
CODATACODATA
II
SS
UU

Gawwad, M A et al 2017 Frequent Itemset Mining for Big Data 
Using Greatest Common Divisor Technique. Data Science Journal, 
16: 25, pp. 1–10, DOI: https://doi.org/10.5334/dsj-2017-025

RESEARCH PAPER

Frequent Itemset Mining for Big Data Using 
Greatest Common Divisor Technique
Mohamed A. Gawwad, Mona F. Ahmed and Magda B. Fayek
Cairo University, Faculty of Engineering, Computer Engineering Department, EG
Corresponding Author: Mohamed A. Gawwad, Ph.D. researcher (mohamedabgo@yahoo.com)

The discovery of frequent itemsets is one of the very important topics in data mining. Frequent 
itemset discovery techniques help in generating qualitative knowledge which gives business 
insight and helps the decision makers. In the Big Data era the need for a customizable algorithm 
to work with big data sets in a reasonable time becomes a necessity. In this paper we propose 
a new algorithm for frequent itemset discovery that could work in distributed manner with 
big datasets. Our approach is based on the original Buddy Prima algorithm and the Greatest 
Common Divisor (GCD) calculation between itemsets which exist in the transaction database. 
The proposed algorithm introduces a new method to parallelize the frequent itemset mining 
without the need to generate candidate itemsets and also it avoids any communication over-
head between the participated nodes. It explores the parallelism abilities in the hardware in 
case of single node operation. The proposed approach could be implemented using map-reduce 
technique or Spark. It was successfully applied on different size transactions DBs and compared 
with two well-known algorithms: FP-Growth and Parallel Apriori with different support levels. 
The experiments showed that the proposed algorithm achieves major time improvement over 
both algorithms especially with datasets having huge number of items. 

Keywords: data mining; frequent itemset mining; greatest common divisor; big data

1 Introduction
Frequent itemsets discovery “is one of the most important techniques in data mining” (Zhengui Li, 2012). It 
can find out the association relationships among events or data objects that are hidden in the data, even if 
the associated events or objects seems not related at all. Digging into these relationships will help to analyze 
events and “may disclose useful patterns for decision support, financial forecast, marketing policies, even 
medical diagnosis and many other applications” (Pramod S., 2015).

The Frequent itemset mining (FIM) methodologies are most popular and very well used by various 
researchers for finding frequent patterns among variables in large datasets (J. Manimaran1, 2013). Literature 
contains many approaches that tackle the FIM problem like Apriori, FP-Growth, multi-level frequent item-
sets, DHP (Direct Hashing and Pruning), maximal association rule mining, primitive association rules, soft-
matching rules and Buddy Prima.

There are many data mining techniques like association rules mining, correlation, sequential pattern anal-
ysis, classification and clustering that try to find interesting patterns in datasets. “The problem of mining 
frequent itemsets arose first as a sub-problem of mining association rules” (Yihua Zhong, 2010). The original 
motivation for finding frequent itemsets came from the need to analyze the “so called supermarket transac-
tion data, that is, to examine customer behavior in terms of the purchased products” (Pramod S., 2015). FIM 
describes how often items are purchased together. For example, an association rules cheese, chips (80%) 
states that four out of five customers that bought cheese also bought chips. Such rules can be useful for 
decisions concerning products pricing, promotions, store layout and many others.

This paper is organized as follows. Section 2 formulates the problem statement of the FIM problem. 
Section 3 briefly introduces a literature overview and related work. Section 4 presents our proposed 

https://doi.org/10.5334/dsj-2017-025
mailto:mohamedabgo@yahoo.com


Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 2 of 10  

approach. Section 5 discusses our experimental results. Finally, section 6 summarizes our conclusions and 
future work directions.

