformed into a single edge and its weight is equal to the 
summation of all of its forming edges. The two phases are again repeated using the newly generated graph 
from the previous step.

Newman and Girvan (2004) propose an algorithm to find communities in social networks by looking for 
the natural divisions in a network. They do this by iteratively removing edges from the network to split it 
into communities. Their later work in Newman (2006) and Clauset et al. (2004) optimizes on modularity, 
which is a graph measure that is basically the number of edges falling within groups minus the expected 
number in an equivalent network with edges placed at random. The works in Gregory (2007, 2008) propose 
an algorithm for detecting overlapping communities by expanding the community detecting algorithm 
discussed in Newman and Girvan (2004), which was based on hierarchical clustering.

Tantipathananandh et al. (2007) propose algorithms for identifying communities in social networks that 
change over time. Their algorithms are based on dynamic programming, exhaustive search, maximum 
matching, and greedy measures.

Ghosh and Lerman (2010) propose an alternative definition, which states that a community is composed 
of individuals who have more influence on others within the community than on those outside of it. They 
propose an algorithm based on an influence-based modularity metric and show how to use it to partition the 
network into communities. A somewhat similar approach was adopted by (Khorasgani et al., 2013), where 
they regard a community as a set of followers congregating around a potential leader. Their algorithm starts 
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by identifying promising leaders in a given network then iteratively assembles followers to their  closest 
 leaders to form communities, and subsequently, finds new leaders until convergence.

Zhang and Yu (2015) introduce a closeness measure called intimacy. They propose a technique, namely 
Cold stArt community Detector (CAD), which calculate the intimacy matrix among users across aligned 
attribute augmented heterogeneous networks with information propagation model.

Altunbey and Alatas (2015) present an algorithm for detecting overlapping communities in social net-
works. The algorithm tries to optimize network modularity using parliamentary optimization algorithm 
with fitness function and has shown promising results. The limitation of the technique is that only modular-
ity measure was used as the fitness function to find the overlapping community of a network.

Qi et al. (2014) introduce an algorithm that constructs a weighted graph from a dendrogram. Then, the 
max-flow and min-cut theory are applied on the new obtained weighted graph. It is worth mentioning that 
detection of communities on social networks can benefit many applications such as event detection (Shi 
et al. 2017, 2018) and recommendation systems (Capuruco and Capretz 2010, 2012).

III. MapReduce
MapReduce (Dean and Ghemawat 2008) is a programming model developed by Google in 2004. The goal of 
this model is to provide an implementation for algorithms to be suitable for running in distributed systems. 
A MapReduce-based algorithm consists of two main steps, namely map and reduce. In the map step, data 
are filtered and sorted whereas aggregate operations such as finding minimum value or counting are done in 
the reduce step. A MapReduce system, such as Hadoop, is a group of computers connected in a master-slave 
setup. Master machines manage the distribution of data across slaves, resource allocation for processes and 
the parallel execution of the application. Slave machines hold data, typically in Terabytes, and execute the 
actual application on the data it has. MapReduce system also provides data redundancy and fault tolerance. 
It is worth noting that MapReduce system is only beneficial when dealing with huge volumes of data. So, if 
an application with relatively small data size were to run on a MapReduce system, it would take more time to 
finish than running it on a typical computer. This is due to the fact that MapReduce systems have communi-
cation overhead as well as disk read and write overhead. In other words, MapReduce systems are very suitable 
for situations where the processing time is much larger than the communication and disk read/write time.

IV. GeoSim Algorithm
In this paper, we propose a new algorithm, namely GeoSim, for clustering a social network into  communities. 
At the beginning, the core algorithm is discussed and then we show our implementation of the  algorithm on 
MapReduce framework (GeoSimMR).

A. The Basic Idea
Social networks can be represented as a graph G with a set of nodes N and a set of edges E. The nodes rep-
resent the users in a real-world social network whereas edges can be considered as the friendship relations 
between the users. GeoSim aims to cluster the given graph into communities based on the relatedness of the 
nodes. The relatedness between two nodes can be thought of as how similar the two nodes are in terms of 
their connections and their interests. A group of nodes that are very related to each other can be considered 
as a single community.

The issue here is how to define a metric that measures the relatedness between two nodes in order to 
cluster the network. Two users that are connected to each other should not necessarily be in the same com-
munity. For instance, assume users A and B are friends in some social networks. User A is interested in sports 
like hiking and skiing whereas user B is interested in medicine. Although users A and B are friends, they have 
completely different interests from each other. Similarly, users that have exactly the same interest should 
not necessarily be grouped into the same communities. This can happen when the users share the same 
interests but are far apart from each other.

