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Incomplete data are ubiquitous in social sciences; as a consequence, available data are inefficient 
(ineffective) and often biased. In the literature, multiple imputation is known to be the standard 
method to handle missing data. While the theory of multiple imputation has been known for 
decades, the implementation is difficult due to the complicated nature of random draws from 
the posterior distribution. Thus, there are several computational algorithms in software: Data 
Augmentation (DA), Fully Conditional Specification (FCS), and Expectation-Maximization with 
Bootstrapping (EMB). Although the literature is full of comparisons between joint modeling (DA, 
EMB) and conditional modeling (FCS), little is known about the relative superiority between 
the MCMC algorithms (DA, FCS) and the non-MCMC algorithm (EMB), where MCMC stands 
for Markov chain Monte Carlo. Based on simulation experiments, the current study contends 
that EMB is a confidence proper (confidence-supporting) multiple imputation algorithm without 
between-imputation iterations; thus, EMB is more user-friendly than DA and FCS.

Keywords: MCMC; Markov chain Monte Carlo; Incomplete data; Nonresponse; Joint modeling; 
Conditional modeling

1 Introduction
Generally, it is quite difficult to obtain complete data in social surveys (King et al. 2001: 49). Consequently, 
available data are not only inefficient due to the reduced sample size, but also biased due to the difference 
between respondents and non-respondents, thus making statistical inference invalid. Since Rubin (1987), 
multiple imputation has been known to be the standard method of handling missing data (Graham 2009; 
Baraldi and Enders 2010; Carpenter and Kenward 2013; Raghunathan 2016).

While the theoretical concept of multiple imputation has been around for decades, the implementation is 
difficult because making a random draw from the posterior distribution is a complicated matter. Accordingly, 
there are several computational algorithms in software (Schafer 1997; Honaker and King 2010; van Buuren 
2012). The most traditional algorithm is Data Augmentation (DA) followed by the other two new algorithms, 
Fully Conditional Specification (FCS) and Expectation-Maximization with Bootstrapping (EMB). Although an 
abundant literature exists on the comparisons between joint modeling (DA, EMB) and conditional modeling 
(FCS), no comparisons have been made about the relative superiority between the MCMC algorithms (DA, 
FCS) and the non-MCMC algorithm (EMB), where MCMC stands for Markov chain Monte Carlo. This study 
assesses the effects of between-imputation iterations on the performance of the three multiple imputation 
algorithms, using Monte Carlo experiments.

By way of organization, Section 2 introduces the notations in this article. Section 3 gives a motivating exam-
ple of missing data analysis in social sciences. Section 4 presents the assumptions of imputation  methods. 
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Section 5 shows the traditional methods of handling missing data. Section 6 introduces the three multi-
ple imputation algorithms. Section 7 surveys the literature on multiple imputation. Sections 8 gives the 
results of the Monte Carlo experiments, showing the impact of between-imputation iterations on  multiple 
 imputation. Section 9 concludes with the findings and the limitations in the current research.

2 Notations
D is n × p data, where n is the sample size and p is the number of variables. The distribution of D is 
 multivariate-normal with mean vector μ and variance-covariance matrix Σ, i.e., D ~ Np(μ, Σ), where all of the 
variables are continuous. Let i refer to an observation index (i = 1, …, n). Let j refer to a variable index (j = 1, 
…, p). Let D = {Y1, …, Yp}, where Yj is the j-th column in D and Y−j is the complement of Yj, i.e., all columns in D 
except Yj. Also, let Yobs be observed data and Ymis be missing data: D = {Yobs, Ymis}.

At the imputation stage, there is no concept of the dependent and independent variables, because impu-
tation is not a causal model, but a predictive model (King et al. 2001: 51). Therefore, all of the variables are 
denoted Yj with the subscript j indexing a variable number. However, at the analysis stage, one of the Yj 
 variables is the dependent variable and the remaining Y−j are the independent variables. If the dependent 
variable is the p-th column in D, then the dependent variable is simply denoted Y and the independent 
 variables are denoted X1, …, Xp−1.

Let R be a response indicator matrix that has the same dimension as D. Whenever D is observed, R = 1; 
otherwise, R = 0. Note, however, that non-italicized R refers to the R statistical environment. In the multiple 
imputation context, M refers to the number of imputations and T refers to the number of  between- imputation 
iterations. In general, θ is an unknown parameter vector.

3 Motivating Example: Missing Economic Data
Social scientists have long debated the determinants of economic development across countries (Barro 
1997; Feng 2003; Acemoglu, Johnson, and Robinson 2005). Using the data from the Central Intelligence 
Agency (CIA 2016) and Freedom House (2016), we may estimate a multiple regression model, in which the 
dependent variable is GDP per capita and the independent variables include social, economic, and political 
variables. The problem is that the data are incomplete (Table 1), where the median missing rate is 22.4% 
and the total missing rate is 62.3%.

Table 2 presents multiple regression models; however, the conclusions are susceptible to how we deal 
with missing data. The coefficients for central bank and public debt are statistically significant at the 5% 
error level using incomplete data, while they are not significant using multiply-imputed data. On the other 
hand, the coefficients for education and military are not significant using incomplete data, while they are 
significant using multiply-imputed data. Therefore, the issue of missing data is of grave concern in applied 
empirical research.

Table 1: Variables and Missing Rates.

Variables Missing Rates

GDP per capita (purchasing power parity) 0.0%

Freedom House index 15.4%

Central bank discount rate 32.9%

Life expectancy at birth 2.6%

Unemployment rate 10.5%

Distribution of family income: Gini index 37.3%

Public debt 22.4%

Education expenditures 24.6%

Taxes and other revenues 6.1%

Military expenditures 43.0%

Data sources: CIA (2016) and Freedom House (2016).
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4 Assumptions of Imputation Methods
Missing data analyses always involve assumptions (Raghunathan 2016: 12). In order to judge the appropriate-
ness of missing data methods, it is vital to comprehend the assumptions for the methods. Imputation involves 
the following four assumptions. These assumptions will play important roles in simulation studies (Section 8).

4.1 Assumptions of Missing Data Mechanisms
There are three common assumptions of missing data mechanisms in the literature (King et al. 2001: 50–51; 
Little and Rubin 2002; Carpenter and Kenward 2013: 10–21). The first assumption is Missing Completely 
At Random (MCAR), which is Pr(R|D) = Pr(R). If respondents are selected to answer their income values by 
throwing dice, this is an example of MCAR. The second assumption is Missing At Random (MAR), which is 
Pr(R|D) = Pr(R|Yobs). If older respondents are more likely to refuse to answer their income values and if the 
ages of the respondents are available in the data, this is an example of MAR. The third assumption is Not 
Missing At Random (NMAR), which is Pr(R|D) ≠ Pr(R|Yobs). If respondents with higher values of incomes are 
more likely to refuse to answer their income values and if the other variables in the data cannot be used to 
predict which respondents have high amounts of income, this is an example of NMAR.

4.2 Assumption of Ignorability
To be strict, the missing data mechanism is ignorable if both of the following conditions are satisfied: (1) The 
MAR condition; and (2) the distinctness condition, which stipulates that the parameters in the missing data 
mechanism are independent of the parameters in the data model (Schafer 1997: 11).

However, the MAR condition is said to be more relevant in real data applications (Allison 2002: 5; van 
Buuren 2012: 33). Thus, for all practical purposes, NMAR is Non-Ignorable (NI). The current study assumes 
that the missing data mechanism is MAR and thus ignorable.

4.3 Assumption of Proper Imputation
Imputation is said to be Bayesianly proper if imputed values are independent realizations of Pr(Ymis|Yobs), 
which means that successive iterates of Ymis cannot be used because of the correlations between them 
(Schafer 1997: 105–106). Between-imputation convergence relies on a number of factors, but the fractions 
of missing information are one of the most influential factors (Schafer 1997: 84; van Buuren 2012: 113).

van Buuren (2012: 39) introduces a slightly simplified version of proper imputation, which he calls 
 confidence proper. Let θ̄ be the multiple imputation estimate, θ̂ be the estimate based on the  hypothetically 
 complete data, V̄  be the estimate of the sampling variance of the estimate based on the hypothetically 

Table 2: Multiple Regression Analyses on GDP Per Capita.

Incomplete Data Multiply-Imputed Data

Variables Coef. Std. Err. Coef. Std. Err.