2 Problem Statement
“Studies of Frequent Itemset (or pattern) Mining is acknowledged in the data mining field because of its broad 
applications in Market basket analysis, Medical diagnosis, Protein sequences, Census data, CRM of credit card 
business” (Akash Rajak, 2012), graph pattern matching, sequential pattern analysis, and many other data 
mining tasks (Pramod S., 2015). Finding an efficient way for mining frequent itemsets are very important for 
mining association rules as well as for many other data mining tasks. One of the major challenges found in 
frequent itemset mining nowadays is the large amount of data and how to use the multicore feature in the 
new hardware as well as the distributed architecture with large datasets. As a result the need for new frequent 
itemset mining algorithms that could tackle the new trends has emerged. In this paper we propose a paral-
lelizable algorithm for FIM that could deal with big data sets exploiting the multicore feature of the hardware.

3 Literature Review
In this section a brief overview about the well-known FIM algorithms is presented. It includes: the AIS algo-
rithm, Apriori, FP-Growth and algorithms that depend on prime numbers representation. 

“The AIS algorithm” (Qiankun Zhao, 2003) “was the first algorithm proposed by Agrawal, Imielinski, 
and Swami for mining association rule” (Kumbhare et al, 2014). AIS algorithm depends on scanning the 
databases many times to get the frequent itemsets (Kumbhare et al, 2014). “The support count of each 
individual item was accumulated during the first pass over the database. Based on the threshold of sup-
port count those items whose count is less than its minimum value are eliminated from the list of items. 
Candidate 2-itemsets are generated by extending frequent 1-itemsets with other items in the transactions” 
(Kumbhare et al, 2014). “During the second pass over the database, the support count of those candidate 
2-itemsets are accumulated and checked against the support threshold” (Kumbhare et al, 2014). “Similarly 
those candidate (k + 1)-itemsets are generated by extending frequent k-itemsets with items in the same 
transaction. The candidate itemsets generation and frequent itemsets generation process iterates until any 
one of them becomes empty” (Kumbhare et al, 2014). “AIS Algorithm has efficiency problems so some mod-
ifications have been introduced to give an estimation for candidate itemsets that have no hope to be large, 
consequently the unnecessary effort of counting those itemsets can be avoided” (Kumbhare et al, 2014). 
“Also since all the candidate itemsets and frequent itemsets are assumed to be stored in the main memory, 
memory management is also proposed for AIS when memory is not enough” (Kumbhare et al, 2014).  

Original Apriori Algorithm is one of the well-known algorithms for mining frequent itemsets. It was 
introduced in (R. Agrawal, 1993). “The name of the algorithm is based on the fact that the algorithm uses 
prior knowledge of frequent itemsets properties” (G.S Almasi, 1989). “Apriori employs an iterative approach 
known as a level-wise search, where k-itemsets are used to explore (k + 1)-itemsets. First, the frequent 
1-itemset is found, this is denoted by L1, which is used to find the frequent 2-itemset L2 and so on” (Pramod 
S., 2015). “To improve the efficiency of the level-wise generation of frequent itemsets, a property called 
Apriori property is used to reduce the search space” (R. Agrawal, 1993). “This property states that all non-
empty subsets of a frequent itemset must also be frequent” (Pramod S., 2015). A two-step process is used to 
find Lk from Lk–1 1) 

The join step: To find Lk, a set of k-itemsets is generated by joining Lk–1 with itself (G.S Almasi, 1989). 
Suppose Lk–1 contains items (A, B, C) then Lk set will contain (AB, AC, BC). This set of candidate itemsets is 
denoted Ck. 2) 

The prune step: Ck is a superset of Lk that contains all frequent and non-frequent k-itemsets.
A scan of the database is done to determine the frequency of each candidate which exists in Ck, those who 

satisfy the minimum support is added to Lk for the next iteration and the other items are pruned.
AprioriTID algorithm (Manisha Girotra et al, 2013) tries to improve the performance of Apriori by avoid-

ing multiple DB hits in the reading process. “AprioriTID doesn’t use the database for counting the support 
of candidate itemsets after the first pass” (Kumbhare et al, 2014). “The process of candidate itemset genera-
tion is the same like the original Apriori algorithm. Another set C′ is generated of which each member has 
the Transaction ID (TID) of each transaction and the frequent itemsets (present in this transaction where Ck