Based on the above, the distance between the nodes and the similarity of their interests both have a great 
effect on how to cluster the social networks. The key idea behind the GeoSim algorithm is that it incorporates 
both the nodes interests as well as their distances from each other. In other words, two nodes that are close 
to each other in terms of distance and have very different interests have a very low probability of being in the 
same community. On the other hand, if two nodes have very similar interests but are far away from each other 
would still have a very low chance to be grouped in the same community. As a result, two nodes will be in the 
same community if and only if they are close to each other as well as have similar interests. GeoSim algorithm 
achieves this by using a weighted function that gives a score of how close two nodes are to each other.
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B. Detailed Description
As mentioned earlier, the GeoSim uses both distance and interest to determine the clusters in a social net-
work graph. To measure the closeness of any two nodes, we called it the GeoSim score, equation (1) is used.
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GSS(n1, n2) is the the GeoSim score between the two nodes n1 and n2 where n1, n2 ∈ N. A weighting variable 
α is between zero and one. Geo(n1, n2) is the geodesic distance between the two nodes, LSP(G) is the long-
est shortest distance in the graph and Sim(n1, n2) is the similarity between the two nodes in terms of their 
interests. The GeoSim score is a number bound between zero and one, the lower the score means the two 
nodes are very close to each other.

The geodesic distance can be calculated using any shortest path algorithm. In this work, Dijkstra algorithm 
is used. As shown in equation (1), the distance between two nodes is divided by the longest shortest path in 
the graph. This division is a normalization factor to ensure that the distance remains between zero and one.

As for the similarity between interests, the WordNet ontology (Miller 1995) is used to obtain the ancestors 
of a certain word as well as the information content of that word. To measure the similarity between two 
interests, we use Lin’s similarity (Lin 1998) shown in equation (2).
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Where LinSim(i1, i2) is the similarity between interest 1 and interest 2 bound between zero and one, Γ(i1, i2) is 
a set of all common ancestors between the two interests and log[p͠γ] is the information content in the word. 
Equation (2) gives a score that indicates whether the two interests are close or not. When the score is one, 
the two interests are very close to each one.

In a social network, a single node can have a set of interests, I, I: i1, i2, …, in. Equation (2) gives a score 
between two individual interests. To obtain the score between two sets of interests we use equation (3).
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Where Sim(I1, I2) is the similarity between the two sets of interest I1 and I2.
The GeoSim algorithm (see Algorithm 1) takes as an input all the nodes in the social network graph along 

with their friends and interests. GeoSim also takes as an input the number of communities, which is the 
number of clusters the graph should be divided into.

The algorithm can be divided into three stages: Centroids Selection, Distances and Similarities Calculation 
and Clustering. GeoSim is an iterative algorithm, which means the three stages are executed repeatedly until 
the membership of communities become stable. We define the community_variation as the percentage dif-
ference between the membership of communities in two consecutive iterations. As shown in line 4 of the 
GeoSim algorithm, if the community_variation is less than a user give threshold, the GeoSim algorithm stops 
and returns the set of detected communities, C.

In the Centroids Selection stage (lines 5–12), a mean node is selected to represent each community. In 
the first iteration of the algorithm, since no communities are detected yet, K number of nodes are selected 
randomly as mean nodes, where K is the number of communities. The selection criteria used in this stage is 
based on the degree of the node. The node degree is the number of connections a node has. In other words, 
the number of friends is the degree of the node. From each community, the mean node is the one with the 
highest degree. The rational for selecting a centroid of a cluster is that a centroid shall be the most central 
node to all members of the cluster (most accessible to all members of the cluster). Therefore, the node with 
the most connections to the other members of the cluster is the most central.

The second stage, namely the Distances and Similarities Calculation stage (lines 17–18), is the heart of 
the algorithm. In this stage, all the required distances and similarities are calculated. The distance and the 
similarity are calculated between the node and all the available mean nodes. The distance is calculated 
using Dijkstra’s shortest path algorithm. Although in our implementation we used Dijkstra algorithm due 
to its simplicity, other more efficient algorithms such as A* algorithm and Floyd-Warshall algorithm can be 
employed in the second stage. The similarities between interests are measured using equation (3).
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The last stage, the Clustering stage (lines 19–22), uses the results found by the previous stage to  perform the 
actual clustering. The GeoSim scores between every node and all communities (mean nodes) are  calculated 
using equation (1). Each node would have k scores, where each score corresponds to one community. To 
determine a community for that node, the minimum score is found and the node is added to the  community 
of the minimum score. Algorithm 1 summarizes the steps for the GeoSim algorithm.

