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ABSTRACT 

 

Biological effects of low-dose radiation are studied by computational methods. Assessing the risks of low-dose 

radiation, i.e. radiation-induced cancer, is becoming important in the study of public health because of the many 

different types of exposures, medical exposures, and from radiation protection viewpoints. In general, radiation 

effects arise from damage done to DNA by ionizing radiation. Therefore, examining effects from the initial DNA 

damage to the risk assessment is a problem with a very wide spatiotemporal scale. We are studying this problem 

by dividing it into three parts: 1) the DNA strand is broken by ionizing radiation, 2) DNA lesion repair, and 3) 

the process of cell carcinogenesis and tumorigenesis. In this paper, we mainly focus on the third part, the study 

of modeling and simulation of cell carcinogenesis. 
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1 INTRODUCTION 
 
In recent years, the importance of risk assessment of radiation exposure, especially at low doses, is becoming 

more important from many view points, i.e. medical exposure, radiation protection, cancer risk for astronauts, 

airline navigators, and workers in the nuclear industry. We see that one of the major difficulties of the problem is 

its large spatio-temporal scales, as shown in Figure 1. Radiation effects on humans take place initially in a very 

small region (~10-9m) at a very short time (~10-9s) interval. Following that, these small “effects” produce 

gene-mutations, and the accumulation of gene-mutations transforms normal cells into cancer cells (UNSCEAR, 

2000). However, the risk estimation of the radiation is based mainly on a so-called dose-response curve from 

epidemiological studies. An epidemiological study needs a large number of samples to get statistically 

significant data although in practice it is difficult to obtain such a large number of samples in the area of low 

dose radiation risks. It is also well known that the epidemiological data are strongly dependent on life styles and 

generations and life times of the considered populations; therefore the validity of their application to other ages 

and life times is still unclear. On the other hand, new biological findings have substantially increased our 

understanding of the mechanisms of low dose radiation effects. In recent years, the necessity for a new risk 

assessment based on biological mechanisms has widely evolved. Computer modeling and simulation are quite 

effective in clarifying the mechanism of radiation effects because a phenomenon taking place in a small region 
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in a very short time can be observed, which is difficult to examine by experimental approaches.  As explained 

above, the size of the problem is very large, and thus we classified it into three different sized problems, from 

phenomenological view points: 1) DNA strand breakage by ionizing radiation (Watanabe & Saito, 2002), 2) 

DNA lesion repair (Bunta, Laaksonen, Pinak, & Nemoto, 2006), and 3) the process of cell carcinogenesis and 

tumorigenesis. Hereafter, we mainly focus on the third problem, the modeling and simulation of cell 

carcinogenesis and tumorigenesis. 
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Figure 1. Schematic explanation of the spatiotemporal relationship of the problem. We see a very small initial 

event becoming sequentially a large-scale phenomenon. Scales depicted in the axis are approximate. 

 

2 MODEL 
 

Our model for cell carcinogenesis and tumorigenesis is composed of many cells, which have flexible free 

surfaces and internal biological mutation processes. Cells are classified into four types (normal, initiated, 

promoted, and cancer) by their stage of carcinogenesis. The process of carcinogenesis is described by 

intracellular biological (mutation) dynamics and extra cellular physical dynamics (cell movement), and therefore 

we modeled it by a combination of both. For the physical dynamics part of the model, we use the cellular 

large-Q Potts model (CPM), which is based on a biological hypothesis by Steinberg (1970). The CPM assigns a 

spin σij to each lattice site (i, j), and packed sites that have the same spin number define a cell. Each cell has an 

associated cell type, τ. Figure 2 shows the schematic explanation of the formation rule of a cell of our model 

(Ouchi, Glazier, Rieu, Upadhyaya, & Sawada, 2003). 
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Figure 2. Schematic explanation of the cell configuration of the simulation. The numbers in the lattice show σij, 

and each group of σij defines a cell. The colors of each cell define the cell type, in this case, the stage of the cellτ. 

A fat line in the figure shows the bonding side of the cell. 