′ 

are in the form <TID, {Xk}> and each Xk is a potentially frequent k-itemset present in the transaction with 
identifier TID” (Kumbhare et al, 2014). “This set is used to count the support of each candidate itemset” 
(Kumbhare et al, 2014). Suppose that the original transaction database contains the following transactions 
associated with its transactions IDs 



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 3 of 10

<TID, items > {(100, 1 3 4), (200, 2 3 5), (300, 1 2 3 5), (400, 2 5)}.
Then C1 will be in form of (Xk=1, Support Count).
C1 = {({1}, 2), ({2}, 3),({3}, 3), ({5}, 3)}. 
C1 frequent itemsets are used to generate itemsets for C2 and the support count for each itemset 

generated in C2 is calculated using another subset called C2
′.

C2 (itemsets) = {{1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}}.
C2

′ is derived from the original database taken into consideration only items equal or more than 
support threshold.

C2
′ = {(100, {1 3}), (200, {2 3}{2 5}{3 5}), (300, {1 2}{1 3}{1 5} 
{2 3} {2 5} {3 5}), (400, {2 5}),.........}.

To get the frequency of C2 elements the search is done in C2
′.

C2 = {({1,2}, 1), ({1,3}, 2), ({1,5}, 1), ({2,3}, 2), ({2,5}, 3), 
({3,5}, 2)}.

This method may lead to less number of scans.

“FP-Growth Algorithm is the most popular frequent itemset mining algorithm that was introduced in” 
(J. Han, 2000). “The main aim of this algorithm was to remove the bottlenecks of the Apriori algorithm in 
generating and testing candidate sets” (Pramod S., 2015). “The problem of the Apriori algorithm was dealt 
with by introducing a novel, compact data structure called frequent pattern tree or FP-tree” (Pramod S., 
2015). “Then based on this structure an FP-tree based pattern fragment growth method was developed” 
(Pramod S., 2015). “FP-Growth uses a combination of the vertical and horizontal database layout to store 
the database in main memory” (Anjana Gosain, 2013). “Instead of storing the ID for every transaction in the 
database, it stores the actual transactions from the database in a tree structure and every item has a linked 
list going through all transactions that contain that item” (Anjana Gosain, 2013). “This new data structure is 
denoted by FP-tree (Frequent Pattern tree)” (J. Han, 2003). 

CARMA Algorithm (C. Hidber et al, 1999) Continuous Association Rule Mining Algorithm. The algo-
rithm mainly aims to process large online datasets (C. Hidber et al, 1999). CARMA algorithm comprises two 
phases during its operation: in the first phase CARMA builds “lattice of all potential large itemsets with 
respect to the scanned part of data” (C. Hidber et al, 1999). “For each set on the lattice CARMA determines 
the lower and upper limits of its support” (V. Pudi, 2001). The deduced association rules are displayed to the 
user after processing transactions and the user is free to adjust the support count (C. Hidber et al, 1999). In 
the second phase after getting the user’s feedback CARMA fully scans all the dataset to determine exactly 
the occurrences of each itemset and removes all the itemsets below the user’s specified threshold (V. Pudi, 
2001). 

3.1 Prime Numbers Representation Algorithms 
In this section brief overview about prime numbers representation algorithms will be introduced: 

Parallel Buddy Prima (S.N. Sivanandam, 2004) depends on the concept of prime numbers which are used 
for prima representation operation. “By using prime numbers to represent items in a transaction where each 
item is assigned a unique prime number, each transaction is represented by the product of the correspond-
ing prime numbers of individual items in the transaction” (S.N. Sivanandam, 2004). Since the product of dif-
ferent prime numbers is unique it is easy to check for the presence of a specific candidate in a transaction by 
modulo division of a transaction’s prime product by the prime product of an itemset. “In addition, this repre-
sentation stores only one number for each transaction so it uses less memory. Parallel Buddy Prima algorithm 
implements the original Buddy Prima in a master-slave architecture using candidate distribution technique” 
(S.N. Sivanandam, 2004). “The technique assigns disjoint sets of transactions from the transactions database 
to different processors” (S.N. Sivanandam, 2004). “The Master node removes infrequent itemsets and stores 
the Prime multiplication representation for each transaction in shared memory” (S.N. Sivanandam, 2004). 
“Master node also finds the Maximal length transaction size and puts it in shared memory then it divides 
the transactions equally among nodes for candidate itemsets generation” (S.N. Sivanandam, 2004). If there 
are k slaves and n transactions, then n/k transactions are assigned to each slave. Master connects to each 
slave node and initiates the process of finding the frequent itemsets. The slave nodes generate the candidate 
itemsets with different size starting with size 2 until the maximal length specified by the master node. For 
each candidate itemset generated, it finds its support count by accumulating the count of the itemset exist-
ence through the whole dataset assigned to it. Each slave node sends a list of the local frequent itemsets 



