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ABSTRACT 

 
Successful resource discovery across heterogeneous repositories is highly dependent on the semantic and 
syntactic homogeneity of the associated resource descriptions in each repository. Ideally, consistent 
resource descriptions are easily extracted from each repository, expressed using standard syntactic and 
semantic structures, and managed and accessed within a distributed, flexible, and scalable software 
framework. In practice however, seldom do all three of these elements exist. To help address this situation, 
the Object Oriented Data Technology (OODT) project at the Jet Propulsion Laboratory has developed an 
extensible, standards-based resource description scheme that provides the necessary description and 
management facilities for the discovery of resources across heterogeneous repositories. The OODT 
resource description scheme can be used across scientific domains to describe any resource. It uses a small 
set of generally accepted, broadly-scoped descriptors while also providing a mechanism for the inclusion 
of domain-specific descriptors. In addition, the OODT scheme can be used to capture hierarchical, 
relational and recursive relationships between resources. In this paper we expand on prior work and 
describe an intelligent resource discovery framework that consists of separate software and data 
architectures focusing on the standard resource description scheme. We illustrate intelligent resource 
discovery using a case study that provides efficient search across distributed repositories using common 
interfaces and a hierarchy of resource descriptions derived from a complex, domain-specific ontology. 
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1 INTRODUCTION 
 
The Object Oriented Data Technology (OODT) project was funded in 1998 by NASA’s Office of Space 
Science (OSS). Its task was to develop a national software framework for sharing data across 
heterogeneous, distributed data repositories. The resulting framework today consists of separate but 
complementary data and software architectures that enable the sharing of data and computational resources 
across multiple science and engineering disciplines (e.g., planetary science, cancer research, and earth 
science). 
 
The software architecture provides reusable software components with homogeneous interfaces, allows 
new components to be easily integrated into the framework, and provides a mechanism to wrap (Sneed, 
1997) legacy data system components with minimal impact. The complementary data architecture is 
domain-dependent, yet flexible: it can be instantiated in a single domain or even across multiple, different 
domains. Its effectiveness is primarily dependent on the maturity of the data model provided for the target 
environment. The framework also supports location independence in that the user describes what she 
wants, not how or where to get it. The framework can also be scaled to meet increases in the number of 
interconnected repositories. 
 
As part of the data architecture, the design and development of a standards-based resource description 
scheme has enabled intelligent resource discovery across distributed heterogeneous repositories in support 
of the resource sharing task described above. In this paper we expand on prior work (Crichton, Downing, 
Hughes, Kincaid, & Srivistava, 2001, Crichton,  Hughes,  Kelly, & Hyon, 2000, Crichton, Hughes, Kelly, 
& Ramirez, 2002, Crichton, Hughes, & Kelly, 2003) and describe a architecturally compliant resource 
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discovery framework that consists of separate software and data components. We illustrate intelligent 
resource discovery across distributed repositories using a case study implementation that provides efficient 
search across distributed repositories using common interfaces and a hierarchy of resource descriptions 
derived from a complex, domain specific ontology. The rest of this paper is organized as follows. Section 2 
presents background information and a survey of related work regarding resource description schemes, and 
software frameworks to support resource discovery and sharing. Section 3 describes the OODT resource 
description scheme’s data architecture. Section 4 summarizes the supporting software architecture of the 
resource description framework. Section 5 provides an example case study using the resource description 
framework. Section 6 rounds out the paper. 

2 BACKGROUND AND RELATED WORK 
 
The intelligent resource discovery framework described in this paper is based on a foundation of related 
projects along with our own existing work in two key areas:  (1) resource description schemes and (2) 
software frameworks that support resource discovery. In this section, we first expound on the related 
projects constructing resource description schemes and compare and contrast their foci and emphases to 
those of our own work.  We follow by briefly summarizing some related software frameworks that support 
resource discovery. 
 
Decker, Tangmunarunkit, & Kesselman (2003) define the resource matching problem for grid applications. 
The resource matching problem involves a user (or agent) selecting an appropriate set of resources that 
meet the requirements of an application that must execute in a grid environment. Decker et al. identified the 
inflexibility and ambiguity in current “flat” resource description schemes (e.g., selecting an operating 
system resource that is “UNIX compatible” when the resource descriptions only store flat named attributes, 
such as OS=Solaris, or OS=Linux). They propose a Horn and F logic based ontology resource matching 
approach (and accompanying resource description scheme) that separates the resource providers and the 
application requirements for a grid application. Furthermore, Decker et al. developed three initial resource 
description ontologies for their approach. The Resource ontology describes resources and their capabilities. 
The Resource Request ontology describes an application’s request characteristics for a particular resource. 
The Policy ontology captures authorization and access privileges for resources based on user roles and 
authentication. Our work differs on several fronts from Decker et al.’s. First, our resource description 
scheme is grounded in query-based discovery and description of resources, as opposed to matching 
resources to a given job or application’s requirements. In our framework, the requirements for a resource 
are provided via a DIS-style keyword query (which we describe further in Section 4.3), instead of a Horn or 
F logic based conjunction. Additionally, we have adapted and reused existing international metadata 
standards for resource description using Dublin Core (Dublin Core Metadata Initiative, 1999), and for data 
element description the ISO/IEC 11179 specifications (ISO/IEC-11179, 1999). Decker et al. have 
developed their own approach for description and have provided a brief example for identifying the 
appropriate (set of) high performance compute resources on which to execute a sample job. 
 