C. Time Complexity
The algorithm consists of a main loop that will iterate until a threshold is matched or the number of maxi-
mum iterations P is reached, whichever happens first. Inside the main loop, there are two other loops. The 
first loop finds the next set of mean nodes while the other one calculates the GSS scores between the mean 
nodes and every other node. The first loop iterates N times where N is the number of nodes. The second loop 
has a total of Q (number of mean nodes) times N iterations. As a result, the main loop has a time complexity 
of O(2NPQ). Note that the algorithm needs the distances between the mean nodes and the rest of the nodes, 
so worst case scenario is that all nodes become mean nodes at one time, though that is very unlikely to 
happen. For this situation, the all-pairs shortest paths (APSP) should be calculated. Using Dijkstra, the time 
complexity for finding APSP is O(N3) The total time complexity for the GeoSim algorithm is O(2NPQ + N3).

Algorithm 1: The GeoSim Algorithm.

Input: V: set of all nodes in the social network, E: set of all edges in the network, I: set of all interests for 
all nodes and K: number of communities.

Output: C: set of detected communities.

1: procedure GeoSim(V, E, I, K)

2: C = createRandomClusters(V, K);

3: distances = apsp(V, E) // all-pairs shortest paths

4: while community_variation > threshold do
5: for c ∈ C do
6: max_degree = 0

7: for node ∈ c do
8: if node.degree > max_degree then
9: mean_nodes[c] = node

10: max_degree = node.degree

11: end if

12: end for

13: end for

14: for v ∈ V do
15: min_gss = ∞

16: for mean_node ∈ mean_nodes do

17: distances = distances(mean_node, v)

18: calculate gss using equation 1

19: if gss < min_gss then
20: c_id = mean_node.community

21: min_gss = gss

22: end if

23: end for

24: C[c_id].addNode(v)

25: end for

26: end while

27: return C;

28: end procedure
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V. GeoSim MapReduce Version (GeoSimMR)
The GeoSimMR algorithm is a parallel version of the original GeoSim that is modified to run on the 
 MapReduce framework. Recall that GeoSim algorithm consists of three stages as shown in Figure 1.

In the GeoSimMR, each stage is implemented separately as each stage depends on the result of the previ-
ous one and cannot run simultaneously. In other words, each stage has its own implementation of the map 
and the reduce methods. From Figure 1, it is clear that the algorithm is iterative. Furthermore, stage two of 
the GeoSimMR is iterative as well. This is due to distances calculation using Dijkstra since it requires several 
passes on the graph to get the shortest paths.

A. Input Format
Since each mapper in the framework processes files in a one-line-basis, a certain format should be accom-
modated to be used across all input files. In our implementation each line in the input files has the following 
format:

n_id < tab > f_ids, i_ids, c_id, d, s, v

The n_id is the id of the node which is typically a unique number assigned to each node. The f_ids is a list 
of all the friends ids of the node separated by a pipe character ‘|’. The i_ids holds the set of interests of the 
node separated by a pipe character. The c_id indicates to which community the node is associated. The d 
and s store the distance to the mean node of the community and the similarity between the node and the 
mean node, respectively. The v is a flag used for the distance calculation and it can take one of three states: 
W indicates that the node has not been visited yet, G means that the node is visited and currently calculating 
its distance and B indicates that the node has been visited and its distance has been calculated.

B. Mean Nodes Selection
In this stage, a mean node from each community is selected. In the map phase, each mapper receives a line that 
is formatted as discussed earlier. Based on the list of friends from the input line, the mapper counts the number 
of friends. The mapper then emits the community id of the node as the key and the node itself as the value.

The combiner receives the results from the mapper stage and combines the values of each pair of the same 
key into a list. The partitioner takes these lists and sends them to the reducers.

In the reduce stage, each reducer receives a community along with a list of nodes in that community. Using 
the number of friends calculated in the map phase, the reducer selects the mean node for that community. 
Recall that the mean node for a community is the node with the highest number of friends. Once the reducer 
finds the mean node, it emits the community id as the key and the node id with its interests as a value.