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 4 of 10  

with respect to the support count threshold to the master node. “Finally, the master node shows the global 
frequent itemsets after gathering the local frequent itemsets” (S.N. Sivanandam, 2004). 

Cluster Based Partition Approach “uses prime numbers to represent the itemset in the transaction. This 
algorithm integrates both the bottom-up search as well as the top-down search” (Akhilesh Tiwari, 2009) and 
is suitable for itemsets of different sizes (Akhilesh Tiwari, 2009). “The Algorithm uses the top-down approach 
to find the frequent subsets of itemsets” (Akhilesh Tiwari, 2009). “The bottom up approach is used to find the 
supersets of the frequent itemsets” (Akhilesh Tiwari, 2009). “Most algorithms for mining frequent itemsets 
are based on bottom-up search approach” (Akhilesh Tiwari, 2009). “In this approach, the search starts from 
itemsets of size 1 and extends one level in each pass until all maximal frequent itemsets are found” (Akhilesh 
Tiwari, 2009). “This approach performs well if the length of the maximal itemset is short” (Akhilesh Tiwari, 
2009). “If the maximal itemset is longer, top-down search is suitable” (Akhilesh Tiwari, 2009). “For a transac-
tion with a medium sized maximal frequent set, a combination of both these approaches performs well” 
(Akhilesh Tiwari, 2009). “This algorithm adopts Candidate distribution method to distribute the candidates 
among all nodes” (Akhilesh Tiwari, 2009). “The support count of the supersets and the subsets are found 
effectively from the prime number representation method” (Akhilesh Tiwari, 2009). 

4 The Proposed Algorithm (POBPA)
In this paper, we applied a new approach to parallelize Buddy Prima algorithm and optimize it to work 
more efficiently with Big Data and exploit the hardware parallelism capabilities. The new algorithm, called 
 “Parallelizable Optimized Buddy Prima Algorithm” POBPA for short depends on greatest common divi-
sor calculation between different transactions in the transaction database. Generally speaking, POBPA con-
sists of two main steps:

1. Data preparation: 
Items and accordingly transactions are represented in the same manner as done by the Buddy 
Prima algorithm illustrated in the previous section. POBPA analyzes the transaction dataset and 
extracts single items with frequency equal to or higher than the support count specified by the 
user. Also it prepares ignore list for infrequent items and their combinatorials. After removing 
these infrequent items from the original dataset it calculates prime multiplications and string 
representation. 

2. Frequent Itemsets Deduction (Greatest Common Divisor calculation (GCD)):
By calculating the GCD between two transactions we can get the common items between these 
two transactions and by counting the highest repeated GCDs we get the frequent itemsets in the 
transaction dataset.

POBPA is not an architecture dependent algorithm it could be applied using different architectures like dis-
tributed environments, multiple core processors or GPUs. In this study POBPA exploits the multithreading 
feature which exists in JAVA to take the advantage of multithreading and multicore processors. POBPA works 
as multiple data single instruction (MDSI) with all nodes participating equally in the mining process to avoid 
any communication overhead between different nodes. POBA creates lightweight processes as the overhead 
of switching between threads is less. The Java Virtual Machine (JVM) spawns threads when the algorithm is 
run. Each thread works with part of the data and JVM takes the responsibility of orchestrating between them 
and consolidating the results.