Intercept –7.323 3.953 –11.545* 3.495

Freedom –0.321* 0.127 –0.362* 0.127

Central Bank –0.118* 0.041 –0.107 0.049

Life Expectancy 3.922* 0.794 4.908* 0.655

Unemployment –0.205* 0.087 –0.214* 0.070

Gini 0.114 0.253 –0.018 0.363

Public Debt –0.198* 0.092 –0.002 0.093

Education 0.035 0.164 –0.488* 0.154

Tax 0.357* 0.174 0.471* 0.151

Military 0.123 0.085 0.299* 0.109

Number of obs. 86 228

Note: *significant at the 5% error level. Coef. stands for coefficient. Std. Err. stands for standard error. Since the 
 distributions of these variables are skewed to the right (log-normal), the variables are log-transformed to normalize 
the distributions.
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complete data, and V̂  be the sampling variance estimate based on the hypothetically complete data. An 
imputation procedure is said to be confidence proper if all of the following three conditions are satisfied: (1) 
θ̄ is equal to θ̂ when averaged over the response indicators sampled under the assumed response model; (2) 
V̄  is equal to V̂  when averaged over the response indicators sampled under the assumed response model; and 
(3) the extra inferential uncertainty due to missingness is correctly reflected. In order to check whether an 
imputation method is confidence proper, van Buuren (2012: 47) recommends to use bias, coverage, and 
confidence interval length as the evaluation criteria (See Section 8.2).

4.4 Assumption of Congeniality
Congeniality means that the imputation model is equal to the substantive analysis model. It is widely known 
that the imputation model can be larger than the substantive analysis model, but the imputation model 
 cannot be smaller than the substantive analysis model (Enders 2010: 227–229; Carpenter and Kenward 
2013: 64–65; Raghunathan 2016: 175–177).

5 Traditional Methods of Handling Missing Data
This section introduces listwise deletion, deterministic single imputation, and stochastic single imputation, 
which are used as baseline methods for comparisons in Section 8.

Listwise deletion (LD), also known as complete-case analysis, throws away any rows that have at least one 
missing value (Allison 2002: 6–8; Baraldi and Enders 2010: 10). Although it is simple and convenient, LD is 
less efficient due to the reduced sample size and may be biased if the assumption of MCAR does not hold 
(Schafer 1997: 23).

Deterministic single imputation (D-SI) replaces a missing value with a reasonable guess. The most 
 straightforward version calculates predicted scores for missing values based on a regression model (Allison 
2002: 11; Baraldi and Enders 2010: 12). If the goal of analysis is to estimate the mean of an incomplete 
 variable, D-SI produces an unbiased estimate under the assumptions of MCAR and MAR. However, D-SI 
tends to underestimate the variation in imputed data (de Waal, Pannekoek, and Scholtus 2011: 231). D-SI is 
available as R-function norm.predict in MICE (van Buuren 2012: 57), where MICE stands for Multivariate 
Imputation by Chained Equations.

Stochastic single imputation (S-SI) also utilizes a regression model to predict missing values, but it adds 
to imputed values random components drawn from the residual distribution (Baraldi and Enders 2010: 
13). S-SI is likely to recover the variation of an incomplete variable under the assumptions of MCAR and 
MAR; thus, compensating for the disadvantage of D-SI (de Waal, Pannekoek, and Scholtus 2011: 231). S-SI is 
 available as R-function norm.nob in MICE (van Buuren 2012: 57).

However, both D-SI and S-SI tend to underestimate the standard error in imputed data because imputed 
values are treated as if they were real (Raghunathan 2016: 77).

6 Competing Multiple Imputation Algorithms
Multiple imputation was made widely known by Rubin (1987) and concise history can be found in Scheuren 
(2005). In theory, multiple imputation replaces a missing value by M simulated values (M > 1) indepen-
dently and randomly drawn from the distribution of missing data. The variation among M simulated values 
reflects uncertainty about missing data; thus, making the standard error valid. In practice, missing data are 
by definition unobserved; therefore, the distribution of missing data is also unobserved. Instead, under 
the  assumption of MAR (or MCAR), multiple imputation constructs the posterior predictive distribution of 
missing data, conditional on observed data. Then, a random draw is independently made from this posterior 
distribution (Rubin 1987: 75; King et al. 2001: 53–54; Carpenter and Kenward 2013: 38–39).

However, using the analytical methods, it is not easy to randomly draw sufficient statistics from the pos-
terior distribution (Allison 2002: 33; Honaker and King 2010: 564). In order to solve this problem, three 
computational algorithms have been proposed in the literature.

6.1 Data Augmentation
The traditional algorithm of multiple imputation is the Data Augmentation (DA) algorithm, which is a 
Markov chain Monte Carlo (MCMC) technique (Takahashi and Ito 2014: 46–48). DA improves parameter 
estimates by repeated substitution conditional on the preceding value, forming a stochastic process called 
a Markov chain (Gill 2008: 379).

The DA algorithm works as follows (Schafer 1997: 72). Equation (1) is the imputation step that  generates 
imputed values from the predictive distribution of missing values, given the observed values and the 
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 parameter values at iteration t. Equation (2) is the posterior step that generates parameter values from the 
 posterior distribution, given the observed values and the imputed values at iteration t + 1.

( ) ( )1 ( )| ,t t
mis mis obsY Pr Y Y θ+ ∼ (1)

( )( 1) ( 1)| ,t t
obs misPr Y Yθ θ+ +∼ (2)

These two steps are repeated T times until convergence is attained. The convergence of MCMC is stochastic 
because it converges to probability distributions (Schafer 1997: 80). Therefore, it is hard to judge the con-
vergence in MCMC.

There are two ways of generating multiple imputations by DA (Schafer 1997: 139; Enders 2010: 211–212). 
In the first method, a single chain is run for M × T iterations, taking every t-th iteration of Ymis. In the second 
method, M parallel chains of length T are run, and the final values of Ymis from M chains are taken as the 
imputations. The current study adopts the second method.

The software using this algorithm is R-Package NORM2, which was originally developed by Schafer (1997) 
and is currently maintained by Schafer (2016).

6.2 Fully Conditional Specification
An alternative algorithm to DA is the Fully Conditional Specification (FCS) algorithm, which specifies the 
multivariate distribution by way of a series of conditional densities, through which missing values are 
imputed given the other variables (Takahashi and Ito 2014: 50–53). 

The FCS algorithm works as follows (van Buuren and Groothuis-Oudshoorn 2011: 6–7; van Buuren 2012: 
110; Zhu and Raghunathan 2015). Equation (3) draws the unknown parameters of the imputation model, 
given the observed values and the t-th imputations, where ( ) ( ) ( ) ( ) ( )( )1 1

1 1 1, , , , ,t t t t t
j j j pY Y Y Y Y− −

− − += … … , where tilde 
denotes a random draw. Equation (4) draws imputations, given the observed values, the t-th imputations, 
and the t-th parameter estimates. These two steps are repeated for j = 1, …, p.

( )( )( ) ( )
,| , tt t

j j j obs jPr Y Yθ θ −
� �∼ (3)

( ) ( )( )( )
, ,| , ,t t t

j j mis j obs j jY Pr Y Y Y θ−∼ �� � (4)

The entire process is repeated for t = 1,…, T until convergence is attained. FCS can be considered an 
MCMC method, because FCS is a Gibbs sampler under the compatible conditionals (van Buuren and 
 Groothuis-Oudshoorn 2011: 6; van Buuren 2012: 109). This means that the convergence of FCS is stochastic. 
Therefore, it is hard to judge the convergence in FCS.

The software using this algorithm is R-Package MICE (van Buuren and Groothuis-Oudshoorn 2011), which 
stands for Multivariate Imputation by Chained Equations and is currently maintained by van Buuren et al. (2015). 
The FCS algorithm is also known as Sequential Regression Multivariate Imputation (Raghunathan 2016: 76).

6.3 Expectation-Maximization with Bootstrapping
Another emerging algorithm is the Expectation-Maximization with Bootstrapping (EMB) algorithm, which 
combines the Expectation-Maximization (EM) algorithm with the nonparametric bootstrap to create multi-
ple imputation (Takahashi and Ito 2014: 55–57).

The EMB algorithm works as follows (Honaker and King 2010: 565; Honaker, King, and Blackwell 2011: 4).  
Suppose that a random sample of size n is drawn from a population, where some values are missing in 
the sample. Bootstrap resamples of size n are randomly drawn from the sample data with replacement  
M times (Horowitz 2001: 3163–3165; Carsey and Harden 2014: 215). The variation among the M resamples 
represents uncertainty about estimation. The EM algorithm is applied to each of these M bootstrap resamples 
to refine M point estimates of parameter θ. Equation (5) is the expectation step that calculates the Q-function 
by averaging the complete-data log-likelihood over the predictive distribution of missing data. Equation (6) is 
the maximization step that finds parameter values at iteration t + 1 by maximizing the Q-function.