Figure 2 shows an example of the Mean Nodes Selection stage with five nodes and three communities. 
In this example, three mappers and three reducers have been used. The five nodes are split across the three 
mappers. For instance, mapper 1 takes the nodes 1 and 2. Since both nodes are initially at community 
1, both are emitted with key equals to 1. At the reducers side, each reducer handles the nodes in each 
community. For example, reducer 1 receives the nodes of community 1, namely nodes 1 and 2. Since the 
number of friends of node 1 is larger than node 2, the reducer selects node 1 as the mean of community 1. 
Algorithm 2 summarizes the map and reduce phases of the first stage.

Figure 1: The three stages of the proposed GeoSim algorithm, where V is the set of all nodes in the social 
network, E is the set of all edges in the network, I is the set of all interests for all nodes and K is the number 
of communities.
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C. Distance and Similarity Calculation
This stage is the core of the GeoSimMR since all the necessary calculations are done here. The input to this 
stage is the same as the previous one in addition to the mean nodes obtained in the Mean Node Selection 
stage. The input file is split into lines and fed to the mappers. In the map phase, each mapper receives a 
group of lines representing the nodes as well as all the mean nodes and their interests. For each selected 
node, the mapper performs two operations. The first operation is the calculation of the similarities, using 
equation (3), between the current node and all the mean nodes. Since the output of the previous stage 
includes the interests of each mean node, finding the similarities here is not an issue.

The second operation for the mapper involves the distance calculation. Recall that Dijkstra’s algorithm, 
for a given source node, finds the shortest paths from that source node to all nodes in the graph. The source 

Figure 2: An example of the map and reduce phases of the Mean Nodes Selection stage of the GeoSimMR 
algorithm.

Algorithm 2: Mean Nodes Selection Stage.

Input: input_file: The input file, a file containing the nodes information.

Output: output_file: A file containing a set key-value pairs, the key is the community id and the value is 
the node id and its interests.

1: procedure map(line)

2: node = parseNode(line)

3: node.calculateFriendsNumber()

4: emit(node.communityId, node)

5: end procedure

6:

7: procedure reduce(communityId, nodesList)

8: maxFriends = 0

9: for node ∈ nodesList do

10: if node.friendsNumber > maxFriends then

11: meanNode = node

12: maxFriends = node.friendsNumber

13: end if

14: end for

15: emit(communityId, node.printIdAndInterests())

16: end procedure
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nodes in the GeoSimMR are the mean nodes. The mapper knows whether an input node is a source node or 
not by checking its ID against the IDs in the mean nodes list. If a certain node is found to be a mean node, 
the mapper starts the shortest path calculation between this node and all nodes in the graph.

Note that this process happens for each mean node in the graph. So for a certain node n, it can be the 
source node in community p but not in community q. That is, each node gets processed K times, where K is 
the number of communities.

It is worth mentioning that when a node is emitted in the map phase, the key value has two parts. The first 
part of the key is the community id and the second part is the node id. The value of the pair is the node itself.

In the reduce phase, the reducer receives a list of distances for each node. These distances represent the cost 
of the path so far from this node to the mean node. The role of the reducer is to select the smallest distance and 
assign it to the node. Then, the reducer emits the node with its information along with the updated distance.

As stated before, this stage is an iterative process. This is because all nodes must be visited in a sequential 
manner in order to find the shortest paths from all mean nodes to all nodes in the graph. So, the stage keeps 
on traversing and updating the nodes distances until all of them have been visited.

One thing to note here is that operations in the first iteration and the rest differ. In the first iteration, 
both the similarity and the distance are calculated. Since the mean nodes remain the same, one mean nodes 
selection at each main iteration; for the rest of the iterations and therefore their interests, there is no need 
to calculate the similarities again.

Figure 3 shows an example of the second stage, which consists of the map and reduce phases of the same 
data set shown in the example of Figure 2. Each mapper receives a group of nodes to process them as well 
as the mean nodes found in the first stage. The first line received by the first mapper holds the information 
about node 1. The mapper processes this node across all communities (1, 2 and 3). Recall from Figure 2 that 
node 1 is the mean node for community 1. This means that node 1 is the source node for community 1 and 
the mapper will loop through all of its friends. As shown in Figure 3, the value of the distance field of node 
1 changes from inf to 0. The similarity is one since we are comparing this node to the mean which is itself. 
The v value is changed to B and the node is emitted. As for the friends nodes, their distance value changes 
to the distance value of node 1 plus one. Since node 1 has a distance value of zero, all of its friends will have 
a distance of one. The value of v is changed to G so it will be processed in the next iteration. Note that the 
values for fields interests, similarity and friends are marked NA. This is because this information is not avail-
able to the mapper and will get filled at the reducer in the pick and merge step discussed earlier.