The Resource Description Framework (Lassila & Swick, 1999), or RDF, is a W3C Recommendation for 
describing resources for use in a myriad of processes. RDF is meant to be used in activities such as 
resource discovery, intelligent software agents, cataloging, and the semantic web. The RDF data model 
entails three main elements. Resources are anything that can be described by an RDF statement. Properties 
are named metadata elements for a particular resource. Properties also define their valid values, the types of 
resources they can describe, and any relationships they share with other properties. Statements consist of: 
(1) a particular resource, (2) a named property for that resource and (3) the property’s value. The OODT 
resource description framework shares several goals with RDF. Both RDF and the OODT resource 
description framework are meant to be overly general, and applicable to many domains. Additionally, both 
frameworks are XML-based notations. However, our work and RDF also differ significantly. The OODT 
resource description framework is quite flexible: it prescribes a standards-based data model for resources; 
however, it also allows the user to define domain specific data elements (called profile elements). RDF on 
the other hand is meant to be overly generic, and does not prescribe any standard set of data elements for 
resources: users can define whichever data elements they like. Furthermore, instead of RDF statements, the 
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OODT framework relies on ISO-11179 to define relationships, valid values, and resource types between 
metadata elements. 
 
There are several other resource description frameworks. Singh, Bharathi, Chrevenak, Deelman,  
Kesselman, Manohar, et al. (2003) describe the Globus Metadata Catalog Service (MCS) component for 
data-intensive environments. The MCS resource description framework classifies resources into 5 
categories: User metadata, Virtual Organization (VO) metadata, Domain-Specific metadata, Domain-
Independent metadata, and Physical metadata. User metadata stores information about user resources, such 
as their roles and permissions. Virtual Organization metadata captures information about shared datasets, 
users, and privileges. Domain-specific metadata is stored and created by application communities to 
describe their resources. Domain-Independent metadata are general, broad-scope descriptors (such as those 
provided by Dublin Core) that describe resources independent of domain (e.g., Creator, Author, Logical 
Name and the like). Physical metadata stores information about physical resources, such as file systems, 
tape drives, and mass storage systems. The IEEE Learning Object Metadata (LOM) draft standard (IEEE-
LTSC, 2005) is focused on describing “learning object” resources. Learning objects are defined to be 
digital entities that can be used during technology-supported learning. IEEE LOM defines a base schema, 
and a set of vocabularies to describe learning resources. The schema includes elements such as Creator, 
Language, Coverage and Structure. The IEEE LOM document also provides a mapping to the related data 
elements of the Dublin Core standard. Pouchard, Cinquini & Strand (2003) describe the Earth System Grid 
(ESG) ontology and its associated resource description model. ESG resources are categorized into six broad 
classes: Pedigree, Scientific Use, Datasets, Services, Access, and Other. The resource description 
framework offered by Pouchard et al. is not overly general, and intended to be of use in the earth science 
domain. A related earth science resource description framework is the Semantic Web for Earth and 
Environmental Terminology (SWEET) taxonomy, developed by Raskin, Pan & Mattmann (2004). The goal 
of the SWEET taxonomy is to enable semantic web and agent technologies to discover earth science 
resources, and to provide more meaningful queries and results when users search for earth science 
resources. SWEET is developed in OWL and RDF, and has been tested and evaluated within a sample 
prototype query interface. 
 
Several software frameworks are built with the intention to facilitate resource discovery. We highlight and 
discuss a representative cross-section of them below. 
 
The Globus Toolkit  (Chervenak, Deelman, Foster, Guy, Hoschek, Iamnitchi, et al., 2002, Foster, 
Kesselman, Nick & Tuecke, 2002, Kesselman, Foster & Tuecke, 2001, Singh, Bharathi, Chrevenak, 
Deelman, Kesselman,  Manohar, et al., 2003) is the de facto standard technology for grid computing. It 
subsumes a web-service middleware substrate (Apache AXIS) that provides basic middleware capabilities 
such as programming language abstraction, data marshalling and unmarshalling, and message delivery. The 
Globus toolkit deals with the general problem of managing, locating, and distributing resources. In grid 
environments enabled by Globus, resources are any one of the following: (1) computational resources, 
which include computer cycles, experiment test beds, and instruments, and (2) data resources, which 
include files, mass storage systems, databases, and replicas. Our work on the OODT framework and the 
Globus toolkit are closely related. Both projects provide complementary mechanisms (data models) for 
resource description and discovery, and both projects provide core middleware services which enable 
resources to be shared and discovered in the domain of grid computing. 
 