( ) ( ) ( )( ) ( )| | | ,t t
mis obs misQ l Y Pr Y Y dYθ θ θ θ=∫ (5)
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( )( 1) ( )argmax |t tQ
θ

θ θ θ+ = (6)

These two steps are repeated until convergence is attained, where the converged value is a Maximum 
 Likelihood Estimate (MLE) under well-behaved conditions (Schafer 1997: 38–39; Do and Batzoglou 2008). The 
convergence of EM is deterministic because it converges to a point in the parameter space (Schafer 1997: 80). 
Therefore, it is straightforward to judge the convergence in EM. The substitution of MLEs from bootstrap resa-
mples is asymptotically equal to a sample from the posterior distribution (Little and Rubin 2002: 216–217).

The software using this algorithm is R-Package AMELIA II (Honaker, King, and Blackwell 2011), which was 
originally developed by King et al. (2001) and is currently maintained by Honaker, King, and Blackwell (2016).

6.4 Relationships among the Three Algorithms
The three algorithms share certain characteristics with each other, but not exactly the same as summarized 
in Table 3.

DA and EMB are joint modeling while FCS is conditional modeling (Kropko et al. 2014). Joint modeling 
specifies a multivariate distribution of missing data while conditional modeling specifies a univariate distri-
bution on a variable-by-variable basis (van Buuren 2012: 105–108). Conditional modeling is more flexible 
and joint modeling is computationally more efficient (van Buuren 2012: 117; Kropko et al. 2014).

DA and FCS are different versions of MCMC techniques. On the other hand, EMB is not an MCMC  technique. 
It is said that DA and FCS require between-imputation iterations to be confidence proper (Schafer 1997: 
106; van Buuren 2012: 113) while EMB does not need iterations to be confidence proper (Honaker and 
King 2010: 565). However, as is clear in Section 7, whether EMB is confidence proper when DA and FCS are 
improper, this is an open question that has not been tested in the literature.

7 Comparative Studies on Multiple Imputation in the Literature
Table 4 presents the literature that compared imputation methods. Nine studies compared multiple 
 imputation with other missing data methods, such as listwise deletion, single imputation, and maximum 
likelihood. Among these nine studies, four studies focused on DA (Schafer and Graham 2002; Abe and 
Iwasaki 2007; Lee and Carlin 2012; von Hippel 2016), four studies on FCS (Donders et al. 2006; Stuart et al. 
2009; Cheema 2014; Deng et al. 2016), and one study on an unknown algorithm (Shara et al. 2015).

Four studies investigated specialized situations for multiple imputation, such as small-sample degrees of 
freedom in DA (Barnard and Rubin 1999), Likert-scale data in DA (Leite and Beretvas 2010), non-parametric 
multiple imputation (Cranmer and Gill 2013), and variance estimators (Hughes, Sterne, and Tilling 2016).

Seven studies compared different multiple imputation algorithms (King et al. 2001; Horton and Lipsitz 
2002; Horton and Kleinman 2007; Lee and Carlin 2010; Hardt, Herke, and Leonhart 2012; Kropko et al. 
2014; McNeish 2017). The comparative perspective in most of the seven studies, except King et al. (2001), 
is based on the difference between joint modeling and conditional modeling. Thus, the perspective from 
MCMC vs. non-MCMC is generally lacking in the literature.

Ten studies did not explicitly state the number of iterations T. Furthermore, Horton and Kleinman (2007) 
used the default setting in software for T, and the information in Kropko et al. (2014) can be only found in 
their computer codes, not in the article.

Thus, no studies in Table 4 have systematically investigated the effects of convergence on the three 
 multiple imputation algorithms.

8 Monte Carlo Simulation
Section 4 introduced MAR, proper imputation, and congeniality as crucial assumptions. To make the 
 assumptions of MAR and congeniality realistic, an inclusive analysis strategy is recommended in the 
 literature ( Enders 2010: 16–17; Raghunathan 2016: 73), which contains any auxiliary variables that can 
increase the predictive power of the imputation model or any variables that may be related to the  missing 
data  mechanism. What complicates the matter, however, is that auxiliary variables themselves are often 

Table 3: Relations among DA, EMB, and FCS. 

Joint Modeling Conditional Modeling

MCMC DA FCS

Non-MCMC EMB
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incomplete. This creates a dilemma in multiple imputation. Including many auxiliary variables makes it 
more likely for MAR and congeniality to be satisfied, but including many incomplete variables leads to a 
higher total missing rate, which further makes it more difficult for convergence in MCMC to be attained.

Table 4: Summary of the 20 Studies on Multiple Imputation.

Authors MI  
Algorithms

Sample  
Size

Number of 
Variables

Number of 
Imputations

Number of 
Iterations

Missing  
Rate

Barnard and 
Rubin (1999)

DA 10, 20, 30 2 3, 5, 10 Unknown 10%, 20%, 
30%

Horton and 
Lipsitz (2001)

DA, FCS 10000 3 10 200 50%

Schafer and 
Graham (2002)

DA 50 2 20 Unknown 73%

Donders et al. 
(2006)

FCS 500 2 10 Unknown 40%

Abe and Iwasaki 
(2007)

DA 100 4 5 100 20%, 30%

Horton and 
Kleinman 
(2007)

DA, EMB, FCS 133774 10 10 5 41%

Stuart et al. 
(2009)

FCS 9186 400 10 10 18%

Lee and Carlin 
(2010)

DA, FCS 1000 8 20 10 33%

Leite and Beret-
vas (2010)

DA 400 10 10 Unknown 10%, 30%, 
50%

Hardt, Herke, 
and Leonhart 
(2012)

DA, EMB, FCS 50, 100, 200 3, 13, 23, 
43, 83

20 Unknown 20%, 50%

Lee and Carlin 
(2012)

DA 1000 8 20 Unknown 10%, 25%, 
50%, 75%, 

90%

Cranmer and 
Gill (2013)

EMB, MHD 500 5 Unknown NA 20%, 50%, 
80%

Cheema (2014) FCS 10, 20, 50, 100, 
200, 500, 1000, 

2000, 5000, 10000

4 Unknown Unknown 1%, 2%, 5%, 
10%, 
20%

Kropko et al. 
(2014)

DA, EMB, FCS 1000 8 5 30 25%

Shara et al. 
(2015)

Unknown 2246 8 Unknown Unknown 20%, 30%, 
40%

Deng et al. 
(2016)

FCS 100 200, 1000 10 20 40%

von Hippel 
(2016)

DA 25, 100 2 5 Unknown 50%

Hughes, Sterne, 
and Tilling 
(2016)

Unknown 100, 1000 5 50 Unknown 40%, 60%

McNeish (2017) DA, FCS 20, 50, 100, 
250

4 5, 25, 100 Unknown 10%, 20%, 
30%, 50%

Note: DA stands for Data Augmentation, EMis for Expectation-Maximization with Importance Sampling, FCS for Fully 
Conditional Specification, EMB for Expectation-Maximization with Bootstrapping, and MHD for Multiple Hot Deck. 
Unknown means that information is unavailable. NA means Not-Applicable.
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When assumptions do not hold in statistical methods, analytical mathematics does not often provide answers 
about the properties of the methods (Mooney 1997: 1). Monte Carlo simulation converts the  computer into an 
experimental laboratory, where the researcher can control various conditions in the environment to observe 
the outcomes (Carsey and Harden 2014: 4). Thus, Monte Carlo simulation is a  powerful method of assessing 
the performance of statistical methods under various settings especially when  assumptions are violated.

8.1 Monte Carlo Simulation Designs
The current study prepares two versions of simulation data, (1) theoretical and (2) realistic. Auxiliary 
 variables X are generated by R-Function mvrnorm. All of the computations are done in R version 3.2.4. The 
computer used in the current study is HP Z440 Workstation (Windows 7 Professional, processor: Intel Xeon 
CPU E5-1603 v3), with the processor speed of 2.80 GHz and the memory (RAM) of 32.0 GB under the 64 bit 
operating system. The number of Monte Carlo simulation runs is set to 1000.