Once looping through the friends is done, the same node, node 1, is processed again against community 2 
and 3, as shown in the figure. Node 1 is not the mean node for community 2. In this case, only the similarity 
between node 1 and the mean node for this community is calculated and then the node is emitted.

When node 1 is emitted for community 1, the key consists of the community id and the node id. Similarly, 
when node 1 is emitted for community 2 the key is {2, 1}.

At the reduce stage, reducer 1 receives several lists, one of them is a list of node 4 for community 1. In 
Figure 3, there are two records for the key {1, 4}, of which the first record has updated values for the distance 

Figure 3: An example of the map and the reduce phases of the Distances and Similarities Calculation stage 
of the GeoSimMR algorithm.
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and the v fields. The reducer merges these two records into one node by taking the most recent values from 
each one. The reducer then emits the node in the same format as the original input. Algorithm 3 summa-
rizes the map and reduce phases of the Distances and Similarities Calculation stage.

Algorithm 3: Distances and Similarities Calculation Stage.

Input: input_file: The input file which contains the nodes information., meanNodes: A list of mean nodes 
obtained from the Mean Nodes Selection stage.

Output: output_file: A file containing the distances and the similarities from each node to all mean nodes.

1: procedure map(line)

2: node = parseNode(line)

3: for meanNode ∈ meanNodes do

4: if isFirstIteration then

5: node.calculateSimilarity(meanNode)

6: end if

7: if node == meanNode||node.v == G then

8: if node == meanNode then

9: node.distance = 0

10: end if

11: for friendinnode.friends do

12: friend.v = G

13: friend.distance = node.distance + 1

14: emit({meanNode.communityId,

15: friend.id}, friend)

16: end for

17: end if

18: emit({meanNode.communityId, node.id}, node)

19: end for

20: end procedure

21:

22: procedure reduce(communityId, nodeId, nodesList)

23: outNode.communityId = nodeId

24: outNode.id = communityId

25: outNote.friends = getFriends(nodesList)

26: outNote.interests = getInterests(nodesList)

27: for node ∈ nodesList do

28: if outNode.distance > node.distance then

29: outNode.distance = node.distance

30: end if

31: if outNode.similarity < node.similarity then

32: outNode.similarity = node.similarity

33: end if

34: if outNode.v < node.v then

35: outNode.v = node.v

36: end if

37: end for

38: emit (outNode.id, outNode.printInfo())

39: end procedure
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D. Clustering Stage
As discussed earlier, in this stage, the calculated distances and similarities are used to perform the actual 
clustering using equation (1). The input to this stage is the output of the Distance and Similarity Calculation 
stage. In the map stage, each mapper receives a group of nodes with the distances and similarity already 
calculated. The mapper uses equation (1) to calculate the GSS for the node to the assigned community. The 
node is then emitted to the reducer. The key-value pair consists of the node itself as the key and the GSS and 
the community as the value.

In the reduce phase, each reducer receives the node with a list of GSSs, each corresponds to a certain com-
munity. The job of the reducer is to associate the node with the community that resulted in the lowest GSS. 
The reducer emits the final node in the same format as the original input.

Figure 4 shows an example for the Clustering stage. The shown input to mapper 1 are the nodes 1 and 4. 
Mapper 1 calculates the GSS of both nodes and emits them to the reducer. Reducer 1 receives the GSSs of 
node 1. Node 1 in this example has GSS equals to 0 for community 1 and 0.45 for community 2. The reducer 
assigns node 1 to community 1 since it has the lowest GSS. Note that the reducer is also resetting all fields 
to their initial values (except for the community id) to prepare it for the next iteration. Algorithm 4 sum-
marizes the Clustering stage.

VI. Experiments
In this section, we show the results obtained using the GeoSim and GeoSimMR algorithms. GeoSim is experi-
mented to see how well it detects the communities in a given social network. The GeoSimMR is tested to see 
the scalability performance when executed on big networks on top of MapReduce framework. The experi-
ments are conducted using a three-node cluster. Each workstation has 22GB of system memory. Three of 
these machines are powered by an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz whereas the last worksta-
tion is powered by an Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60GHz. In total, we have 42 mappers and 21 
reducers. Apache Hadoop version 2.7 is used for testing the MapReduce version of GeoSim algorithm.