Sangpachatanaruk & Znati (2005) describe the Personalized Web Architecture (PWA), which is a way for 
each user to create a Personalized Web (PW) of interest, allowing resource discovery, location and 
description of only those resources in which the user is interested in. The enabling technology of the PW is 
a semlet, a semantic agent built on top of an ontology-based overlay-network, using P2P communication 
technologies. In the PW, a user describes what she is interested in, and then it is the semlet’s responsibility 
to discover what resources are available, how to get to them, and how to present them back to the user. 
Additionally, the semlet has the responsibility of advertising its user’s own resources, so that other semlets 
can discover the resources. For resource discovery, the semlet uses a WordNet (Beckwidth, Fellbaum, 
Gross, Miller, Miller, Tengi,  1990) based ontology tree (or WOT) to match user filters (using a similarity 
metric) against available resources. Similar to our work, resources are described using profiles, which are 
created on a per-user basis. 
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The Web Services Resource Framework (WS-RF) specification (Czajkowski, Ferguson, Foster, Frey, 
Graham, Sedukhin, et al., 2004) is a work-in-progress and is being developed as the next generation 
mechanism for resource description in web-service enabled environments, such as grid-computing. The 
main motivation behind WS-RF was the lack of the ability to manage stateful resources in the earlier 
incarnations of the web services specification. WS-RF adds the ability to declare, destroy, construct and 
manage stateful resources, and associate them with a web service. Resources are described using XSD 
schema, and are then associated with a web service through its PortType specification. 
  
DSpace (Smith, Bass, McClellan, Tansley, Barton, Branschofsky, et al., 2003) jointly developed by MIT 
Libraries and Hewlett-Packard, is a distributed digital repository system that captures, stores, indexes, 
preserves, and redistributes the research material of a university in digital formats. The system is freely 
available as an open source system that can be customized and extended, and is built on top of other open-
source tools, such as Apache Web server, the Tomcat Servlet engine, and the PostgreSQL relational 
database system. DSpace resources include anything an organization would like to manage in a digital 
library: papers, reports, standards documents, meeting minutes, and so on. Akin to our framework, 
resources in DSpace are described using the Dublin Core metadata. DSpace also supports transmission of 
its resource metadata using the METS standard (Library of Congress, 2005).  
 
The iGrid information service (Aloisio, Cafaro, Epicoco, Fiore, Lezzi, Mirto, et, al., 2005) is a Grid-
Security-Infrastructure (GSI) enabled software framework for publishing and discovering resources in a 
grid environment. iGrid resources are described using the relational model. Resource discovery is 
supported and relies on the availability of metadata including CPU, Memory, File Systems and Network 
Interfaces for particular compute resources iGrid supports publication of resource descriptions in a grid 
environment and allows subscription and notification, which the authors find to perform better than the 
typical pull-based model of discovering resource information, adopted in the Globus Metadata Catalog 
Service. 

3 DATA ARCHITECTURE 
 
Architecture is a term applied to both the process and the outcome of thinking out and specifying the 
overall structure, logical components, and the logical interrelationships of a computer system. We define 
data architecture to be the application of this concept to the data components involved in a computer 
system.  
 
A key assumption in the development of a data architecture is that the data components to some degree 
model a specific problem domain. For example, in the space science domain, an image collected by a 
spacecraft instrument is modeled as a 2-dimensional structure of lines and line samples. The elements of 
this structure are data numbers that were collected within a context defined by the states of the instrument 
and spacecraft at the time the image was collected. In our work to capture data architecture, we have 
surveyed a representative set of approaches and decided to use ontologies. Our choice of ontologies is 
motivated and described below and throughout the paper using illustrative examples. 
 
An ontology is a set of concepts—such as things, events, and relations—that are specified in some way in 
order to create an agreed-upon vocabulary for exchanging information within a domain. Historically there 
are many methodologies for defining and collecting various aspects of domain concepts into a domain 
model (for a survey, see Hull & King (1987)). For example the Entity-Relationship (E-R) model is a widely 
accepted data modeling technique that focuses on the definition of domain entities and their relationships. It 
defines an entity as something that exists either in concept or in actuality. Entities are defined using 
properties (often called attributes) and relationships that relate two or more entities. Subsequently an E-R 
model is typically used to implement a database application using a specific record level model such as the 
Relational Model. Other methodologies involve the creation of taxonomies and controlled vocabularies. 
For this discussion we assert that domain ontologies subsume the domain modeling information collected 
by any of these methodologies and specifically that which is necessary for intelligent resource discovery. 
As such it becomes an appropriate choice of methodology for capturing a data architecture. 
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As examples, the image, instrument, and spacecraft mentioned earlier are all considered entities in the 
space science domain. The image entity is defined using attributes that describe its logical structure, namely 
the 2-D structure of lines and line samples. Its relationship to the instrument and spacecraft entities help 
describe the context within which the image was collected. In addition, the instrument attributes 
filter_name and exposure_duration can be associated with the image through inference and the 
“instrument produces image” relationship. In a space science ontology, image, instrument, and 
spacecraft would each be defined as a 
class, and lines and line samples would 
be defined as properties of the image 
class.  A level of intelligence is 
exhibited through the inference that the 
instrument class properties filter_name 
and exposure_duration can be 
associated with image. 

