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ABSTRACT 

The forecasting of software failure data series by Genetic Programming (GP) can be realized without any 
assumptions before modeling. This discovery has transformed traditional statistical modeling methods as well 
as improved consistency for model applicability. The individuals’ different characteristics during the evolution 
of generations, which are randomly changeable, are treated as Markov random processes. This paper also 
proposes that a GP algorithm with “optimal individuals reserved strategy” is the best solution to this problem, 
and therefore the adaptive individuals finally will be evolved. This will allow practical applications in software 
reliability modeling analysis and forecasting for failure behaviors. Moreover it can verify the feasibility and 
availability of the GP algorithm, which is applied to software failure data series forecasting on a theoretical 
basis. The results show that the GP algorithm is the best solution for software failure behaviors in a variety of 
disciplines. 
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1  INTRODUCTION 

Because of the increasingly broad application and importance of software, the quality that people request in 
software is becoming higher and higher. The appraisal and prediction of software’s reliability, as a significant 
characteristic for weighing software qualities, has been an emphasis that people focus on and study actively. 
Models for predicting software reliability are the kernels of this research. 

During the process of software reliability research, we have already created many different reliability models. 
When applying them for reliability prediction, we always face many problems, such as which model should we 
select or if the prediction result is credible. As the capabilities for models are difficult to identify, operators 
seldom being familiar with every model, tend to select the models they need blindly. Meanwhile, there are 
numerous inconsistencies in software reliability prediction. For example, different models will get different 
prediction results for the same software system. The prediction quality of the same model for predicting 
different data may make a large difference. The same model for different phases of the same software system 
may yield very different predicting qualities. When using one or several models to predict, they will all have low 
prediction qualities. A discussion of these problems can be found in Cong, Lu, and Bai (2000) and Wang and Jin 
(2002). 

In order to solve the problems above, this paper makes use of the GP algorithm for forecasting software failure 
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data. It then analyzes and verifies that the GP algorithm with an “optimal individual reserved strategy” can be 
converged, which indicates it is possible to get the best solution for software failure. This approach can create 
specific programming aimed at generating specific software failure data and then obtain an approximate solution 
or the best one. This approach removes subjective assumptions of statistical methods. It can improve the 
consistency of model application and the analysis of software reliability models, resulting in better forecasting 
for software failure behaviors. 

 

2  SUMMARY OF THE GP ALGORITHM 
Genetic Programming is a technique based on biological evolution, which is developed from the Genetic 
Algorithm (GA). Here, the depth of the tree is defined as not more than N and is a given positive integer. iT  

are the individual trees, and each tree’s root nodes Frk ∈ ; their leaf nodes are defined as Tl j ∈ , 

so { }TlFrTS jki ∈∈= ,| , in which F is the function set and T is the terminal set. We also have to define 

the fitness function RSf →: , which can search for the best individuals *
iT in the space S : 

( ) ( ){ }STTTffTf rrii ∈== :max** . 

The approach of creating trees randomly by a growth method, whose depth cannot exceed the maximum 

depth D , is defined as follows: The root nodes are selected from the function sets in order to generate 
non-ordinary individuals, while the other nodes are selected from FT U if the depth of nodes to be selected is 

less than D , and if the depth equals D , they are selected from T ( Lin, Li, & Kou, 2000). We also adopt the 
“best-reserved strategy” to make the best individuals reserved in the next generation, so that these individuals do 
not attend the genetic operations, which are shown in detail in section 4.1 

.  

3  FORECASTING FOR SOFTWARE’S NEXT FAILURE TIME BY THE GP   
        ALGORITHM  

As we know, traditional software reliability models are all based on different statistical assumptions that 
constrain both the modes of software failure behaviors for specific models and the suitable range of each model. 
The randomness of software reliability models’ selection has hindered the application of software reliability 
models. This paper reports results from adopting the GP algorithm to model failure data series. Examples of 
accumulative time series (or the next failure time series) of DACS failure data set SYS1 and SYS2, from Musa 
in 1979, are used to model and test the feasibility and availability of GP. The parameters for GP programming 
are given in Table 1. 

Table1. Parameters for GP programming 

Parameters span solution Parameters span solution 
Function set(F) +、-、×、/、log、sin、exp、

cos、tan、sqrt 
Selection methods tournament 

and so on 
Terminal set(T) argument x, constants Terminal condition 100 

generations 
Population size 30 Number of generation 100 
The probability of 
crossover 

0.90 Maximum of the tree depth 
after crossover 

7 
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The probability of 
mutation 

0.05 Maximum of the tree depth 
after mutation 

7 

The way to generate 
initial population 

total and grow Maximum of the initial tree 
depth 

5 

Under the programming environment of MATLAB6.5, we get a better fitness model structure after evolving for 
50 generations which is shown as follows: 

SYS1: ( ) ( )( )( )xexxxxf ×+××= lnln823.3                     Eq.(1) 

SYS2: ( ) ( )xexxxf ×××= ln1874.13                        Eq.(2) 

where x stands for the numbers for software failures and ( )xf are the results of the failure data model. 
Figures 1 and 2 give the transformation curve (model simulation output) for models and the true data series. 