4.1 Data Preparation
POBPA uses horizontal representation for transaction datasets (Gupta, 2011) where each transaction is rep-
resented by a row in the database which has a transaction identifier (TID) followed by a set of items as shown 
in Table 1.

The first step during the data preparation phase is counting the frequency of each individual item in the 
dataset. Once items frequencies are determined, the algorithm will prepare the ignore list which includes 
a set of items not to be considered in our further analysis. Ignoring items depends on the support count 
specified by the algorithm user. Support count is the minimum frequency for items according to user min-
ing requirements (Anjana Gosain, 2013). The ignore list contains all the items with frequency less than 
the  support count and also all these items’ combinatorials. Table 2 illustrates the ignore list for support 
count 3.



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 5 of 10

Our algorithm assigns a prime number to each item in the dataset except the ones in the ignore list. Prime 
number assigning is done with respect to item’s frequency. The highest frequency item will be represented 
by the minimum prime number which is 2 and so on. The inverse proportional relationship between the 
item frequency and the assigned prime number will result in less value for prime multiplication in the sub-
sequent steps and hence less storage and less computational complexity.

After this, each transaction matching one of the combinatorials existing in the ignore list will be removed 
from the transaction database. The remaining transactions will be represented in two representations, string 
ordered representation with all prime numbers replacing items in ascending order in one string and prime 
multiplication representation. Table 3 shows these representations. Repetition of item I is denoted as R(I). 
The prime number assigned to item I is denoted as P (I).

The next step is partitioning the transaction dataset depending on the string representation, making a 
subset that includes transactions starting with 2 then a subset which starts with 3 and so on. This partition-
ing provides the ability to parallelize the subsequent operations and also helps to reduce the computations. 
The following example illustrates the partitioning process. Suppose that after the row transactions were 
processed as per the previous steps the string representation was as illustrated in Table 4.

As illustrated in Table 4, the transactions are partitioned into groups depending on their string represen-
tation. This technique gives the ability to use a modern distributed processing model like distributed file 
system in Hadoop or even utilize the parallel processing abilities in GPUs. 

Table 1: Dataset Horizontal Representation.

TID ITEMS

T1 I1, I2, I3, I4, I5, I6

T2 I1, I2, I4, I7

T3 I1, I2, I4, I5, I6

T4 I1, I2

T5 I3

T6 I2

T7 I7

Table 2: Ignore List for Support Count 3.

Ignore List

I3

I5

I6

I7

I3 I5

I3 I6

I3 I7

I5 I6

I5 I7

I6 I7

I3 I5 I6

I3 I5 I7

I3 I6 I7

I5 I6 I7



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 6 of 10  

4.2 Frequent Itemsets Deduction using GCD
The proposed method depends on calculating GCD between the prime multiplications of each subset result-
ing from the partitioning and calculating cross GCD among subsets. Before starting the computation of 
itemset frequencies, a pool of subsets is created- as illustrated in the previous section- to give the distributed 
nodes, ALUs or processor cores the ability to handle subsets in parallel. 

For each subset we start calculating GCD using Euclidean method. The Euclidean algorithm, is an efficient 
method for computing the greatest common divisor (GCD) of two numbers. It is based on the principle 
that the greatest common divisor of two numbers does not change if the larger number is replaced by the 
difference between it and the smaller number. For example, 21 is the GCD of 252 and 105 (252 = 21 × 12 
and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 147 (147 = 252 – 105). “Since this 
replacement reduces the larger of the two numbers, repeating this process gives successively smaller pairs 
of numbers until one of the two numbers reaches zero”. “When that occurs, the other number (the one that 
is not zero) is the GCD of the original two numbers” (wikipedia, 2016).

The transactions in each subset are ordered lexicographically. The Algorithm calculates GCD between each 
transaction in the subset and the other transactions till we reach the exit criteria. The exit criteria depends on 
the string representation, since the string contains the transaction’s items ordered ascendingly by the prime 
numbers values then if during calculation of GCD of a certain transaction with other ones the last item in the 
string representation of this transaction is less than the second item of the other transaction’s representation, 
that means no GCD can be found between these two transactions and also between this transaction and all the 
subsequent transactions in the subset. Each GCD value with its frequency will be placed in a hash table structure. 
The frequency is incremented whenever this same GCD value is encountered again in a subsequent transactions. 

