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ABSTRACT 

 
According to the fact that high order cumulants (HOC) retain the phase information of signals and the HOC of 
the Gaussian color noise is always equal to zero, a new method of wavelet reconstruction is provided in this 
paper, based on 4th-order cumulants of non-Gaussian seismic signals. The feasibility of this method is 
demonstrated by the simulation of wavelet estimation for synthetic seismic traces. Furthermore, the seismic 
wavelet of field data processed with this method can be reconstructed correctly. 
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1 INTRODUCTION 
 
In seismology exploration, it is very important that seismic wavelets be estimated accurately. This estimation is 
fundamental for seismic traces deconvolution, migration, feature extraction, and geophysical interpretation 
(Sheridd & Geldart, 1995). 

Statistical estimation is very valuable for seismic wavelet estimation and deconvolution. The common method 
of deconvolution concerns 2nd-order statistics (SOS) of the data on the assumption that the noise is white and 
the wavelet is considered the minimum phase. In the past 20 years, high order statistical (HOS) theories and 
methods have become one of the most important fields in signal processing, for HOS can be used to extract the 
non-minimum phase wavelet from Gaussian color noise (Damien & Salah, 2005; Lazear, 1993; Mauricio, 
Sacchi & Ulrych, 2000). 

Because the background noise of seismic signals tends to be Gaussian, the HOC of noise will diminish as the 
sampling size increases. However, as the order k increases, the variance of a kth-order sample estimator 
increases also. Thus, it is preferable to keep k as low as possible. Based on actual measured data, seismic traces 
are generally regarded as having a symmetric non-Gaussian distribution (Giannakis & Tsatsanis, 1994). Hence, 
when 3rd-order cumulants of the data vanish, 4th-order cumulants include significant phase information which 
2nd-order statistics do not have. Therefore, this paper puts forward a feasible method of analysis to enhance 
seismic signal detection and classification using 4th-order cumulants.  

Assuming that b(1) = 1, Xianda’s (1999) cumulants slice method is used to pick up MA parameters b(n) (n = 1, 
2, … , N). This assumption is non-applicable for the seismic wavelet. This paper will derive matrix equations 
based on 4th-order cumulants when b(1) is a discretionary value not equal to zero. These equations have many 
uses. Theoretically, this method can remove Gaussian white/color noise effectively. Simulation of synthetic data 
and application of field data also demonstrate that it is a new promising method for seismic signal processing.  

 
2 SEISMIC SIGNAL MODEL 
 
It is well known that a received seismic trace can be described (Sheridd & Geldart, 1995) by 

∑ +−=
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nvinriwny )()()()( ,                                                   (1) 

where y(n) is the seismic trace with noise, w(n) is the seismic wavelet with arbitrary phase, and v(n) is the 
additive Gaussian white/color noise. The earth reflectivity sequence r(n) is assumed to be zero-mean and i.i.d 
(independently identically distributed). Moreover, r(n) is generally regarded as having a symmetric 
non-Gaussian distribution and it is independent with v(n).  
Our goal is to reconstruct the wavelet w(n) by using the finite data record {y(n)} (n = 1, 2, … , N). 
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3 MATRIX EQUATIONS BASED ON FOURTH-ORDER CUMULANTS 
 
For computational convenience without loss of generality, one can choose i from 1 to lw in Equation 1, where lw 
is the length of the seismic wavelet. Thus, Equation 1 can be written as 

             )()()()(
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.                                                   (2) 

Obviously, Equation 2 corresponds to the MA model whereas w(1) ≠ 1. 
 
Using the BBR (Bartlett-Brillinger-Rosenblatt) formula (Xianda, 1999), the 4th-order cumulants of Equation 2 
can be calculated as follows 
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where τ1, τ2 and τ3 are time delays.  
 
For the kth-order (k≥3) cumulants of additive Gaussian processes to vanish, when n is large enough, the 
4th-order cumulants of r(n) can be written as follows 
    ),,(),,( 32143214 τττδτττ −−−= iiirC r ,                                         (4) 
where r4 is kurtosis of the reflectivity sequence, δ (τ1, τ2, τ3) is multidimensional impulse function. 
 
Thus, Equation 3 can be transformed to the following form 
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where w(i) = 0, when i < 1 or i > lw. 
 
Substituting τ1 = τ, τ2 = τ3 = 0 in Equation 5, one obtains the one-dimensional (1-D) slice of C4y(τ1, τ2, τ3) as 
follows  
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Similarly, only substituting τ3 = 0 in Equation 5, one obtains the 2-D slice of C4y(τ1,τ2,τ3)                     
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Substituting τ = lw-1 in Equation 6 and τ1 = lw-1, τ2 = n in Equation 7, after transformation one has              
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Letting w(i+τ) = b(i+τ) and making a variable substitution in Equation 6 can yield  
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Then substituting Equation 8 into Equation 9, one gets 
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Similarly, letting w(i) = b(i) and substituting Equation 8 into Equation 6, one obtains  
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With τ = lw-1 and b(1) = w(1), one obtains 
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Substituting Equation 12 into Equation 10 yields      
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Now, one obtains the linear equations based on 4th-order cumulants concerning parameters b(i). They form the 
matrix equation 
              Ay B = Cy,                                                                (14) 
where 
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Solving this matrix equation using generalized inverses, one can obtain the value of b(1), b(2), … , b(lw), 
where the denominator b(1) only influences the amplitudes of the assessed wavelet not its waveform. 
 
4 FOURTH-ORDER CUMULANTS OF OBSERVATION DATA 
 

High-order cumulants do not vary with a shift in the mean. Hence, it is convenient to define them under the 
assumption of zero mean. If the process has a non-zero mean, we subtract the mean and then apply the following 
definitions to the resulting process.  