The first setting is theoretical. The number of observations is 1000, which is equivalent to the 75th  percentile 
of the sample sizes found in the studies listed in Table 4. The number of variables p is changed from 2, 3, 
4, 5, 6, 7, 8, 9, to 10, which is equivalent to the 70th percentile of the number of variables found in the stud-
ies listed in Table 4. Note that in another simulation run, not reported here, p was changed to 20, and the 
conclusions were similar. As was assumed in Section 2, auxiliary variables xj are  multivariate-normal with 
the mean of 0 and the standard deviation of 1, i.e., X ~ Np–1(0, 1), where the number of auxiliary  variables is 
p – 1. The correlation among xj is randomly generated in R as follows: r<-matrix(runif(9^2,–1,1), 
ncol=9) and Cor<-cov2cor(r%*%t(r)). The generated correlation matrix is shown in equation (7). 
The p-th variable yi is a linear combination of xj such that 0 1 1 1 1i i p p i iy x xβ β β ε− −= + +…+ + , where βj ~ 
U(–2.0, 2.0) and εi ~ N(0, σ). Note that βj includes β0 and σ ~ U(0.5, 2.0).

1

1.000 0.231  0.335 0.401 0.276 0.247 0.120 0.327 0.068

0.231 1.000 0.074 0.761 0.041 0.623 0.083 0.432 0.183

 0.335 0.074 1.000 0.183 0.323 0.254 0.458 0.434 0.801

0.401 0.761 0.183 1.000 0.007 0.639 0.094 0.676 0.1

Cor

− − − −
− − − − − −

− − −
− −

=
69

0.276 0.041 0.323 0.007 1.000 0.547 0.357 0.025 0.081

0.247 0.623 0.254 0.639 0.547 1.000 0.024 0.204 0.023

  0.120 0.083 0.458 0.094 0.357 0.024 1.000 0.486 0.373

 0.327 0.432 0.434 0.676   0.025 0.204 0.486 1.000 0.153

− − − −
− −

− − − − −
− − − −

0.068 0.183 0.801 0.169 0.081 0.023 0.373   0.153 1.000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

(7)

The second setting is realistic. The number of observations is 228, which is the full sample size of the real 
data in Table 2. The number of variables p is again changed from 2, 3, 4, 5, 6, 7, 8, 9, to 10.  Auxiliary variables 
xj are multivariate-normal with the means and standard deviations based on the empirical data (log-trans-
formed), where xj consist of the nine independent variables in Table 2 (CIA 2016;  Freedom House 2016). 
Note that, as was explained in Table 2, the raw empirical data are log-normal; therefore, the input data are 
log-transformed. Furthermore, the correlation matrix is based on the  empirical data (log-transformed) as in 
equation (8). The p-th variable yi is a linear combination of xj such that 0 1 1 1 1i i p p i iy x xβ β β ε− −= + +…+ + ,  
where βj (including β0) reflects the coefficients in multiple regression models using the empirical data and  
εi ~ N(0, σresid), where σresid is the residual standard deviation from the empirical regression model.

2

1.000 0.646   0.500 0.007 0.376 0.354 0.378 0.534 0.312

0.646 1.000 0.531  0.021 0.371 0.305 0.150   0.427 0.049

  0.500 0.531 1.000 0.474 0.512 0.278 0.092 0.280 0.086

0.007 0.021 0.474 1.000 0.205 0.079 0.014 0.086

Cor

− − − − −
− − − −

− − − − −
− −

=
0.161

0.376 0.371 0.512 0.205 1.000   0.204 0.089 0.370 0.220

0.354 0.305 0.278 0.079 0.204 1.000 0.106 0.212 0.180

  0.378 0.150 0.092 0.014 0.089 0.106 1.000 0.578 0.128

  0.534 0.427 0.280 0.086   0.370 0.212 0.578 1.000

− − − −
− − − −
− − − −
− − − −0.134
0.312 0.049 0.086 0.161 0.220 0.180 0.128   0.134 1.000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

(8)
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In both settings, xj are incomplete variables for imputation, yi is completely observed in all of the  situations, 
and uij are a set of p – 1 continuous uniform random numbers ranging from 0 to 1 for the missing data 
mechanism. As was introduced in Section 4.1, under the assumption of MAR, the missingness of xji depends 
on the values of yi and uij, i.e., xji is missing if yi < median(yi) and uij < 0.5, and xji is missing if yi > median(yi) 
and uij > 0.9. This creates approximately 30% missing values in each xj. This is realistic, because the average 
missing rates of income and earnings are 30% on a variable basis in the National Health Interview Survey 
(Schenker et al. 2006: 925) and the median missing rate is 30.0% in Table 4. Note that the above setting 
may be translated into the following statement. Variable yi is age and x1i is income. The missingness of 
income depends on age and some random components. Income is missing if age is less than the median of 
age and uniform random numbers are less than 0.5. Also, income is missing if age is larger than the median 
of age and uniform random numbers are larger than 0.9.

Although the literature (Graham, Olchowski, and Gilreath 2007; Bodner 2008; Takahashi and Ito 2014: 
68–71) recommends to use relatively large M, the simulation studies in Table 4 use relatively small M. This 
is due to the computational burden of Monte Carlo simulation for multiple imputation. Considering this 
practical issue, the current study sets M to 20, which is equivalent to the 75th percentile of the number of 
multiply-imputed data found in the studies listed in Table 4.

As for T, there is no consensus in the literature (Table 4). There are no clear-cut rules for determining 
whether MCMC algorithms attained convergence (Schafer 1997: 119; King et al. 2001: 59; van Buuren and 
Groothuis-Oudshoorn 2011: 37). Though not perfect, doubling the number of EM iterations is a rule of 
thumb for a conservative estimate about convergence speed for MCMC (Schafer and Olsen 1998; Enders 
2010: 204). Since it is not possible to check convergence in each of the 1000 simulation runs, the current 
study relies on the rule of thumb to set T.

8.2 Criteria for Judging Simulation Results
The estimand in all of the simulation runs is β1 in 0 1 1 1 1i i p p i iy x xβ β β ε− −= + +…+ + . The purpose of 
 multiple imputation is to find an unbiased estimate of the population parameter that is confidence valid 
(van Buuren 2012: 35–36). 

Unbiasedness can be assessed by equation (9), because an estimator θ̂ is an unbiased estimator of θ if the 
expected value of θ̂ is equal to the true θ (Mooney 1997: 59; Gujarati 2003: 899).

( ) ( )Bias ˆ ˆEθ θ θ= − (9)

Unbiasedness and efficiency can be simultaneously assessed by the Root Mean Square Error (RMSE), 
defined as equation (10). The RMSE measures the spread around the true value of the parameter, placing 
slightly more emphasis on efficiency than bias (Gujarati 2003: 901; Carsey and Harden 2014: 88–89).

( ) ( )
2

ˆMSE ˆR  Eθ θ θ= − (10)

Confidence validity can be assessed by the coverage probability of the nominal 95% confidence interval 
(CI), which ‘is the proportion of simulated samples for which the estimated confidence interval includes the 
true parameter’ (Carsey and Harden 2014: 93). The formula of the standard error for proportions is equation 
(11), where π is the proportion and s is the number of simulation runs.

( )
( )1

SE
s

π π
π

−
= (11)

The standard error of the 95% CI coverage over 1000 iterations is 0.95 0.05/1000 0.007× ≈  which is 
0.7%. Therefore, with 95% confidence, the estimated coverage probability should be between 93.6% and 
96.4% (Abe and Iwasaki 2007: 10; Lee and Carlin 2010: 627; Carsey and Harden 2014: 94–95; Hughes, 
Sterne, and Tilling 2016).

8.3 Results of the Simulation
Abbreviations in this section are explained in Table 5, where MI stands for multiple imputation and SI for 
single imputation.
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8.3.1 Theoretical Case
This section presents the results of the Monte Carlo simulation for the theoretical case, where the  correlation 
matrix and the regression coefficients are randomly generated.

Table 6 shows the Bias and RMSE values for the regression coefficient β1. The Bias and RMSE values for 
listwise deletion and single imputation methods indicate that these methods are not recommended at all. 
All of the Bias and RMSE values from EMB, DA1, DA2, and FCS2 are almost identical, showing that they are 
generally unbiased. However, FCS1 is rather biased, quite similar to S-SI. Therefore, when between-imputa-
tion iterations are ignored, there are no discernible effects on bias and efficiency in EMB and DA, but FCS 
may suffer from some bias.

Table 5: Abbreviations and the Missing Data Methods.