3.1 Data Dictionary 
 
A data dictionary (or controlled 
vocabulary) is a collection of terms and 
their definitions and is a basic 
component of a data architecture. It is a 
mechanism for defining entity attributes 
(also called data elements). Examples 
of data elements include filter_name 
and exposure_duration mentioned 
previously. Data elements also often 
carry additional semantic information, 
such as value type and permissible 
values. For example, the attribute 
exposure_duration is a data element in 
the planetary science data dictionary 
and is defined as the period of time over 
which data is collected by an 
instrument. It takes on a floating point 
value and is measured in units of 
milliseconds. 
 
Special attributes, also called meta-
attributes, are needed to collect data 
element definitional information. As 
part of our work on the OODT resource 
description framework, we have chosen 
the ISO/IEC 11179 standard (ISO/IEC-
11179, 1999) to provide a base set of 
attributes to define domain specific data 
elements. As an international standard it 
also provides a basis for data element definition and classification that supports global data dictionary 
interoperability. The specification classifies the base set of attributes into four categories namely 
identifying, definitional, representational, and administrative as briefly summarized in  
Table 1. 
 
The identifying category is used for the identification of a data element. For example, exposure_duration 
would be the value of the attribute “name”. The definitional category is used to describe the semantic 
aspects of a data element and consists of a textual description that communicates knowledge about the data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Table 1.  ISO/IEC 11179 Attributes 

ValueAttribute

Identifying Attributes

Single or multi word designation assigned to a data element.Name

A language independent unique identifier of a data element within a Registration 
Authority.

Identifier

Identification of an issue of a data element specification in a series of evolving data 
element specifications within a Registration Authority.

Version

Any organisation authorized to register data elements.Registration Authority

Single word or multi word designation that differs from the given name, but represents 
the same data element concept. 

Synonymous name

A designation or description of the application environment or discipline in which a 
name and/or synonymous name is applied or originates from. 

Context

Statement that expresses the essential nature of a data element and permits its 
differentiation from all other data elements.

Definition

Relational Attributes

A reference to (a) class(es) of a scheme for the arrangement or division of objects into 
groups based on characteristics which the objects have in common, e.g. origin, 
composition, structure, application, function etc.

Classification scheme

One or more significant words used for retrieval of data elements.Keyword

A reference between the data element and any related data.Related data reference

An expression that characterizes the relationship between the data element and 
related data.

Type of relationship

Remarks on the data element.Comments

The organization or unit within an organization that has submitted the data element for 
addition, change or cancellation/withdrawal in the data element dictionary.

Submitting organization

A designation of the position in the registration life-cycle of a data element.Registration status

The organization or unit within an organization that is responsible for the contents of 
the mandatory attributes by which the data element is specified.

Responsible organization

Administrative 
Attributes

The set of representations of permissible instances of the data element, according to 
the representation form, layout, datatype and maximum and minimum size specified in 
the corresponding attributes. The set can be specified by name, by reference to a 
source, by enumeration of the representation of the instances or by rules for 
generating the instances.

Permissible data element 
values

The layout of characters in data element values expressed by a character string 
representation.

Layout of representation

The minimum number of storage units (of the corresponding datatype) to represent the 
data element value.

Minimum size of data 
element values

The maximum number of storage units (of the corresponding datatype) to represent 
the data element value.

Maximum size of data 
element values

A set of distinct values for representing the data element value. Datatype of data element 
values

Name or description of the form of representation for the data element, e.g. 
'quantitative value', 'code', 'text', 'icon'. 

Form of representation

Type of symbol, character or other designation used to represent a data element.Representation category

Representational 
Attributes

ValueAttribute

Identifying Attributes

Single or multi word designation assigned to a data element.Name

A language independent unique identifier of a data element within a Registration 
Authority.

Identifier

Identification of an issue of a data element specification in a series of evolving data 
element specifications within a Registration Authority.

Version

Any organisation authorized to register data elements.Registration Authority

Single word or multi word designation that differs from the given name, but represents 
the same data element concept. 

Synonymous name

A designation or description of the application environment or discipline in which a 
name and/or synonymous name is applied or originates from. 

Context

Statement that expresses the essential nature of a data element and permits its 
differentiation from all other data elements.

Definition

Relational Attributes

A reference to (a) class(es) of a scheme for the arrangement or division of objects into 
groups based on characteristics which the objects have in common, e.g. origin, 
composition, structure, application, function etc.