4th-order cumulants are functions of observed seismic traces y(n), which assumes a zero-mean and stationary 
random process. Thus, 4th-order cumulants can be defined approximately (Xianda, 1999): 
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The auto-correlation function C2y(τ) can be obtained from { y(n)} (n = 1, 2, … , N)  
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where C2y(-τ) = C2y(τ) .  
 
5 SIMULATIONS 
 
In order to test the feasibility of the cumulants method in seismic exploration, two simulations are given in this 
section. One uses synthetic seismic data and the other uses field seismic data. 
 
5.1   Simulation of synthetic seismic data 
 
5.1.1  Reconstruction of zero-phase Ricker wavelet 
 
The synthetic data are generated by a convolutional model shown in Figure 1. The Ricker wavelet, which has a 
zero phase, dominant frequency of 40(Hz) with sample interval of 4(ms), is adopted. The reflectivity sequence is 
assumed to be a series of random numbers from -0.5 to 0.5 and has a symmetric non-Gaussian distribution. Then 
the zero-mean Gaussian colored noise is added.  
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Figure 1. Synthesization of a seismogram. w(n), Ricker wavelet; r(n), earth reflectivity sequence; v(n), additive Gaussian      
color noise; y(n), synthetic seismogram. 
 
After Equation 14 has been computed, the Ricker wavelet and the reconstructed seismic wavelet are plotted in 
Figure 2. It is shown that these two waveforms are coincident in the rough. 
 

      
 
 

Figure 2. Wavelet reconstruction for seismogram synthesized by zero-phase Ricker wavelet. w(n), Ricker wavelet(left); 
w1(n), reconstructed wavelet by (14) (right). 
 
5.1.2  Reconstruction of a mixed-phase wavelet 
 
The constructed mixed-phase seismic wavelet, which has a dominant frequency of 40(Hz) and sample interval 
of 4(ms), is constructed. The reflectivity sequence and the noise are the same as in the above example. 

The constructed and estimated seismic wavelets are plotted in Figure 3. It is shown that there are some 
magnitude differences and slight waveform distortions between the constructed wavelet and the reconstructed 
one, but these differences do not distort the seismic deconvolution results badly. The result indicates that a 
seismic signal can be detected by the proposed matrix equations method based on 4th-order cumulants. 
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Figure 3. Wavelet reconstruction for seismogram synthesized by mixed-phase wavelet. w(n), mixed-phase wavelet(left); 
w1(n), reconstructed wavelet by (14) (right). 
 
5.2   Application to field data 
 
This paper presents an application of the method mentioned above to a post-stack seismic time section from the 
Daqing oil field (Heilongjiang, China). This data set is obtained from a number of groups of detectors. On each 
sensor point, the seismic signal lasts 5(s) with a sampling interval of 1(ms), i.e., there are a total of 5000 
sampling points.  

From the large numbers of seismic data sets, a set of 50 CMPs is continuously selected for this application and 
partly shown in Figure 4. The vertical axis is marked with the time denoting the depth of the stratum. The 
horizontal axis is marked with the seismic trace numbers within the CMP gather. 

 

 
 
 
 
 
Using the matrix equations method based on 4th-order cumulants, the reconstructed seismic wavelet is shown in 
Figure 5. It is shown that real seismic wavelet is mixed-phase. One can estimate the dominant frequency of the 
seismic wavelet as 45(Hz), which is in accord with the real seismic wavelet. 
 
6 CONCLUSIONS 
 
In this paper, it is shown that new matrix equations based on 4th-order cumulants are sufficient for the 
identification of generally non-minimum phase wavelets w(n) ( n = 1, 2, … , N ), where w(1) ≠ 1. The method 
does not follow the traditional assumption that the wavelet must be of a minimum phase and is valid for 
wavelets of any phase. These equations have more extensive practicality. It can be said that the high order 
cumulants technique has considerable potential for seismic data processing. 
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Figure 4. Actual seismic time section 
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Figure 5. Wavelet reconstruction for actual seismogram.  
w1(n), reconstructed wavelet by (14) 

Data Science Journal, Volume 6, Supplement, 9 September 2007

S557



7 ACKNOWLEDGEMENTS 
 
This work was supported by the National Natural Science Foundation of China (Grant Nos. 40374045, 
40574051). The authors appreciate the valuable suggestions from Professor Shuxun Wang and Professor Shixue 
Dong. 
 
8 REFERENCES 
 
Damien, M. & Salah, B. (2005) Multiway filtering based on fourth-order cumulants. EURASIP Journal on 
Applied Signal Processing (7), pp.1147-1158 
 
Giannakis, G.B. & Tsatsanis, M. (1994) Time-domain tests for Gaussianity and time-reversibility. IEEE 
Transactions on Signal Processing 42(12), pp.3460-3472 
 
Lazear, G.D. (1993) Mixed-phase wavelet estimation using fourth-order cumulants. Geophysics 58(7), 
pp.1042-1051 
 
Mauricio, D., Sacchi, T., & Ulrych, J. (2000) Nonminimum-phase wavelet estimation using higher order 
statistics. Society of Exploration Geophysicists 19(1), pp.80-83 
 
Sheridd, C.H. & Geldart, L.P. (1995) Exploration seismology (second edition), Cambridge, Britain: Cambridge 
University Press 
 
Xianda, Z. (1999) Time Series Analysis: Higher Order Statistics Method, Beijing, China: TsingHua University 
Publishing House 
 

Data Science Journal, Volume 6, Supplement, 9 September 2007

S558