A. GeoSim Results
The GeoSim is tested to show the accuracy of the algorithm in detecting communities. For this test, we 
used a relatively small network to facilitate the analysis. The network consists of 50 nodes with 74 different 
interests distributed across all nodes with four to five interests per node. The 74 interests can be grouped 
into five main categories: Languages, Medicine, Computer, Professions, Sports. The distribution of interests 
is not random, each ten-node group is assigned with interests under the same main category. For instance, 
the nodes from 0 to 9 have interests from the Languages group and 10 to 19 from Medicine and so on. We 
setup the input network this way to get an indication of how accurate the output of the algorithm is. The 
results of running GeoSim over the network is shown in Figure 5.

Figure 4: An example of the map and reduce phases of the Clustering stage of the GeoSimMR algorithm.
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Algorithm 4: Clustering Stage.

Input: input_file: The output file of the Distances and Similarities Calculation.

Output: output_file: List of all nodes and their detected communities.

1: procedure map(line)

2: node = parseNode(line)

3: Calculate GSS using equation 1

4: emit(node, GSS)

5: end procedure

6:

7: procedure reduce(communityId, communityGSSPairs)

8: minScore = inf

9: for pair ∈ communityGSSPairs do

10: if pair.GSS < minScore then

11: minScore = pair.GSS

12: communityId = pair.communityId

13: end if

14: end for

15: node.communityId = communityId

16: emit(node.id, node.printInfo())

17: end procedure

Figure 5: The detected communities in the network by the GeoSim algorithm (α = 0.7).
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Figure 5 shows the detected communities where each color represents a single community. In this test 
the α variable (from equation (1)) is set to be 0.7. It is clear from Figure 5 that the community detection 
accuracy of GeoSim is high as similar and close nodes are grouped with each other. For example, nodes from 
0 to 9 (except node 7) are grouped together as one community. This is because they have similar interests 
and they are very close to each other. As for node number 7, it is grouped with the black community instead 
of the green one despite having interests from the same category as the nodes from 0 to 9 (the green com-
munity). The reason behind this is that node 7 is far from the mean node of the green community (node 0) 
and it is only one hop away from the mean node of the black community (node 22), so GeoSim groups it 
with the black community.

Another interesting case is with node number 42 in the cyan community. This node is connected to two 
mean nodes: node 49 (for the cyan community) and node 12 (for the red community). So even though node 
42 is directly connected to two mean nodes, it was grouped with 49 rather than 12. The reason behind this 
is that the mean node 49 has more interests in common with node 42 than the mean node 12.

Another experiment was carried out on a real graph from the DBLP database. A total of 30 nodes were 
selected: nodes from 0 to 9 published papers related to database, nodes with ids from 10 to 19 published 
papers related to data mining and nodes from 29 to 30 published papers related to artificial intelligence. 
Table 1 shows the authors and their respective fields. A link between two nodes means that these nodes 
coauthored a paper together. In this test, α is set to 0.6. Results for this test are shown in Figure 6. From the 
results, the GeoSim algorithm made three communities: the green community consists of authors who have 
interests related to database, the red community has authors that are interested in data mining, and the 
black community comprises of researchers who are into artificial intelligence. According to the proposed 
GeoSim algorithm, in the initial iteration, the nodes with the highest degree are selected as the mean nodes. 
Therefore, the mean node for the database community is Timos K. Sellis since he has the highest number of 
coauthors in the dataset. For the data mining, Christos Faloutsos is the mean node and Wei Liu is the mean 
node for the artificial intelligence community. It is clear from the results that GeoSim achieved accurate 
results in determining the community for each node. For example, authors V. S. Subrahmanian, Vassilis 
J. Tsotras and Raymond T. Ng have been clustered into the same community, since they are interested in 
database-related topics, shown in Table 1. They are also close to each other in terms of connection and their 
distance to the mean node.

B. GeoSimMR results
We have conducted several experiments to test the scalability of the GeoSimMR algorithm. In these experi-
ments, the input data consists of 100,000 nodes, where each node has four to five skills.

The first experiment examines the different execution times of the GeoSimMR when varying the number 
of mappers and reducers. Figure 7 shows the results of this experiment.

Figure 7 shows the execution times for the GeoSimMR using different number of mappers and reducers. 
The x-axis represents the number of mappers and the y-axis indicates the time of execution in seconds. As 
shown in Figure 7, the execution time of the GeoSimMR decreases drastically as the number of mappers 

Table 1: DBLP authors used as a ground truth in the community detection experiment.