Abbreviations Missing Data Methods

CD Complete data without missing values

LD Listwise deletion

EMB MI by AMELIA II

DA1 MI by NORM2 with no iterations

DA2 MI by NORM2 with 2*EM iterations

FCS1 MI by MICE with no iterations

FCS2 MI by MICE with 2*EM iterations

D-SI Deterministic SI by norm.predict in MICE

S-SI Stochastic SI by norm.nob in MICE

Table 6: Bias and RMSE (Theoretical Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD
Bias 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.002 0.001

RMSE 0.040 0.047 0.038 0.039 0.058 0.026 0.046 0.039 0.047

LD
Bias 0.032 0.135 0.105 0.104 0.332 0.085 0.129 0.210 0.116

RMSE 0.059 0.153 0.122 0.121 0.349 0.103 0.160 0.228 0.155

EMB
Bias 0.000 0.004 0.002 0.000 0.005 0.001 0.005 0.005 0.002

RMSE 0.046 0.053 0.050 0.051 0.075 0.041 0.069 0.059 0.072

DA1
Bias 0.001 0.002 0.003 0.001 0.001 0.000 0.003 0.003 0.002

RMSE 0.046 0.053 0.050 0.051 0.074 0.041 0.069 0.058 0.072

DA2
Bias 0.002 0.001 0.005 0.002 0.001 0.000 0.001 0.003 0.000

RMSE 0.046 0.053 0.050 0.051 0.074 0.041 0.069 0.058 0.072

FCS1
Bias 0.002 0.001 0.082 0.040 0.090 0.047 0.093 0.027 0.233

RMSE 0.047 0.053 0.097 0.062 0.116 0.065 0.109 0.052 0.239

FCS2
Bias 0.001 0.002 0.004 0.002 0.001 0.000 0.001 0.002 0.001

RMSE 0.046 0.053 0.050 0.051 0.075 0.041 0.069 0.058 0.071

D-SI
Bias 0.186 0.242 0.174 0.093 0.187 0.098 0.231 0.070 0.163

RMSE 0.192 0.248 0.182 0.110 0.207 0.109 0.248 0.099 0.189

S-SI
Bias 0.002 0.000 0.081 0.038 0.090 0.047 0.091 0.029 0.230

RMSE 0.050 0.057 0.102 0.066 0.124 0.076 0.119 0.062 0.241

Note: Biased results are in boldface, i.e., Bias > 0.010.
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Table 7 gives the coverage probability of the 95% CI for β1. The CIs for listwise deletion and single 
 imputation methods are not confidence valid. When the number of auxiliary variables is small (and hence 
the overall missing rate is small), the between-imputation iterations may be ignored, where all of the 
 multiple imputation CIs are confidence valid. However, as the number of auxiliary variables becomes large, 
DA1 and FCS1 drift away from the confidence validity. EMB, DA2, and FCS2 are confidence valid regardless 
of the number of variables and the missing rate. This shows that EMB is confidence proper even if it does not 
iterate. This is an important finding in the current study.

Table 8 shows the CI lengths. The CI length by listwise deletion is generally too long, reflecting  inefficiency 
due to the reduced sample size. The CI lengths by single imputation methods are ‘correct’ in the sense 
that they are quite similar to those of complete data analysis; however, this means that single imputa-
tion  methods ignore estimation uncertainty associated with imputation. This is the cause of confidence 
 invalidity of single imputation methods in Table 7. The CI length by DA1 is too short and the CI length by 
FCS1 is too long. The CI lengths by EMB, DA2, and FCS2 are essentially equal, reflecting the correct level of 
estimation uncertainty associated with imputation.

Table 9 displays the computational time required to generate multiple imputations. When the number of 
auxiliary variables is small (and hence the overall missing rate is small), DA2 is fastest among the three confi-
dence proper multiple imputation algorithms. On the other hand, as the number of auxiliary variables becomes 
large, EMB becomes fastest. As is known in the literature (van Buuren 2012: 117; Kropko et al. 2014), FCS2 is 
at least 5 times slower and can be more than 50 times slower than EMB and DA2. However, the difference in 
computational time is not substantial, given that all of the computations can be done within a few minutes.

Table 7: Coverage of the 95% CI (Theoretical Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD 95.3 94.9 94.2 94.0 96.0 96.0 95.3 94.9 94.6

LD 88.5 47.9 54.6 56.7 10.8 65.1 69.2 32.1 78.1

EMB 95.0 95.1 94.2 95.5 94.9 94.4 94.3 94.1 95.0

DA1 94.6 94.9 93.2 93.1 94.1 91.8 92.9 92.4 92.9

DA2 94.3 95.8 95.1 94.1 94.8 94.3 94.2 93.2 94.9

FCS1 94.2 95.0 75.0 91.6 84.4 95.5 84.5 96.8 6.8

FCS2 94.7 95.6 94.4 93.9 95.4 94.5 94.2 95.0 95.0

D-SI 0.8 0.2 2.2 37.8 22.2 16.9 8.3 51.0 22.5

S-SI 88.9 89.6 47.8 75.0 62.3 64.4 48.9 76.0 3.7

Note: Confidence invalid results are in boldface, i.e., outside of 93.6 and 96.4.

Table 8: Lengths of the 95% CI (Theoretical Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD 0.157 0.184 0.144 0.148 0.236 0.102 0.184 0.151 0.180

LD 0.189 0.259 0.226 0.235 0.384 0.213 0.358 0.339 0.390

EMB 0.178 0.209 0.196 0.200 0.301 0.160 0.275 0.229 0.281

DA1 0.176 0.207 0.187 0.192 0.293 0.145 0.256 0.208 0.253

DA2 0.177 0.208 0.194 0.198 0.298 0.158 0.271 0.223 0.274

FCS1 0.178 0.209 0.237 0.211 0.324 0.248 0.306 0.223 0.299

FCS2 0.178 0.209 0.197 0.201 0.302 0.161 0.275 0.228 0.281

D-SI 0.143 0.174 0.133 0.149 0.244 0.103 0.205 0.150 0.188

S-SI 0.157 0.184 0.161 0.155 0.238 0.145 0.188 0.149 0.186



Takahashi: Statistical Inference in Missing Data by MCMC and Non-MCMC 
Multiple Imputation Algorithms

Art. 37, page 12 of 17  

8.3.2 Realistic Case
This section presents the results of the Monte Carlo simulation for the realistic case, where the correlation 
matrix and the regression coefficients are based on the real data (CIA 2016; Freedom House 2016). The 
results in this section reinforce the findings in Section 8.3.1.

Table 10 shows the Bias and RMSE values for the regression coefficient β1. The overall conclusions are 
similar to Table 6. When between-imputation iterations are ignored, there are no discernible effects on bias 
and efficiency in EMB and DA, but FCS may occasionally suffer from small bias.

Table 11 gives the coverage probability of the 95% CI for β1. The overall conclusions are similar to Table 7,  
except that DA1 is confidence invalid even when p = 3. This implies that we cannot ignore between-imputa-
tion iterations in MCMC-based approaches even when the number of variables is small. On the other hand, 
EMB is confidence valid and we can safely ignore between-imputation iterations in EMB. Again, this is an 
important finding in the current study.

Table 9: Computational Time (Theoretical Data).

Number of Variables

2 3 4 5 6 7 8 9 10

EMB 0.46 0.53 0.53 0.59 0.71 0.78 0.97 1.27 1.69

DA2 0.10 0.16 0.29 0.42 0.55 1.09 1.39 2.22 3.63

FCS2 2.47 5.98 14.48 21.33 25.40 54.71 59.14 85.69 133.17

Note: Reported values are the time in seconds to perform multiple imputation, which is averaged over 1,000 simulation 
runs. The fastest results are in boldface.