As an example suppose we have the following subset which starts by 2: ((2,3,5) [30], (2,3,5,7) [210], (2,3,7) 
[42], (2,3,11) [66], (2,13) [26], (2,13,17) [442], (2,13,17,19) [8398]). The numbers show each transaction repre-
sented as string ordered representation followed by its representation as prime numbers multiplication. Note 
that any two transactions in the same subset have by definition a common item but during GCD frequency 

Table 3: Transactions Representations.

Transaction ID Items Items  Repetition and 
Prime  Assignment

Repetition String ordered 
representation

Prime 
 Multiplication

T1 I1, I2, I3, I4, I5, I6 R(I1) = 4, R(I2) = 5 and 
R(I4) = 3 Then 
P(I1) = 3, P(I2) = 2 and 
P(I4) = 5

3 2     3     5 30

T2 I1, I2, I4, I7

T3 I1, I2, I4, I5, I6

T4 I1, I2 P(I1) = 3
P(I2) = 2 

1 2     3 6

T5 I3

T6 I2 P(I2) = 2 1 2     2

T7 I7

Table 4: Partitioning Process.

Transaction ID String Representation Partition Number 

T1 2 3 7 Par 1 for all transactions with string representation starting by “2”

T2 3 7 11 Par 2 for all transactions with string representation starting by “3”

T3 11 19 23 Par 3 for all Transaction with string representation starting by “11”

T4 2  23 29 Par 1 for all transactions with string representation starting by “2”

T5 3 31 37 Par 2 for all transactions with string representation starting by “3”

T6 11 53 59 Par 3 for all transactions with string representation starting by “11”

T7 29 31 37 Par 4 for all transactions with string representation starting by “29”



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 7 of 10

calculation only two or more items in common (two or more prime numbers) are considered as the frequency 
of single items are already calculated from the preparation phase as illustrated in section 4.1. Calculations will 
start with transaction (2, 3, 5) computing the GCD between it and the rest of the transactions in the same sub-
set first. To calculate GCD we use the prime representations of the two transactions – shown between curved 
brackets – and the resulted GCDs with their frequencies are stored in a hash table. For transaction (2, 3, 5) 
the exit criteria will be met when we reach transaction (2, 13) since the second item in transaction (2, 13) has 
greater value than the last number in transaction (2, 3, 5) then no GCD can be found between them except 2 
and the lexicographic order means that no GCD can be found between (2, 3, 5) and any transaction after (2,13). 
After calculating the GCDs between all transactions in the subset we need to check GCDs between transactions 
across different subsets. As an example for transaction (2, 3, 5) by removing 2 we get a new transaction (3, 5). If 
(3, 5) already exists in the subset of 3 then we increase its frequency by one. Repeat this with (5, 7) also for the 
subset starting with 5.The result of this phase is one table containing all GCDs and their frequencies.

5 Experimental Results
We experimented with datasets from different applications. These datasets were obtained from the UCI 
repository of machine learning databases (C.L. Blake, 1998). Table 5 below shows the characteristics of the 
datasets selected for the experiment. Our algorithm has the capability to work with datasets with a huge 
number of items (more than 15000 items per transaction). We used Retail dataset to show this capability for 
the proposed algorithm POBPA.

We compared the execution time of the proposed algorithm with FP-Growth and Parallel Apriori. The 
performance metric in the experiments is the total execution time taken and it was shown that POBA made 
a tremendous improvement especially with datasets that have huge number of items. We applied our experi-
ments on the previously illustrated datasets using 30% to 70% minimum support threshold.

Table 6 compares the FP-Growth algorithm, Parallel Apriori algorithm and POBPA with respect to process-
ing time using the Retail dataset. The Algorithms ran over the same machine (4 cores, 8 GB RAM).