Database Data Mining Artificial Intelligence

V. S. Subrahmanian Alex Beutel Donald Perlis

David j. DeWitt Rakesh Agrawal Mary Anne Williams

Michael Stonebraker Ramakrishnan Srikant Wei Liu

Hans Peter Kriegel Christos Faloutsos Keith Johnson

Timos K. Sellis Flavio Figueiredo Sanjay Chawla

Laura M. Haas Bruno Ribeiro James Bailey

H. V. Jagadish Bussara M. Almeida Christopher Leckie

Vassilis J. Tsotras Yasuko Matsubara Kotagiri Ramamohanarao

Raymond T. Ng lei li Daren Ler

Christian S. Jensen Evangelos E. Papalexakis Irena Koprinska
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increases. When only one mapper is used, GeoSimMR took almost 10,500 seconds to finish executing, 
whereas adding another mapper to the setup cuts the execution time by almost half. As the number of 
mappers increases, the execution time continues to decrease to be 609 seconds when 42 mappers and 21 
reducers are used, which resulted in 94% improvement.

Figure 6: Detected communities in a DBLP graph.

Figure 7: Execution time for the GeoSimMR using different number of mappers and reducers.
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As shown in Figure 7, adding more mappers to the setup clearly decreases the execution time. This keeps 
on decreasing until adding more mappers and reducers; e.g. around 37 mappers in Figure 7, makes a very 
subtle or no change at all in the execution time. The reason behind this is that, for the dataset of 100,000 
nodes, the number of mappers and reducers needed to execute the algorithm efficiently has been reached 
and adding more will cause no improvement. That is, the improvement in execution time is canceled out by 
the communication overhead of adding new mappers and reducers.

Recall from a previous section, the GeoSimMR algorithm consists of three stages: Mean Nodes Selection, 
Distance and Similarity Calculation and Clustering stages. To further analyze the GeoSimMR algorithm, the 
execution time of each stage is presented.

Figure 8 shows the execution time for the Mean Nodes Selection stage using a different number of map-
pers and reducers. The x and y-axes represent the number of mappers and the execution time in seconds, 
respectively. As shown in Figure 8, the first stage takes between 10 to 18 seconds to finish executing.

Figure 9 shows the execution time for the Distance and Similarity Calculation stage using various num-
ber of mappers and reducers. The number of mappers is represented by the x-axis and the execution time 
in seconds is represented by the y-axis. When using only one mapper, the second stage takes about 10,000 
seconds to finish executing. Adding one more mapper decreased the execution time to 5,700 seconds, 
which accounts for 43% performance increase. When 42 mappers were used, the time of execution was 570 
seconds, which is about 94% better performance than using only one mapper.

In contrast to the execution time of the first stage, which showed minor variation when changing the 
number of mappers, the second stage clearly benefited a lot from the parallelism. In fact, the execution time 
of the second stage is very close to the execution time of all stages combined. That is 96% of the whole time 
was spent on executing the second stage. This is due to the fact that all the necessary calculations, distances 
and similarities are performed in this stage.

Note that the distance and similarity calculation stage is an iterative phase. To analyze this stage even 
further, the execution time for each iteration is examined. Figure 10 shows the execution time for each 
iteration of the second stage. The x-axis represents the iteration number whereas the y-axis represents the 
execution time. For 100,000 nodes, the second stage takes 13 iterations to finish calculating the distances 
between the mean nodes and each node in the graph. The execution time shown in Figure 10 is the average 
of execution times using 1 mapper/1 reducer to 42 mappers/21 reducers. The first iteration takes about 

Figure 8: The execution time of the Mean Nodes Selection stage using different number of mappers and 
reducers.
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370 seconds, whereas the rest of the iterations take almost the same time, which is about 80 seconds. The 
first iteration always requires larger execution time because the distances, as well as the similarities, are cal-
culated in this iteration. By the end of the first iteration, all of the requireed similarities are obtained; thus, 
the other iterations will continue calculating the distances only.

Figure 9: The execution time of the Distances and Similarities Calculation stage using different number of 
mappers and reducers.

Figure 10: The execution time for every iteration of the second stage of the GeoSimMR.
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Figure 11 Shows the execution time of the clustering stage using different number of mappers and reduc-
ers. The x-axis indicates the number of mappers whereas the y-axis represents the execution time in seconds. 
Using only one mapper and one reducer, the third stage takes approximately 300 to finish executing. In case 
of two mappers and one reducer, the clustering stage takes 185 seconds, which is an improvement of 38% 
as compared to using one mapper. When 42 mappers and 21 reducers were used, the execution time of the 
third stage dropped to 25 seconds giving 92% performance increase in execution time.

It is clear that the execution time for the clustering stage does not take as much as the second stage. The 
reason behind this is that the third stage does not involve any complex calculation. Recall from the previ-
ous section, the third stage uses the distances and similarities obtained from the second stage to group the 
nodes into communities.