Table 10: Bias and RMSE (Realistic Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD
Bias 0.003 0.002 0.002 0.002 0.001 0.002 0.000 0.002 0.002

RMSE 0.074 0.086 0.068 0.067 0.066 0.065 0.070 0.069 0.075

LD
Bias 0.034 0.047 0.037 0.054 0.082 0.099 0.083 0.072 0.085

RMSE 0.095 0.128 0.104 0.118 0.141 0.154 0.157 0.159 0.188

EMB
Bias 0.001 0.002 0.002 0.005 0.001 0.000 0.000 0.002 0.006

RMSE 0.084 0.113 0.091 0.090 0.089 0.092 0.102 0.099 0.110

DA1
Bias 0.006 0.001 0.003 0.003 0.001 0.001 0.001 0.001 0.002

RMSE 0.084 0.112 0.090 0.089 0.087 0.091 0.100 0.096 0.105

DA2
Bias 0.009 0.000 0.002 0.004 0.002 0.004 0.000 0.001 0.001

RMSE 0.084 0.111 0.089 0.088 0.086 0.090 0.098 0.094 0.102

FCS1
Bias 0.007 0.013 0.006 0.005 0.002 0.008 0.006 0.012 0.000

RMSE 0.084 0.106 0.081 0.081 0.080 0.081 0.086 0.083 0.088

FCS2
Bias 0.007 0.001 0.002 0.002 0.003 0.005 0.002 0.003 0.005

RMSE 0.084 0.112 0.088 0.088 0.086 0.090 0.097 0.093 0.100

D-SI
Bias 0.188 0.075 0.011 0.035 0.037 0.047 0.023 0.034 0.059

RMSE 0.207 0.163 0.115 0.118 0.118 0.123 0.130 0.127 0.151

S-SI
Bias 0.005 0.014 0.007 0.006 0.002 0.006 0.005 0.009 0.006

RMSE 0.089 0.116 0.096 0.095 0.091 0.094 0.100 0.102 0.105

Note: Biased results are in boldface, i.e., Bias > 0.010.
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Table 12 shows the CI lengths. The overall conclusions are similar to Table 8. One difference is that the 
CI length by FCS1 is slightly short.

Table 13 displays the computational time required to generate multiple imputations. The overall conclu-
sions are similar to Table 9.

Table 11: Coverage of the 95% CI (Realistic Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD 94.6 95.3 95.8 94.7 95.2 96.4 94.6 95.3 94.8

LD 92.2 91.6 92.8 91.5 86.8 85.0 89.8 90.0 90.8

EMB 94.3 94.1 94.7 93.9 96.1 94.2 94.0 94.4 94.7

DA1 94.1 92.2 94.4 93.4 95.7 92.2 93.1 92.9 93.1

DA2 94.0 94.0 94.8 94.4 95.9 94.5 93.8 95.0 95.0

FCS1 94.6 94.7 96.3 96.7 97.0 97.0 96.7 96.9 97.7

FCS2 94.7 93.8 95.5 95.7 96.4 94.3 94.8 95.2 96.1

D-SI 32.7 74.5 79.2 77.6 77.7 74.1 75.3 75.1 68.8

S-SI 87.9 83.2 82.3 82.5 84.2 82.1 81.0 80.3 81.2

Note: Confidence invalid results are in boldface, i.e., outside of 93.6 and 96.4.

Table 12: Lengths of the 95% CI (Realistic Data).

Number of Variables

2 3 4 5 6 7 8 9 10

CD 0.279 0.334 0.268 0.266 0.267 0.261 0.278 0.274 0.289

LD 0.333 0.441 0.389 0.412 0.436 0.457 0.516 0.543 0.631

EMB 0.314 0.429 0.364 0.356 0.362 0.359 0.397 0.396 0.432

DA1 0.313 0.414 0.348 0.342 0.343 0.337 0.370 0.364 0.390

DA2 0.315 0.423 0.356 0.351 0.353 0.351 0.383 0.380 0.410

FCS1 0.315 0.416 0.353 0.348 0.350 0.350 0.382 0.380 0.406

FCS2 0.316 0.429 0.359 0.355 0.358 0.352 0.389 0.386 0.413

D-SI 0.288 0.380 0.292 0.289 0.291 0.278 0.302 0.294 0.315

S-SI 0.281 0.325 0.262 0.257 0.259 0.255 0.269 0.267 0.277

Table 13: Computational Time (Realistic Data).

Number of Variables

2 3 4 5 6 7 8 9 10

EMB 0.14 0.15 0.16 0.20 0.23 0.28 0.36 0.44 0.53

DA2 0.04 0.05 0.06 0.10 0.15 0.22 0.33 0.47 0.67

FCS2 1.05 2.55 4.22 8.92 12.02 15.59 20.82 26.78 35.95

Note: Reported values are the time in seconds to perform multiple imputation, which is averaged over 1,000 simulation 
runs. The fastest results are in boldface.



Takahashi: Statistical Inference in Missing Data by MCMC and Non-MCMC 
Multiple Imputation Algorithms

Art. 37, page 14 of 17  

9 Conclusions
This article assessed the relative performance of the three multiple imputation algorithms (DA, FCS, and 
EMB). In both theoretical and realistic settings (Table 7 and Table 11), if between-imputation iterations 
were ignored, the MCMC algorithms (DA and FCS) did not attain confidence validity. The nominal 95% CIs 
by DA and FCS without iterations were different from 95% coverage beyond the margin of error in 1,000 
simulation runs. This is because the CI lengths by DA without iterations were generally too short, and the 
CI lengths by FCS are generally too long (Table 8 and Table 12). Based on Schafer (1997: 139), this can be 
explained by choices for starting values. DA uses EM as a single starting value for M chains that understates 
missing data uncertainty (Schafer 2016: 22) while FCS uses random draws as M over-dispersed starting val-
ues that overstates missing data uncertainty (van Buuren and Groothuis-Oudshoorn 2011: 6). Without itera-
tions, imputed values depend on the choice of starting values.

DA and FCS can be both confidence valid under the large number of iterations; however, the assessment of 
convergence in MCMC is notoriously difficult. Furthermore, the convergence properties of FCS are  currently 
under debate due to possible incompatibility (Li, Yu, and Rubin 2012; Zhu and Raghunathan 2015). On the 
other hand, the current study found that EMB was confidence valid regardless of the situations. Therefore, 
EMB is a confidence proper imputation algorithm without iterations, which allows us to avoid a painful 
decision-making process of how to judge the convergence to generate confidence proper multiple impu-
tations. This finding is useful in the missing data literature. For example, while ratio imputation is often 
used in official statistics (Takahashi, Iwasaki, and Tsubaki 2017), multiple ratio imputation does not exist 
in the  literature. The EMB algorithm was applied to ratio imputation to create multiple ratio imputation 
(Takahashi 2017a; Takahashi 2017b).

No simulation studies can include all the patterns of relevant data (Kropko et al. 2014: 511). Therefore, the 
current study focused on two types of data, (1) theoretical and (2) realistic. Although the author believes that 
the two data generation processes cover data types relevant to many social research situations, the results 
in any simulation studies must be read with caution (Hardt, Herke, and Leonhart 2014: 11). Future research 
should delve into other data types, such as small-n data, large-p data, categorical data, and non-normal data, 
to name a few.

Additional File
The additional file for this article can be found as follows:

•	  Data for Tables 1 and 2. Political and Economic Data from CIA (2016) and Freedom House 
(2016). DOI: https://doi.org/10.5334/dsj-2017-037.s1

Acknowledgements
The author wishes to thank Dr. Manabu Iwasaki (Seikei University), Dr. Michiko Watanabe (Keio  University), 
and Dr. Takayuki Abe (Keio University) for the helpful comments. The author also wishes to thank the two 
anonymous reviewers for their comments that improved the quality of the article. Note that part of this 
 article in its very early version was presented at the 59th World Statistics Congress of the International 
 Statistical Institute (Takahashi and Ito 2013).

Competing Interests
The author has no competing interests to declare.

References
Abe, T and Iwasaki, M 2007 Evaluation of statistical methods for analysis of small-sample longitudinal 

clinical trials with dropouts. Journal of the Japanese Society of Computational Statistics, 20(1): 1–18. DOI: 
https://doi.org/10.5183/jjscs1988.20.1

Acemoglu, D, Johnson, S and Robinson, J A 2005 Institutions as the fundamental cause of long-run 
growth, Aghion, P and Durlauf, S (eds.). In: Handbook of Economic Growth. North Holland: Elsevier.

Allison, P D 2002 Missing Data. Thousand Oaks, CA: Sage Publications. DOI: https://doi.
org/10.4135/9781412985079

Baraldi, A N and Enders, C K 2010 An introduction to modern missing data analyses. Journal of School 
Psychology, 48(1): 5–37. DOI: https://doi.org/10.1016/j.jsp.2009.10.001

Barnard, J and Rubin, D B 1999 Small-sample degrees of freedom with multiple imputation. Biometrika, 
86(4): 948–955. DOI: https://doi.org/10.1093/biomet/86.4.948

https://doi.org/10.5334/dsj-2017-037.s1
https://doi.org/10.5183/jjscs1988.20.1
https://doi.org/10.4135/9781412985079
https://doi.org/10.4135/9781412985079
https://doi.org/10.1016/j.jsp.2009.10.001
https://doi.org/10.1093/biomet/86.4.948


Takahashi: Statistical Inference in Missing Data by MCMC and Non-MCMC 
Multiple Imputation Algorithms

Art. 37, page 15 of 17

Barro, R J 1997 Determinants of Economic Growth: A Cross-Country Empirical Study. Cambridge, MA: MIT 
Press.