Table 7, 8 and 9 make the same comparison using the Mushroom, Letter Recognition and Adult datasets 
respectively.

In Table 6 we could observe the interesting behavior of POBPA with the Retail dataset which includes 
a huge number of items. Our algorithm by far outperformed the FP-Growth and the parallel Apriori algo-
rithms. The processing time ranges of both algorithms vary greatly as our distribution feature which fits 
multiprocessors results in great time enhancement which is more evident with increasing the dataset size. 
Tables 7, 8 and 9 also support the same observation. 

Table 5: Datasets Used For the experiment.

Dataset Name Number of 
 Transactions

Number of 
Items

Mushroom 8124 90

letRecog 20000 106

Adult 48842 97

Retail 88146 16469

Table 6: Test Results with Retail Dataset.

Time Consumed in Seconds

Support Count FP-Growth Parallel Apriori POBPA

30% 28 37 <0.05

40% 26 34 <0.05

50% 22.1 32.9 <0.05

60% 22.04 32.3 <0.05

70% 21.19 27 <0.05



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 8 of 10  

6 Conclusion and future work
In this paper we have introduced a new technique for FIM. Our approach, POBPA, proved to excel other 
approaches found in the literature. POBPA is not an architecture dependent algorithm it could be applied 
using different architectures like distributed environments and multiple core processors. It aims to paral-
lelize the Buddy Prima algorithm and also to optimize it to work more efficiently with Big Data exploiting 
the hardware parallelism capabilities. It depends on GCD calculation between different transactions in the 
transaction database. It assigns prime numbers in inverse proportional relationship to the item frequency 
which guarantees less value for prime multiplication and hence less storage and less computational com-
plexity. POBPA achieves excellent results when comparing its execution time with FP-Growth and Parallel 
Apriori especially for dataset with large number of items. 

Future work directions include applying POBPA to a distributed architecture with datasets containing 
millions of records. It could be applied using Hadoop Distributed File System (HDFS) and Map Reduce tech-
nique. Hadoop uses distributed file system method, which basically implements a mapping system to locate 
data in a cluster then MapReduce programming is used in the same servers which allows faster processing 
of data. It can deal with large volumes of unstructured data. Hadoop MapReduce takes minutes to process 
terabytes of data. POBPA could be applied on stream analytics to identify the response of social media to a 
certain topic.  

Table 7: Test Results with Mushroom Dataset.

Time Consumed in Seconds 

Support Count FP-Growth Parallel Apriori POBPA

30% 59 13 0.88

40% 48 3.9 0.64

50% 32 1.9 0.15

60% 30 1.5 0.07

70% 28 1.4 <0.05

Table 8: Test Results with Letter Recognition.

Time Consumed in Seconds 

Support Count FP-Growth Parallel Apriori POBPA

30% 273 38 24

40% 200 23 14

50% 179 18 3

60% 150 18 1.2

70% 110 15 0.05

Table 9: Test Results with Adult dataset.

Time Consumed in Seconds 

Support Count FP-Growth Parallel Apriori POBPA

30% 400 24 1.8

40% 328 10 1.5

50% 300 8 0.82

60% 213 6 0.75

70% 200 4 0.5



Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 9 of 10

Competing Interests
The authors have no competing interests to declare.

References
Agrawal, R, Imielinksi, T and Swami, A 1993 “Mining association rules between sets of items in large 

database” The ACM SIGMOD Conference. DOI: https://doi.org/10.1145/170035.170072
Almasi, G S and Gottlieb, A 1989 “Highly Parallel Computing” The Benjamins Publishing Company 

 Redwood City, CA.
Blake, C L and Merz, C J 1998 “UCI Repository of Machine Learning Databases” Dept. of Information and 

Computer Science, University of California at Irvine, CA, USA.
Girotra, M, et al 2013 “Comparative Survey on Association Rule Mining Algorithms” International Journal of 

Computer Applications. DOI: https://doi.org/10.5120/14612-2862
Gosain, A and Bhugra, M 2013 “A Comprehensive Survey of Association Rules on Quantitative Data In 

Data Mining” IEEE Conference on Information and Communication Technologies (ICT). DOI: https://doi.
org/10.1109/cict.2013.6558244

Gupta, D G 2011 “A Taxonomy of Classical Frequent Item set Mining Algorithms” International Journal of 
Computer and Electrical Engineering, 3rd ed.