Classification scheme

One or more significant words used for retrieval of data elements.Keyword

A reference between the data element and any related data.Related data reference

An expression that characterizes the relationship between the data element and 
related data.

Type of relationship

Remarks on the data element.Comments

The organization or unit within an organization that has submitted the data element for 
addition, change or cancellation/withdrawal in the data element dictionary.

Submitting organization

A designation of the position in the registration life-cycle of a data element.Registration status

The organization or unit within an organization that is responsible for the contents of 
the mandatory attributes by which the data element is specified.

Responsible organization

Administrative 
Attributes

The set of representations of permissible instances of the data element, according to 
the representation form, layout, datatype and maximum and minimum size specified in 
the corresponding attributes. The set can be specified by name, by reference to a 
source, by enumeration of the representation of the instances or by rules for 
generating the instances.

Permissible data element 
values

The layout of characters in data element values expressed by a character string 
representation.

Layout of representation

The minimum number of storage units (of the corresponding datatype) to represent the 
data element value.

Minimum size of data 
element values

The maximum number of storage units (of the corresponding datatype) to represent 
the data element value.

Maximum size of data 
element values

A set of distinct values for representing the data element value. Datatype of data element 
values

Name or description of the form of representation for the data element, e.g. 
'quantitative value', 'code', 'text', 'icon'. 

Form of representation

Type of symbol, character or other designation used to represent a data element.Representation category

Representational 
Attributes
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element that typically is not captured by any of the basic attributes. The relational category describes 
associations among data elements and/or associations between data elements and classification schemes, 
data element concepts, objects, or entities. For example relating exposure_duration to an instrument entity 
provides critical information about how exposure_duration is to be interpreted. The representational 
category describes representational aspects of data element such the list of permissible data values and their 
type. For example, exposure_duration would be typed as floating point. Finally the administrative category 
provides management and control information. 
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3.2 Common Data Elements 
 
With the advent of the web and the resulting explosion of electronic resources available for online access, 
there was a compelling need for a set of standard attributes for describing electronic resources. The Dublin 
Core (DC) (Dublin Core Metadata Initiative, 1999) initiative addressed this issue and developed the 15 data 
elements briefly summarized in Table 2. (It should be noted that the DC data elements were defined using 
the ISO/IEC 11179 framework.) 
 
The DC attributes are by definition very general in scope and when used as search constraints do not 
always produce precise results. They were developed as common attributes to describe Internet electronic 
resources across all possible domains and this generality limits their ability to partition the search space 
into easily managed subsets. For example a search for electronic resources that have format = “image/jpeg” 
will typically result in a large number of images from many repositories. The solution to this problem as 
suggested by the DC Subject attribute is the addition of concepts from the specific domain. This of course 
presupposes the existence of a domain model. 

3.3 Domain Data Models and Complexity 
 
A domain data model is developed to meet the requirements of one or more applications. For example, in a 
planetary science archive application, instrument and spacecraft models would be relatively general in 
order to span the set of instrument and spacecraft instances. However, models for image data products 
would proliferate since as the focus of the archive, the image models would require very specific image 
attributes and relationships.  
 

 
 

Table 2  Dublin Core Elements 
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Assuming this situation exists, the implementation of a search capability using traditional cataloging 
technology would conceptually require the design of a catalog for each image type. For example, the search 
for specific images from among the approximately 49,000 images of the planet Mars from NASA’s Viking 
mission is easily accomplished by designing a catalog for the Viking image model and loading 49,000 
records. However Mars missions such as Mars Global Surveyor, Mars Odyssey, and the Mars Exploration 
Rover missions are providing thousands more images that should also be available as search results. Since 
each of these missions has a different image model, separate image catalogs could be implemented but with 
increasing management complexity. Alternately a single catalog that spans all images results in a database 
that is sparsely populated. The solution to this problem requires the design of a single image model that is 
sufficient for describing all image types. In the following we will describe a general resource description 
and then present a software architecture suitable for implementing an efficient search capability using the 
resource description. 

3.4 General Resource Description – Resource Profile  
 
In our work on the OODT resource description framework, an electronic resource is described by a 
resource profile, an XML document that uses both domain specific attributes and the Dublin Core 
attributes to concisely describe a resource. The domain specific attributes are obtained from a domain 
specific ontology and provide the specificity required to meet the resolution requirements for search results. 
In this context, intelligence is exhibited by inferring additional attributes from modeled relationships. In 
contrast the Dublin Core (DC) elements provide common resource attributes such as Title and Format, the 
values of which are often derived from domain specific attributes. 
 
A profile has three sections: the profile attributes, the resource attributes, and domain specific attributes 
(called profile elements).  Profile attributes simply describe the profile using information such as identifier, 
type, and status. The identifier attribute is typically implementation dependent and could be an Object 

 
Figure 1.  Profile Schema - DTD 
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Identifier (OID), Universal Resource Identifier (URI), or a sequence number. The type attribute (see the 
profType element in Figure 2) is typically set to the value ‘profile’ but the value ‘data dictionary’ can be 
used to indicate that the profile is being used to capture data element information. 
 