Bodner, T E 2008 What improves with increased missing data imputations? Structural Equation Modeling, 
15: 651–675. DOI: https://doi.org/10.1080/10705510802339072

Carpenter, J R and Kenward, M G 2013 Multiple Imputation and its Application. Chichester, West Sussex: A 
John Wiley & Sons Publication.

Carsey, T M and Harden, J J 2014 Monte Carlo Simulation and Resampling Methods for Social Science. 
 Thousand Oaks, CA: Sage Publications. DOI: https://doi.org/10.4135/9781483319605

Central Intelligence Agency 2016 The World Factbook. Available at: https://www.cia.gov/library/publica-
tions/the-world-factbook/index.html [Last accessed November 27, 2016].

Cheema, J R 2014 Some general guidelines for choosing missing data handling methods in educational 
research. Journal of Modern Applied Statistical Methods, 13(2): 53–75. DOI: https://doi.org/10.22237/
jmasm/1414814520

Cranmer, S J and Gill, J 2013 We have to be discrete about this: A non-parametric imputation technique 
for missing categorical data. British Journal of Political Science, 43(2): 425–449. DOI: https://doi.
org/10.1017/S0007123412000312

Deng, Y, Chang, C, Ido, M S and Long, Q 2016 Multiple imputation for general missing data patterns in 
the presence of high-dimensional data. Scientific Reports, 6(21689): 1–10. DOI: https://doi.org/10.1038/
srep21689

de Waal, T, Pannekoek, J and Scholtus, S 2011 Handbook of Statistical Data Editing and Imputation. 
 Hoboken, NJ: John Wiley & Sons. DOI: https://doi.org/10.1002/9780470904848

Do, B C and Batzoglou, S 2008 What is the expectation maximization algorithm? Nature Biotechnology, 
26(8): 897–899. DOI: https://doi.org/10.1038/nbt1406

Donders, A R T, van der Heijden, G J M G, Stijnen, T and Moons, K G M 2006 Review: A gentle introduc-
tion to imputation of missing values. Journal of Clinical Epidemiology, 59: 1087–1091. DOI: https://doi.
org/10.1016/j.jclinepi.2006.01.014

Enders, C K 2010 Applied Missing Data Analysis. New York, NY: The Guilford Press.
Feng, Y 2003 Democracy, Governance, and Economic Performance: Theory and Evidence. Cambridge, MA: The 

MIT Press.
Freedom House 2016 Freedom in the World 2016. Available at: https://freedomhouse.org/report/freedom-

world/freedom-world-2016 [Last accessed November 30, 2016].
Gill, J 2008 Bayesian Methods: A Social and Behavioral Sciences Approach, Second Edition. London: Chapman 

& Hall/CRC.
Graham, J W 2009 Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60: 

549–576. DOI: https://doi.org/10.1146/annurev.psych.58.110405.085530
Graham, J W, Olchowski, A E and Gilreath, T D 2007 How many imputations are really needed? Some 

practical clarifications of multiple imputation theory. Prevention Science, 8(3): 206–213. DOI: https://
doi.org/10.1007/s11121-007-0070-9

Gujarati, D N 2003 Basic Econometrics, Fourth Edition. Boston, MA: McGraw-Hill.
Hardt, J, Herke, M and Leonhart, R 2012 Auxiliary variables in multiple imputation in regression with 

missing X: A warning against including too many in small sample research. BMC Medical Research 
 Methodology, 12(184): 1–13. DOI: https://doi.org/10.1186/1471-2288-12-184

Honaker, J and King, G 2010 What to do about missing values in time series cross-section data. American 
Journal of Political Science, 54(2): 561–581. DOI: https://doi.org/10.1111/j.1540-5907.2010.00447.x

Honaker, J, King, G and Blackwell, M 2011 Amelia II: A program for missing data. Journal of Statistical 
Software, 45(7): 1–47. DOI: https://doi.org/10.18637/jss.v045.i07

Honaker, J, King, G and Blackwell, M 2016 Package ‘Amelia’. Available at: http://cran.r-project.org/web/
packages/Amelia/Amelia.pdf [Last accessed November 30, 2016].

Horowitz, J L 2001 The bootstrap, Heckman, J J and Leamer, E (eds.). In: Handbook of Econometrics, 5. North 
Holland: Elsevier. DOI: https://doi.org/10.1016/s1573-4412(01)05005-x

Horton, N J and Kleinman, K P 2007 Much ado about nothing: A comparison of missing data methods and 
software to fit incomplete data regression models. The American Statistician, 61(1): 79–90. DOI: https://
doi.org/10.1198/000313007X172556

Horton, N J and Lipsitz, S R 2001 Multiple imputation in practice: Comparison of software packages for 
regression models with missing variables. The American Statistician, 55(3): 244–254. DOI: https://doi.
org/10.1198/000313007X172556

https://doi.org/10.1080/10705510802339072
https://doi.org/10.4135/9781483319605
https://www.cia.gov/library/publications/the-world-factbook/index.html
https://www.cia.gov/library/publications/the-world-factbook/index.html
https://doi.org/10.22237/jmasm/1414814520
https://doi.org/10.22237/jmasm/1414814520
https://doi.org/10.1017/S0007123412000312
https://doi.org/10.1017/S0007123412000312
https://doi.org/10.1038/srep21689
https://doi.org/10.1038/srep21689
https://doi.org/10.1002/9780470904848
https://doi.org/10.1038/nbt1406
https://doi.org/10.1016/j.jclinepi.2006.01.014
https://doi.org/10.1016/j.jclinepi.2006.01.014
https://freedomhouse.org/report/freedom-world/freedom-world-2016
https://freedomhouse.org/report/freedom-world/freedom-world-2016
https://doi.org/10.1146/annurev.psych.58.110405.085530
https://doi.org/10.1007/s11121-007-0070-9
https://doi.org/10.1007/s11121-007-0070-9
https://doi.org/10.1186/1471-2288-12-184
https://doi.org/10.1111/j.1540-5907.2010.00447.x
https://doi.org/10.18637/jss.v045.i07
http://cran.r-project.org/web/packages/Amelia/Amelia.pdf
http://cran.r-project.org/web/packages/Amelia/Amelia.pdf
https://doi.org/10.1016/s1573-4412(01)05005-x
https://doi.org/10.1198/000313007X172556
https://doi.org/10.1198/000313007X172556
https://doi.org/10.1198/000313007X172556
https://doi.org/10.1198/000313007X172556


Takahashi: Statistical Inference in Missing Data by MCMC and Non-MCMC 
Multiple Imputation Algorithms

Art. 37, page 16 of 17  

Hughes, R A, Sterne, J A C and Tilling, K 2016 Comparison of imputation variance estimators. Statistical 
Methods in Medical Research, 25(6): 2541–2557. DOI: https://doi.org/10.1177/0962280214526216

King, G, Honaker, J, Joseph, A and Scheve, K 2001 Analyzing incomplete political science data: An 
 alternative algorithm for multiple imputation. American Political Science Review, 95(1): 49–69.

Kropko, J, Goodrich, B, Gelman, A and Hill, J 2014 Multiple imputation for continuous and  categorical 
data: Comparing joint multivariate normal and conditional approaches. Political Analysis, 22(4): 497–519. 
DOI: https://doi.org/10.1093/pan/mpu007

Lee, K J and Carlin, J B 2010 Multiple imputation for missing data: Fully conditional specification versus 
multivariate normal imputation. American Journal of Epidemiology, 171(5): 624–632. DOI: https://doi.
org/10.1093/aje/kwp425

Lee, K J and Carlin, J B 2012 Recovery of information from multiple imputation: A simulation study. 
 Emerging Themes in Epidemiology, 9(3): 1–10. DOI: https://doi.org/10.1186/1742-7622-9-3

Leite, W and Beretvas, S 2010 The performance of multiple imputation for Likert-type items with  missing 
data. Journal of Modern Applied Statistical Methods, 9(1): 64–74. DOI: https://doi.org/10.22237/
jmasm/1272686820

Li, F, Yu, Y and Rubin, D B 2012 Imputing missing data by fully conditional models: Some cautionary 
 examples and guidelines. Duke University Department of Statistical Science Discussion Paper, 11(14): 1–35.