    

Figure1. Simulation result for SYS1            Figure 2. Simulation result for SYS2 

From the figures above, we can conclude that the GP model has better applicability (accuracy) in comparison 
with other models, as well as a better goodness of fit. Furthermore, SYS3 provided by the Musa record set has 
also been created by automatic programming as well as the test example (from one to sixteen data series) 
provided by the Armed Forces Engineering Institute and the error statistic data provided by the Naval Tactical 
Data System’s (NTDS) development and testing procedure (from one to thirty data series) of the U.S. Navy’s 
Fleet Computer Programming Center. These models can get optimal results matching with the corresponding 
dataset that better fit and forecast. Our tests show that GP can create automatic programming of the specified 
error data without any assumptions being added during modeling. The feasibility and efficiency of using the GP 
algorithm for the evolutionary modeling of the Software Failure Data Series are to some extent further indicated. 

 

4  ASTRINGENCY ANALYSIS OF GP 

4.1  Affect of optimal reserve strategy on astringency 

To illustrate the necessity of the Optimal Reserve Strategy, first the structure is analyzed. If the colonies in each 
generation created during GP algorithm are treated as one state, a random process taking the place of the entire 
evolutionary process can be considered and analyzed as a Markov chain for astringency. Further the concept of a 
“realized history” is above all possible. 
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Consider the case of a strategy { } ∏∈= L,, 10 πππ , for any one history { } tt Haiaih ∈= L1100 ,,, . If this 

condition, { } 0| 0 >ihP tπ , is satisfied, that is to say, the probability of event th  is positive under the measure 

of strategyπ , then th is called the realized history of strategyπ . In other words, on the condition of strategyπ , 

a state 0i  is diverted to state 1i  after the experienced behavior 0a . The procedure keeps going until state ti is 

reached at the instant of t  if the experienced behavior 1a  is adopted. If the probability of the whole event 
inducted by strategyπ is not zero, the history is called “realized history” under the strategyπ . 
 
The optimal activity set is given as follows. For each state Si∈ , the following equation is defined as the 
practicable optimal activities of the state i . 

                                                                            Eq. (3) 

Theorem of Optimal Strategy: 

The necessary and sufficient condition of strategy { } ∏∈ππ=π L,, 10 as an optimal strategy is: for 0≥∀t , if 

history { } t1100t Ha,i,a,ih ∈= L is a realized history of strategyπ , then the equation ( ) 0| =tt haπ can be 

satisfied on condition that ( ) ( )t*
t iAiAa −∈  (Liu, 2004).The proof of this theorem can be found in Dong 

and Liu (1986). The significance lies in the following: a strategy is optimal only when each decision rule has to 
make use of the optimal behaviors of every realized history. 
 
From the theorem above, GP reserves the optimal individual of every generation for the next generation, which 
can be expressed as: ( ) ( ){ }bestAtAtA ,max1 =+ , where bestA is the best individual of the 1+t generation 

and ( )tA  is the optimal one of the t generation. Therefore the GP joined with optimal strategy is still a 
homogeneous Markov chain. In other words, the probability of going from any state to a state that includes the 
optimal solution is greater than zero, but it is zero on the contrary. Therefore GP with optimal strategy has the 
ability of a non-holonomic ergodic process and always can be convergent to the optimal solution with a 
probability of 1. 
 
4.2  Analysis of GP constringency by Markov Chain 
The concept of homogeneous time is given first. As we know, the visualized significance of the transition 
probability ( )nmpij , is the probability of transferring a state from i  to j , considering time from m  to n . As 

there are mn −  time units, or mn −  steps from m  to n , ( )nmpij , is defined as the transition probability 
for mn −  steps. 
 
If ( )mnmpij +,  has no relation with m  and 0n,m ≥ , in other words, no matter when state i  in the 

system starts, the probability is identical when transferred to state j  after n steps. And now the Markov 

chain { }0, ≥nX n is time homogeneous, which can be expressed as ( ) ( )npmnmp ijij =+, . A one-step 

transition probability is presented by ijp . For a Markov chain that is time homogeneous{ }0, ≥nX n , the 

equation ( ) ( )iXjXPmnp mnij ===− | is satisfied. Especially when 0=m , the 

equation ( ) ( )iXjXPnp nij === 0|  can be satisfied (Zhao & Zhu, 1993). 
 
As standard GA, a Markov chain of the standard GP algorithm is time homogeneous, which can be expressed as: 
  ( ) ( ) ( )( ) ijij PimXjmXPmmP ===+=+ |11, , 

 where Iji ∈, are states while m is the initial time. The initial distribution of population can be random 
because the initial distribution has no effect on the limited behavior of a Markov chain. 
 