Resource attributes generically describe the profiled resource using the Dublin Core (DC) attribute set. All 
DC attributes are allowed but only Identifier is required. As part of the work on the OODT framework, 
three additional resource attributes have been added to identify the following: (1) the resource's local 
domain (which we call resContext), (2) the resource’s classification (which we call resClass) , and (3) the 
resource’s location (which we call resLocation). The valid values assigned to the DC attributes are 
typically derived from selected domain specific attributes. For example, the DC attribute Title, a “label” for 
the resource, could take on values from a domain attribute providing a resource label of some type. 
 
The profile element section encodes domain specific attributes associated with the resource. This set of 
attributes includes the resource attributes specifically identified in the model as belonging to the resource as 
well as attributes that can be inferred from modeled relationships. For example, the image attribute lines 
and the instrument attribute filter name would both be included in an image profile. Each attribute is 
encoded into the profile with at least the name and value of the domain attribute. Other meta-attributes such 
as unit are allowed but optional. A profile to describe a planetary science image is illustrated in Figure 2. 
The profile element section encodes the inferred attributes instrument_id, filter_name, and 
exposure_duration for a precise characterization of the image. For referential purposes, the XML DTD for 

 
Figure 2.  Data Product Profile - Example 
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the profile is provided in Figure 1. An XML Schema and XML/RDFS have also been developed, although 
we have elided these from the paper was they would be mostly redundant given in the DTD in Figure 1. 

4 SOFTWARE ARCHITECTURE 
 
The Object Oriented Data Technology (OODT) software framework that supports the OODT resource 
description framework described above consists of a set of distributed, cooperating software components. 
The major components of the OODT framework implement a metadata (profile) and data (product) model 
reified in the form of the Profile and Product server components.  In addition, a Query Service component 
directs queries by traversing a network of connected profile and product servers, providing the veneer of a 
peer-to-peer network. The distributed services allow for the location and description of resources (profile 
queries) and retrieval of resources (product queries). Given that the focus of this paper is the resource 
discovery framework, we briefly sketch the capabilities and architecture of the OODT software 
components. A more detailed description of the software framework is provided in Crichton, Downing, et 
al., (2001), Crichton,  Hughes,  et al., (2000), Crichton, Hughes, et al., (2002), and Crichton, Hughes, et al., 
(2003). 
 

4.1 Distributed Framework - Communications 
OODT is a distributed system, wherein components may be dispersed geographically across a standard 
TCP/IP network, such as the Internet. Connectivity between components is provided by a standards based 
distributed systems implementation such as Java Remote Method Invocation (RMI) or the Internet Inter-
ORB Protocol (IIOP) for CORBA-based communication. Latest developments include HTTP-based access. 
 
The OODT software components support plug-ins that extend their base implementations by performing 
the work of querying both the metadata catalogs and the data repositories themselves. In this way, the 
OODT software is a framework in that application programmers extend and implement prescribed software 
objects and interfaces that directly integrate into the framework.  This is in contrast to other software 
implementation efforts that may not specify ubiquitous interfaces. More work necessarily falls upon the 
users of the framework to support the prescriptive interfaces. 
 
OODT's software framework defines three major components: 
 

• Profile Servers that serve scientific metadata and can tell whether a particular resource can provide 
an answer to a query. 

 
• Product Servers that serve data products in a system-independent format. 

 
• Query Servers that accept profile and product queries and traverse the network of profile and 

product servers, collecting results. It is possible to access the query service through direct interface 
with the distributed computing interfaces (such as RMI and CORBA invocations), or through an 
HTTP interface. 

 
As described earlier, profiles are metadata descriptions of resources; that is, they “profile” a resource by 
describing its inception and composition using the common data elements of the OODT resource 
description framework. Profile servers enable discovery of resources by providing the ability to search 
resource collections. In short, profile servers answer the question, “Where can I go to find out about X?” 
 
A profile server’s primary responsibility is to provide a way to evaluate a query against the server’s set of 
profiles. Although users may access a profile server directly via its remote interface, it is far more common 
for queries to enter the system through the query server, which directs them transparently to and along 
directed graphs of appropriate profile servers (in the case when a profile’s resLocation field points to 
another profile server). 
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Upon receiving a query, the profile server's backend interprets the query passed in a way appropriate to the 
implementation. For example, a backend that stores information in a relational database may convert parts 
of the query into a database SQL query. For each matching profile, the backend constructs a list of 
matching profiles and returns them. 
 

4.2 Product Servers 
 
Product servers exist to provide a way to retrieve specific data products. Product servers accept the same 
query structure as profile servers, but instead of returning a list of matching profiles, they return matching 
products. Data products in this sense can be individual data granules, datasets, or collections of datasets, 
depending on the backend implementation in the product server and the way it handles queries and results. 
 