Little, R J A and Rubin, D B 2002 Statistical Analysis with Missing Data, Second Edition. Hoboken, NJ: John 
Wiley & Sons. DOI: https://doi.org/10.1002/9781119013563

McNeish, D 2017 Missing data methods for arbitrary missingness with small samples. Journal of Applied 
Statistics, 44(1): 24–39. DOI: https://doi.org/10.1080/02664763.2016.1158246

Mooney, C Z 1997 Monte Carlo Simulation. Thousand Oaks, CA: Sage Publications. DOI: https://doi.
org/10.4135/9781412985116

Raghunathan, T 2016 Missing Data Analysis in Practice. Boca Raton, FL: CRC Press.
Rubin, D B 1987 Multiple Imputation for Nonresponse in Surveys. New York, NY: John Wiley & Sons. DOI: 

https://doi.org/10.1002/9780470316696
Schafer, J L 1997 Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chapman & Hall/CRC. DOI: 

https://doi.org/10.1201/9781439821862
Schafer, J L 2016 Package ‘norm2’. Available at: https://cran.r-project.org/web/packages/norm2/norm2.

pdf [Last accessed November 30, 2016].
Schafer, J L and Graham, J W 2002 Missing data: Our view of the state of the art. Psychological Methods, 

7(2): 147–177. DOI: https://doi.org/10.1037//1082-989X.7.2.147
Schafer, J L and Olsen, M K 1998 Multiple imputation for multivariate missing-data problems: A data 

analyst’s perspective. Multivariate Behavioral Research, 33: 545–571. DOI: https://doi.org/10.1207/
s15327906mbr3304_5

Schenker, N, Raghunathan, T E, Chiu, P-L, Makuc, D M, Zhang, G and Cohen, A J 2006 Multiple imputa-
tion of missing income data in the national health interview survey. Journal of the American Statistical 
Association, 101(475): 924–933. DOI: https://doi.org/10.1198/016214505000001375

Scheuren, F 2005 Multiple imputation: How it began and continues. The American Statistician, 59(4):  
315–319. DOI: https://doi.org/10.1198/000313005X74016

Shara, N, Yassin, S A, Valaitis, E, Wang, H, Howard, B V, Wang, W, Lee, E T and Umans, J G 2015 
Randomly and non-randomly missing renal function data in the strong heart study: A comparison of 
 imputation methods. PLOS ONE, 10(9): 1–11. DOI: https://doi.org/10.1371/journal.pone.0138923

Stuart, E A, Azur, M, Frangakis, C and Leaf, P 2009 Multiple imputation with large data sets: A case study 
of the children’s mental health initiative. American Journal of Epidemiology, 169(9): 1133–1139. DOI: 
https://doi.org/10.1093/aje/kwp026

Takahashi, M 2017a Multiple ratio imputation by the EMB algorithm: Theory and simulation. Journal of 
 Modern Applied Statistical Methods, 16(1): 630–656. DOI: https://doi.org/10.22237/jmasm/1493598840

Takahashi, M 2017b Implementing multiple ratio imputation by the EMB algorithm (R). Journal of Modern 
Applied Statistical Methods, 16(1): 657–673. DOI: https://doi.org/10.22237/jmasm/1493598900

Takahashi, M and Ito, T 2013 “Multiple imputation of missing values in economic surveys: Comparison of 
competing algorithms,” Proceedings of The 59th World Statistics Congress of the International Statistical 
Institute (ISI), 3240–3245. Hong Kong, China. 

Takahashi, M and Ito, T 2014 Comparison of competing algorithms of multiple imputation: Analysis using 
large-scale economic data. Research Memoir of Official Statistics, (71): 39–82.

https://doi.org/10.1177/0962280214526216
https://doi.org/10.1093/pan/mpu007
https://doi.org/10.1093/aje/kwp425
https://doi.org/10.1093/aje/kwp425
https://doi.org/10.1186/1742-7622-9-3
https://doi.org/10.22237/jmasm/1272686820
https://doi.org/10.22237/jmasm/1272686820
https://doi.org/10.1002/9781119013563
https://doi.org/10.1080/02664763.2016.1158246
https://doi.org/10.4135/9781412985116
https://doi.org/10.4135/9781412985116
https://doi.org/10.1002/9780470316696
https://doi.org/10.1201/9781439821862
https://cran.r-project.org/web/packages/norm2/norm2.pdf
https://cran.r-project.org/web/packages/norm2/norm2.pdf
https://doi.org/10.1037//1082-989X.7.2.147
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1207/s15327906mbr3304_5
https://doi.org/10.1198/016214505000001375
https://doi.org/10.1198/000313005X74016
https://doi.org/10.1371/journal.pone.0138923
https://doi.org/10.1093/aje/kwp026
https://doi.org/10.22237/jmasm/1493598840
https://doi.org/10.22237/jmasm/1493598900


Takahashi: Statistical Inference in Missing Data by MCMC and Non-MCMC 
Multiple Imputation Algorithms

Art. 37, page 17 of 17

Takahashi, M, Iwasaki, M and Tsubaki, H 2017 Imputing the mean of a heteroskedastic log-normal 
 missing variable: A unified approach to ratio imputation. Statistical Journal of the IAOS, 33(3), in press. 
DOI: https://doi.org/10.3233/SJI-160306

van Buuren, S 2012 Flexible Imputation of Missing Data. Boca Raton, FL: Chapman & Hall/CRC. DOI: https://
doi.org/10.1201/b11826

van Buuren, S and Groothuis-Oudshoorn, K 2011 mice: multivariate imputation by chained equations in 
R. Journal of Statistical Software, 45(3): 1–67. DOI: https://doi.org/10.18637/jss.v045.i03

van Buuren, S, Groothuis-Oudshoorn, K, Roxitzsch, A, Vink, G, Doove, L and Jolani, S 2015 Package 
‘mice’. Available at: https://cran.r-project.org/web/packages/mice/mice.pdf [Last accessed November 
30, 2016].

von Hippel, P T 2016 New confidence intervals and bias comparisons show that maximum likelihood can 
beat multiple imputation in small samples. Structural Equation Modeling, 23(3): 422–437. DOI: https://
doi.org/10.1080/10705511.2015.1047931

Zhu, J and Raghunathan, T E 2015 Convergence properties of a sequential regression multiple imputa-
tion algorithm. Journal of the American Statistical Association, 110(511): 1112–1124. DOI: https://doi.
org/10.1080/01621459.2014.948117

How to cite this article: Takahashi, M 2017 Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple 
Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations. Data Science Journal, 16: 37, 
pp. 1–17, DOI: https://doi.org/10.5334/dsj-2017-037

Submitted: 30 November 2016      Accepted: 23 June 2017     Published: 28 July 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.
 

     OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity 
Press.

https://doi.org/10.3233/SJI-160306
https://doi.org/10.1201/b11826
https://doi.org/10.1201/b11826
https://doi.org/10.18637/jss.v045.i03
https://cran.r-project.org/web/packages/mice/mice.pdf
https://doi.org/10.1080/10705511.2015.1047931
https://doi.org/10.1080/10705511.2015.1047931
https://doi.org/10.1080/01621459.2014.948117
https://doi.org/10.1080/01621459.2014.948117
https://doi.org/10.5334/dsj-2017-037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction 
	2 Notations 
	3 Motivating Example: Missing Economic Data 
	4 Assumptions of Imputation Methods 
	4.1 Assumptions of Missing Data Mechanisms 
	4.2 Assumption of Ignorability 
	4.3 Assumption of Proper Imputation 
	4.4 Assumption of Congeniality 

	5 Traditional Methods of Handling Missing Data 
	6 Competing Multiple Imputation Algorithms 
	6.1 Data Augmentation 
	6.2 Fully Conditional Specification 
	6.3 Expectation-Maximization with Bootstrapping 
	6.4 Relationships among the Three Algorithms 

	7 Comparative Studies on Multiple Imputation in the Literature 
	8 Monte Carlo Simulation 
	8.1 Monte Carlo Simulation Designs 
	8.2 Criteria for Judging Simulation Results 
	8.3 Results of the Simulation 
	8.3.1 Theoretical Case 
	8.3.2 Realistic Case 


	9 Conclusions 
	Additional File 
	Acknowledgements 
	Competing Interests 
	References 
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	Table 13