Two more experiments were conducted to analyze the effect of changing the number of the mappers 
and reducers. Figure 12 shows the execution time of the GeoSimMR using 18 reducers and changing the 
 mappers from 1 to 42. The x-axis represents the number of mappers and the y-axis indicates the execution 
time in seconds. The GeoSimMR takes 11,000 seconds when only one mapper is used and 5,700 seconds 
when two mappers are used. The execution time drops to 1062 seconds by using 42 mappers.

It is clear that when the number of mappers is small, adding another mapper drastically improves the 
execution time. For instance, in case of one-mapper, the algorithm takes about 11,000 seconds to finish. 
Adding another mapper to the first one reduces the execution time to 5600 seconds (about 50% improve-
ment). As the number of mappers increases, the effect of the added mappers starts to fade away. The reason 
behind this behavior is that adding new mappers while the number of reducers is fixed will cause more 
results to come out of the map stage. This leads to a point where the current number of reducers cannot 
handle that amount of data from the map stage. In other words, the reducers becomes the bottleneck of 
the whole job.

Figure 13 also shows the results of executing the GeoSimMR algorithm using 42 mappers and varying 
the number of reducers from 1 to 21. The x-axis represents the number of reducers while the y-axis repre-
sents the execution time in seconds. When only one reducer was used, the execution time is around 1900 
seconds. Adding one more reducer improves the execution time by 26%. When all the 21 reducers are used 
the execution time is 942 seconds, achieving 50% better performance.

Another experiment was conducted to show the gain obtained from using MapReduce. For the sake of 
comparison, we created centralized version where all stages are re-coded and optimized to run on a single 

Figure 11: The execution time for the Clustering stage using different number of mappers and reducers.
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machine without the use of MapReduce. We ran the MapReduce version (with 42 mappers and 21 reducers) 
and the centralized version to show the time difference between the two versions. Five datasets are used in 
this experiment. The datasets have the following number of nodes: 100 k, 250 k, 1 m, 5 m and 10 m each 
clustered into 100 communities. The results of this test are shown in Figure 14.

In Figure 14, the x-axis indicates the number of nodes and the y-axis represents the execution time in 
seconds (logarithmic scale). For 100,000 nodes, the centralized version of the algorithm takes 246 seconds 
to finish whereas the MapReduce version finished after 1056 seconds. For higher the number of nodes, 
the centralized version starts to take a very long time, so an estimation of the execution time is proposed. 
Since GeoSimMR algorithm processes each node individually, we measure the execution time for processing 

Figure 12: The overall execution time for different mappers while fixing the number of reducers.

Figure 13: The overall execution time for different reducers while fixing the number of mappers to 42.
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few nodes and then calculated the average time for processing one node. This time is then multiplied by 
the number of the nodes in the graph to get the estimated execution time. When the number of nodes is 
10  million, the MapReduce version takes 32 hours to finish, whereas the centralized version needs approxi-
mately 3170 years to complete execution.

For a smaller number of nodes, for example, 100,000 nodes, the MapReduce version of the algorithm 
takes a longer time (around 73% more time) than its centralized version. This is because the overhead of 
the communication between the mappers and reducers along with the cost of read/write operations are 
much higher than the computations for this number of nodes. When the number of nodes increases to 
1,000,000 nodes, the overhead time becomes very small and negligible compared to the time required for 
the computation.

VII. Conclusion
In this paper, we presented the GeoSim algorithm that clusters any given social network into communities. 
Unlike previous community detection techniques, where only the network structure is taken into consid-
eration, GeoSim involves the interests of each node into the clustering process. This paper also introduced 
a parallel version of GeoSim, namely GeoSimMR, that runs on top of a MapReduce framework. Having a 
parallel community detection algorithm is very crucial since social networks are typically very huge and a 
single machine is inadequate to process them. Both GeoSim and GeoSimMR have been examined and the 
results were presented in the paper. GeoSim achieved high accuracy in terms of detecting communities by 
grouping close nodes that have similar interests into a single community. In addition to the high accuracy of 
community detection, the GeoSimMR algorithm takes advantage of available mappers and reducers in order 
to reduce the execution time drastically.

In the future, we plan to implement our algorithms using other Big Data platforms such as Spark and 
conduct an analysis and comparison with the MapReduce platform. Additionally, it would be interesting to 
use these Big Data implementations to find the influential nodes in the detected communities.
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Figure 14: The overall execution time for the GeoSim and GeoSimMR using different number of nodes 
(Time axis is semi-log).
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