When constructing a query, the user may indicate preferred MIME types. For example, a user wanting PNG 
images may list image/png as the only acceptable MIME type. A user preferring PNG images but willing to 
have JPEG images would list image/png, and image/jpeg in that order. A user preferring PNG images but 
willing to accept any image type would list image/png, image/*. If the user doesn’t specify a MIME type 
when creating the query, the software generates a default list of acceptable MIME types, namely */*, 
meaning that any type is acceptable.  Sophisticated product servers can convert between data types.  One 
mechanism for handling interoperability of legacy data systems is to deploy product servers that convert 
between file formats that are native to the local data system and the common data formats supported by the 
larger data system. 

4.3 Query Servers 
 
Query servers manage queries across distributed resources and are the point of entry into an OODT 
software framework installation. Query servers contain the algorithms necessary to traverse the network of 
profile and product servers, executing queries at appropriate servers and gathering results. In this manner 
query servers can simplify the interaction with the user, who is freed from the knowledge of accessing the 
remote interfaces of profile servers and product servers. Users instead call upon a query server for all 
profile and product interaction. The implementation of search algorithms for a query server is flexible 
allowing a broad range of possibilities including using a simplistic algorithm in the query server while 
implementing a more complex algorithm in the client application for testing. This is the case for this paper 
and the domain search algorithm is explained in section 5.1. 
 
The OODT software framework supports several different interfaces to the query service to ensure that it is 
cross platform and supports cross language interoperability.  This includes not only interfaces for 
programming languages such as Java, but interfaces using the web standard HTTP.  
 
OODT queries (NASA Jet Propulsion Laboratory, 2005) are transported in an XML structure that provides 
pertinent system information, a results buffer, and the query expression in a parsed form (prefix notation). 
Since the parsed form of the query is transported, different query expression languages can be used as long 
as the parsed results can be expressed in the query structure.  The currently implemented language, the 
Distributed Inventory System (DIS) expression language, is parameter/value based and allows the relational 
operators, logical connectors, and the grouping of expression using parentheses. The DIS query expression 
language meets the profile server requirement of being able to match on any attribute in the resource 
profile. Some simple example query expressions are shown in Figure 3.  

 
 IDENTIFIER=GO-J/JSA-SSI-2-REDR-V1.0:10I0012 
 TARGET_NAME=IO AND EXPOSURE_DURATION > 60.0 
 TARGET_NAME=IO AND NOT FILTER_NAME=RED 
 DATA_SET_ID=ODY-M-THM-2-IREDR-V1.0 AND CENTER_LONGITUDE > 359.25 
 DATA_SET_ID=MGN-V-RDRS-5-DIM-V1.0 AND IMAGE_ID=FO43S181 

Figure 3.  Example DIS Query Expressions 
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The OODT software framework components are illustrated in Figure 4. 
 
 

 

5 CASE STUDY – NASA’S PLANETARY DATA SYSTEM 
 
The Planetary Data System (PDS) is the official science data archive for NASA’s planetary science 
community. As such, it contains tens of terabytes of data collected from over thirty years of solar system 
exploration and is growing exponentially. At its inception in the late 1980’s, the PDS developed a data 
model that guides the capture of the information necessary to describe the data and ensure that the data 
remain scientifically useful for future scientists. Collected and validated using the data model, this 
information and the science data was submitted to peer review and then distributed to funded scientists in 
the planetary science community on CD and DVD media. The data model and much of the content of the 
catalog has recently been imported into an ontology tool1 to provide easier management, better 
documentation, and to support the development of semantic web applications.  
 
The combination of several factors including the advent of the Internet, requests to support correlative 
search across instruments, and huge increases in the volume of data returned from missions necessitated the 
development of an online system that supports search and retrieval of data products from across the 

                                                           
1 Protégé, http://protege.stanford.edu  

Discovery
Query

UserUser

Product

Catalog

Profile Server

Product

Catalog

Profile Server Product Server

Data
Repository

Product Server

Data
Repository

Applications

Query Server

Webserver (QueryServlet)
Java API

HTTP

Retrieval
Query

Packaged 
Products

Product
Descriptions

User Queries
And Results

Product

Catalog

Profile Server

Product

Catalog

Profile Server

Product
Catalog

Profile Server

Product
Catalog

Profile Server
Product Server

Data
Repository

Product Server

Data
Repository

Product Server

Data
Repository

Product Server

Data
Repository

 
Figure 4.  Software Framework Component Architecture 

 



Data Science Journal, Volume 4, 31 December 2005 183

distributed heterogeneous data repositories of the PDS. In October of 2002, the PDS released the first 
version of its online distribution system to support the 2001 Mars Odyssey mission. Using the OODT 
framework and product servers at each distributed data repository, data products were available to planetary 
scientists as soon as they were released from the mission. Since then the distribution system has been 
augmented to include the majority of all data products in the PDS archive. The current system provides a 
two level search capability, first at the data set level (collections of data products) and then a data product 
search. Development is now focused on a single level search of data products across the archive using a 
hierarchical configuration of OODT profile servers. 
 