Han, J, Pei, H and Yin, Y 2000 “Mining Frequent Patterns without Candidate Generation” Conf. on 
the Management of Data (SIGMOD’00, Dallas, TX), ACM Press, New York, NY, USA. DOI: https://doi.
org/10.1145/342009.335372

Han, J, Pei, J, Yin, Y and Mao, R 2003 “Mining frequent patterns without candidate generation: A frequent 
pattern tree approach” Data Mining and Knowledge Discovery.

Hidber, C, et al 1999 “Online association rule mining” In Proc. of ACM SIGMOD Intl. Conf. on Management 
of Data.

Kumbhare, et al 2014 “An Overview of Association Rule Mining Algorithms” International Journal of 
 Computer Science and Information Technologies (IJCSIT), Vol (5).

Li, Z and Zhang, R 2012 “The Association Rule Mining on a Survey Data for Culture Industry International” 
Conference on Systems and Informatics (ICSAI).

Manimaran1, J and Velmurugan, T 2013 “A Survey of Association Rule Mining in Text applications” IEEE 
International Conference on Computational Intelligence and Computing Research.

Pramod, S and Vyas, O P 2015 “Survey on Frequent Item set Mining Algorithms” International Journal of 
Computer Applications, Volume (1).

Pudi, V and Haritsa, J 2001 “On the optimality of association-rule mining algorithms” Technical Report 
TR-2001-01, DSL, Indian Institute of Science.

Rajak, A and Gupta, M K 2012 “Association Rule Mining: Applications in Various Areas” International 
 Conference on Data Management.

Sivanandam, S N, Sumathi, S, Hamsapriya, T and Babu, K 2004 “A Hybrid Parallel Frequent Item set 
mining algorithm for very large databases” Academic open internet journal.

Tiwari, A, Gupta, R K and Agrawal, D P 2009 “Cluster Based Partition Approach for Mining Frequent Item-
sets” International Journal of Computer Science and Network Security IJCSNS, 9th ed.

Zhao, Q and Bhowmick, S S 2003 “Association Rule Mining: A Survey Technical Report” CAIS, Nanyang 
Technological University, Singapore.

Zhong, Y and Liao, Y 2010 “Research of Mining effective and Weighted Association Rules Based on Dual 
Confidence” CPS Fourth International Conference on Computational and Information Science.

https://doi.org/10.1145/170035.170072
https://doi.org/10.5120/14612-2862
https://doi.org/10.1109/cict.2013.6558244
https://doi.org/10.1109/cict.2013.6558244
https://doi.org/10.1145/342009.335372
https://doi.org/10.1145/342009.335372


Gawwad et al: Frequent Itemset Mining for Big Data Using Greatest 
Common Divisor Technique

Art. 25, page 10 of 10  

How to cite this article: Gawwad, M A, Ahmed, M F and Fayek, M B 2017 Frequent Itemset Mining for Big Data 
Using Greatest Common Divisor Technique. Data Science Journal, 16: 25, pp. 1–10, DOI: https://doi.org/10.5334/
dsj-2017-025

Submitted: 21 November 2016     Accepted: 26 April 2017     Published: 18 May 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative 
Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/
licenses/by/4.0/.
 

     OPEN ACCESS Data Science Journal is a peer-reviewed open access journal published by Ubiquity 
Press.

https://doi.org/10.5334/dsj-2017-025
https://doi.org/10.5334/dsj-2017-025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	1 Introduction 
	2 Problem Statement 
	3 Literature Review 
	3.1 Prime Numbers Representation Algorithms  

	4 The Proposed Algorithm (POBPA) 
	4.1 Data Preparation 
	4.2 Frequent Itemsets Deduction using GCD 

	5 Experimental Results 
	6 Conclusion and future work 
	Competing Interests 
	References 
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