 

As a stage of carcinogenesis, we introduce four cell types: τi, where τ1 denotes a normal cell, τ2 an initiated cell, 

τ3 a promoted cell, and τ4 a cancer cell. In the simulation, we calculate the total energy of the system, H, from: 
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where a(σ) and l(σ) are respectively the area and perimeter of the cell σ, λ1and λ2 are the elasticity parameters, 

Aτ the target cell area, and lτ the target perimeter. Jττ′ is the adhesive energy between cell τ and cell τ′. We also 

denote medium as a cell type τ=m. At each step, we use the Monte Carlo method to simulate cell group 

movement. Using this CPM formalism, we can simulate many of the cell group dynamics, e.g., the cell sorting 

process (Grazier & Graner, 1993). 

 

For the intracellular dynamics, we adopt a simple multi-stage stochastic state transition equation based on the 

molecular biological finding of Fearon and Vogelstein (1999), which also includes the probability of cell death 

and cell division (Fig. 3). Thus the parameters of the intracellular dynamics can be classified into three 

categories: cell transition, cell death, and cell proliferation. In our model, complicated mass effects of the cell 

group are handled by the extracellular dynamics, and therefore included intracellular dynamics are very simple. 
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In the next section, we give some simulation results. 

 

τ1 τ 2 τ 3

k1 k2 k3 k4

P1 P2 P3

 

Figure 3. Schematic explanation of the intracellular dynamics of our model. In this figure, τ1, τ2, τ3, τ4 show the 

normal, initiated, promoted, and cancer cell stages respectively, P1, P2, P3 are the mutation rates, in a broad sense, 

of each stage, and k1, k2, k3, k4 are the cell death rates for each stage. If the cell area exceeds some threshold 

value, a(σ) > ac, then cell division occurs.  

 

3 SIMULATION RESULTS 
 

For the initial state of the simulation, we choose normal cells with 0.2% initiated cells. The total number of cells 

is about 260. We have numerically studied our model by changing the state transition and cell death parameters, 

Pi and ki. Figures 4(A) – 4(C) show typical cell population dynamics of the model. We obtained 3 

distinguishable state change dynamics, called type A, type B, and type C. As shown in Figure 4(A), the 

population of the normal cells N1 remains relatively steady with time, dN1/dt = 0, and the population of the 

cancer cells N4 is nearly zero, N4≈0. Thus the state can be thought to be in equilibrium, and we get no tumor at 

this state. On the contrary, the formation of a tumor is seen in type B and type C states. The primary difference 

between type B and type C states is the tumor growth rate and decrease of normal cells. In the type B state, we 

see exponential growth of the tumor and exponential decrease of the normal cells. In the type C state, the growth 

rate of the tumor appears to be linear, and moreover the population of the normal cells is linearly decreasing, 

dN4/dt=κ4, dN1/dt=-κ1, where κ1 is the decrement coefficient and κ4 the growth rate coefficient. Temporal 

snapshots of the simulation are shown in Figure 5. Starting from the same initial condition, we have obtained 

these 3 distinguishable states, explained above. We can see the clear difference between type B and type C states 

in the middle snapshots, and the population of the cells with promoted stage in the type B state is larger than that 

in type C. Further research which increases the variety of parameter sets and analysis of the parameter 

dependency is now in progress. 
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Figure 4. Collection of time series plots of the population for normal cells (dotted line) and cancer cells (solid 

line). Figures (A), (B), and (C) are the plots of type A, type B, and type C respectively. The saturation of the 

cancer cell growth rate in figure (B) comes from the limitation of the system size. 
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Figure 5. Snapshots of the simulation for each state. Arrows in the figure show directions of the simulation time. 

We have simulated these states using the same initial conditions.  

 

4 CONCLUSION 
 

We have modeled a process of tumorigenesis using CPM with simple intracellular dynamics. The dynamical 

states are classified into three by the population dynamics of the normal cells and cancer cells: steady 

equilibrium (type A), exponential (type B), or linear (type C); however we need to study further the statistical 

analysis of the coefficients κ4, κ1 and the functional structure of exponential dynamics. Moreover, the relation 

between these dynamics and the parameters needs more investigation. From the simulation results of this model, 

a parameter region where tumors did not grow is suggested. Within this model, we can investigate 

morphological aspects of the tumor growth process, one of the important features of this model. In the present 

paper, we focused mainly on the result of the three obtained states and their condition, while more extensive 

parameter space search and statistical analysis need further investigation. 
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