The key to the success of the PDS search capability is the fact that each data product in the archive can be 
associated with identification, descriptive, and contextual information obtained either directly from class 
attributes or inferred through relationships. This information whether it is detailed information packaged 
with the data product or more general information maintained in a common repository is extracted and 
represented in a single data product profile. 
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5.1 Search Algorithm 
The global product search capability is designed to have a single point-of-entry interface and a search scope 
that encompasses the entire geographically distributed PDS archive and its thousands of product types and 
millions of data products. To implement this search, a hierarchical configuration of profile servers and 
resource profiles has been implemented. At the leaf nodes of the hierarchy, each data product is represented 
by a single resource profile. For example, Figure 5 above illustrated a portion of a profile for a Galileo, 
Solid State Imaging System (SSI) image product where the domain attributes, target_name, filter_name, 
and exposure_duration have been encoded into the profile elements section. The resource attributes 
Identifier and Title have been set to the value of the concatenated domain attributes data_set_id and 
image_id, and the profile Identifier has been set to a unique object id, generated by the system. 

 
Figure 5. Data Set Profile Example 
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Aggregating the data product profiles of a single product type produces a product type profile. This product 
type profile describes the collection of products using the same set of attributes but with aggregated 
attribute values. In general attributes with discrete values such as target_name result in value lists. Numeric 
attributes such as exposure_duration result in value ranges. Performing this aggregation for each product 
type in the archive produces the second level of the hierarchy. For brevity we assume that each data set 
only contains one data product making the product type profiles equivalent to the data set profiles. For the 
PDS this results in several thousand data sets or level two profiles. Figure 5 illustrates a portion of the 
Galileo image data set profile. This data set contains the imaging data product mentioned above. 
 
Data set profiles are in turn aggregated to create the root profile. The root profile describes all data sets and 
so also describes the entire archive. The root profile as a single, all inclusive description of the archive is 
suitable as the starting point for searches initiated from a single-point of entry user interface. The root 

 
Figure 6.  Root Profile Example 
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profile in Figure 6 contains the values for target_name and instrument_id, the result of aggregating the 
attribute values in the data set profiles, after aggregating the attribute values in the data product profiles.  
 
Each resource profile includes a resource location that provides a link to the resource. A resource location 
in a data product profile will provide a URI for a data product, such as a URL to a data product server that 
will retrieve the product when invoked. A resource location for a data set profile provides a link to the 
profile server that serves the associated data product profiles. Similarly all higher level aggregated profiles 
provide links to profile servers that serve their associated lower level profiles. For the initial PDS 
prototype, the root profile and all data set profiles are served by a single profile server. All product level 
profiles are served by a two or three product level profile servers. These were configured based on a set of 
performance and maintenance requirements (the description of which is outside the scope of this paper). 
 
The hierarchy of profiles is served by a combination of root and leaf profile servers (described earlier in 
this section). For example, a search application initially queries the profile server containing the root profile 
and builds a query interface using the attributes and their values in the root profile as query constraint 
choices. After the user has selected his query constraints, the location of the data set profile server provided 
in the root profile is used to query for all data set profiles matching the query constraints. The search 
application aggregates the matching data set profiles and builds a second query interface using the 
aggregated attributes and attribute values as query constraint choices. The cycle continues down the 
hierarchy of profile servers until product profiles are displayed to the user. The user is able to read the 
product description and subsequently accesses the data product through the location provided in the data 
product profile. 
 
As a PDS example, the root profile contains “Galileo” as a value of the attribute Mission_Name. The 
selection of “Galileo” in the root interface would match on all Galileo data set profiles in the data set 
profile server. The second user interface produced by the search application would include the Galileo 
image attribute Filter_Name and its permissible values, including RED. A subsequent selection of RED for 
Filter_Name and a request to return all profiles would return all Galileo imaging data product profiles that 
were taken through the RED filter. 

6 CONCLUSION 
 
The Object Oriented Data Technology (OODT) task has developed a standard resource description scheme 
that can be used across domains to describe any resource. It uses a small set of generally accepted, broad 
scope descriptors while also providing a mechanism for the inclusion of domain specific descriptors. The 
use of this resource description scheme in an OODT software framework of profile and product servers 
provides a powerful, flexible, and scalable resource discovery capability across distributed resource 
repositories. Intelligent resource discovery is provided by the use of domain ontologies, relationship 
inference, and semantically homogeneous resource descriptions. In this paper, we described the resource 
description scheme in detail, and illustrated its utility on a case study: NASA’s Planetary Data System 
(PDS) project. PDS is implementing intelligent resource discovery across its distributed data repositories, 
thousands of data product types, and millions of individual data products using the OODT framework and a 
hierarchy of resource profiles created from a planetary science ontology and both explicit and inferred 
information. 
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