Astringent Theorem of Markov: 

( )
( )

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

+≡ ∑
∈∈ SjiAa

jVaijpairiA ** ,|,maxarg ββ
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The probability of GP converging to optima is less than 1. This can be shown as follows: The probable states of 

a colony can be divided into two types, one is 0I , which includes optimal individuals and the other is nI , which 

does not include optimal individuals. The result Φ== nn IIIII IU 00 can be satisfied. The stable 

probability of 1P  transferred to state 0I  is less than 1, which can be proved by contradiction. Assume that the 

probability for which GP astringent evolves to optima is 1, that is to say, the probability of evolving to state nI  

is zero, and { } 0lim =∈
∞→ ntt

IPP can be satisfied. During the evolution process of GP, the state of the colony 

transferred to Ij∈  from Ii∈  by duplication, crossover, and mutation is described by the transition 

probability of genetic operators ijijij mcs ,, , respectively. Then the random matrices can be structured separately 

as { } { } { }ijijij mMcCsS === ,, , and the transferred matrix of the colony states GP is { }ijrSCMR == . 

 

As matrices MCS ,, are all random matrices, and ( )( ) ( ) 01 ,1, >−= − jiH
m

jiH
mij PPm  ( ijH  is the Hamming 

distance between i  and j ), the inequality 0>ijr can be easily proven. In other words, the matrix R is positive 

definite. At time t , the probability of a colony under state j  is ( ) ( )∑
∈

⋅=
Ii

t
ijij rPtP 0 , ( )L,2,1,0=t . 

 
According to the property of a homogeneous Markov chain, the stable probability distribution is independent of 
the initial probability distribution, or ( ) ( ) 0>∞=∞ ijij rPP , while Ij∈ . That is to say, j  is a state 

of nI so { } 0lim >∈
∞→ ntt

IPP , which is inconsistent with the assumption above and the theorem comes into 

existence. 
 
Therefore, the fact that standard GP can be astringent on the condition that the optimal reserve is adapted has 
been proved. Otherwise, astringency is not certain. 

4.3  Summary 

Assume that the evolutional colony of the k generation is { }k
n

kk
k xxxX ,,, 21 L=  during the implementation 

of GP, where n is the size of colony, and ( ){ }nixff k
ik ,,2,1max L== is the maximum fitness of the 

individuals in current generation. When GP is used in practice, the optimal strategy should be used, which 
selects optimal individuals in the initial generation and reserves them in the colony as individuals for 1+n , 
which means they never participate in the evolutional operation from initial generation to the next. 
 
Similarly, for the inherited generation k , the optimal individual selected out from generation k  can be 
compared with optimal individuals from the previous generation. Then the better one can be added into the 
colony as the optimal individual of the current generation, which can be defined as k

1nx +  for the 
1+n individual. However, it never participates in any evolutional operation. Then we will get the equality 

( )k
nk xff 1+=  when the optimal reserved strategy is used. 
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Without the optimal reserved strategy, consider the nontrivial case if f  is not a constant value. Assume that 

( ){ }** \:min TSTTffm ii ∈−= .The result is that m exists and m >0 when S is finite. It can be obtained 

that { } { } P0DPDP kk =>=ε< (No individual in the generation k, which belongs to *X ) on condition 

that m<< ε0 . During the process of variation from generation ( )1k − to k , the probability for every 

individual of the mutated individual not in the optimal set satisfies the equation 0DPnot >≥ , where notP is the 
probability and D is a fixed constant. So the probability that all individuals in generation k do not belong to 

*X is greater than or equal to ( )nm DP ⋅ , that is { } ( )nmk DPDP ⋅≥< ε . Therefore we can obtain the 

inequality { } ( ) 11 <⋅−≤≤ n
mk DPDP ε . As D  is a constant independent of k and 1≥∀k  is always 

correct, GP is not convergent at this time. In all, the astringency of GP is impossibly promised if the mutation 
operator in any form is not applied. 
 
Therefore, no matter how large the population, it is finite. Sampling errors of the genetic operation are inevitable, 

which may make certain elements in F and T needed by individuals in *X disappear from the colony after a 
number of stages. Even these elements may never have a chance to participate in the colony without mutation. 
Therefore they have no possibility of getting an optimal solution. In a word, GP is not likely to be astringent 
unless certain mutation forms or the optimal reserved strategy is utilized (Jia, Kang, & Chen, 2003). 

5  CONCLUSION 

Forecasting of software failure data by Genetic Programming has removed some of the subjective assumptions 
of statistical models and adds consistency in the application of the models. This makes sense in a practical 
application for the analysis of software reliability models and forecasting software failure behaviors. This paper 
treats different states during individuals’ evolution in GP as Markov random processes and shows that it will 
converge to the best solution if the “best-individuals reserved strategy” is used, which can consequently evolve 
to better individuals. It is proved that the GP algorithm is able to obtain a better solution and may probably be 
feasible and available for practical applications. However, the influence of generation size as well as the setup 
for genetic operations on the constringent speed (or the speed that best solutions achieve) may be reduced, and 
the time for computing may be too long, which involves the efficiency of problem solving. All of these issues 
should be studied further. In other words, the elements related to the constringent speed should be improved to 
be fitter for modeling and forecasting time series problems accordingly. 
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