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ABSTRACT 
 

In this paper we consider the Bayesian estimators for the unknown parameters of  

Gumbel type-II distribution. The Bayesian estimators cannot be obtained in closed forms. Approximate Bayesian 

estimators are computed using the idea of Lindley’s approximation under different loss functions. The approximate 

Bayes estimates obtained under the assumption of non-informative priors are compared with their maximum 

likelihood counterparts using Monte Carlo simulation. A real data set is analyzed for illustrative purpose. 

 

Keywords: Bayesian estimator, Maximum likelihood estimator, Lindley’s approximation, Monte Carlo simulation, 
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1 INTRODUCTION 
 
The Gumbel type-II distribution was introduced by German mathematician Emil Gumbel (1891-1911) in 1958, and  
is useful in predicting the chance of meteorological phenomena, such as annual flood flows, earthquakes, and other 
natural disasters. It has also been found to be satisfactory in describing the life expectancy of components. The 
random variable X  is said to follow a Gumbel type-II distribution with parameters  and  , where the cumulative 
distribution function (CDF) is given by 

 | , 1 exp , 0, , 0,F x x x                                  (1) 

 
The corresponding probability density function (PDF) of (1) is 

   ( 1)| , exp , 0, , 0.f x x x x                          (2) 

 
Recently, many authors have contributed to statistical methodology and characterization of Gumbel type-II 
distribution. For example, Kotz and Nadarajah (2000) discussed some properties of Gumbel distribution. Feroze and 
Aslam (2012) considered Bayesian analysis of Gumbel type-II distribution under doubly censored samples using 
different loss functions. Corsini et al. (2002) discussed the maximum likelihood (ML) algorithms and Cramer-Rao 
(CR) bounds for the location and scale parameters of the Gumbel distribution. Ali Mousa et al. (2002) studied the 
Bayesian estimation in order to analyze both the parameters of Gumbel distribution based on record values. 
Similarly, Malinowska and Szynal (2008) obtained Bayesian estimators for two parameters of a Gumbel distribution 
based on kth lower record values. Nadarajah and Kotz (2004) introduced beta Gumbel (BG) distribution which 
provides closed-form expressions for the moments, asymptotic distribution of extreme order statistics as well as 
discussed the maximum likelihood estimation procedure. Miladinovic and Tsokos (2009) studied the sensitivity of 
Bayesian reliability estimates for modified Gumbel failure models under five different parametric priors using 
squared error loss function.  Al-Baidhani and Sinclair (1987) and Hossain and Howlader (1996) studied different 
estimation methods in case of complete samples. However, Bayesian estimations under different loss functions are 
not frequently discussed. Bayesian estimators under different loss functions involve integral expressions, which are 
not analytically solvable. Therefore, Lindley’s approximation technique is suitable for solving such problems.  
 
The main objective of this study is to develop the Bayesian estimators under different loss functions and compare 
them with maximum likelihood estimators (MLEs) in terms of bias and mean squared error (MSE) of the estimate. 
The rest of the paper is organized as follows. In Section 2, the MLEs and observed Fisher information matrix for 
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parameters are derived. Bayesian estimation under LINEX (linear exponential) loss function and general entropy 
loss function are discussed in Section 3. Simulation study is presented in Section 4, and one real data set is analyzed 
in Section 5. Finally, conclusion is given in Section 6. 

2 MAXIMUM LIKELIHOOD ESTIMATION 

 
Let 1 2( , ,..., )nX X X X  be a random sample of size n  from the Gumbel type-II distribution (2). The likelihood 

function of ( ,  ) is  

  ( 1)

1

( , ) exp .
n
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Then the log-likelihood function can be written as 
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The maximum likelihood estimates of  and   , say ˆ
ML  and ˆ

ML  respectively, can be obtained as the solutions 
of the equations 
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                                                                    (4)  

This may be solving using an iteration scheme. We use the Laplace approximation to compute MLEs. Further, the 
observed Fisher information matrix is obtained by taking the second and mixed partial derivatives of ln L  with 
respect to  and   . We have 
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3 BAYESIAN ESTIMATION 

 
In Bayesian estimation, we consider two types of loss functions. The first one is LINEX loss function, which is 
asymmetric. The LINEX loss function was introduced by Varian (1975), and several authors, such as Basu and 
Ebrahimi (1991), Rojo (1987), and Nassar and Eissa (2004), have used this loss function in different estimation 
problems. This function rises approximately exponentially on one side of zero and approximately linearly on the 
other side. The LINEX loss function can be expressed as 

 ( ) 1, .  0kL e k k       ,                      (5)                                                                              

where ˆ( ),     and ̂  is an estimate of  . The sign and magnitude of the shape parameter k  represents the 
direction and degree of symmetry, respectively. Moreover, if 0,k  the overestimation is more serious compared to 
the under estimation and vice-versa. For k  close to zero, the LINEX loss is approximately squared error loss and 
therefore almost symmetric. The posterior expectation of the LINEX loss function (5) is  

                                   
ˆˆ ˆ[ ( )] [ ] ( ( )) 1,k kE L E e k Ee  

                                         (6) 

where ( )E   denotes the posterior expectation with respect to the posterior density of  . The Bayes estimator of  , 

denoted by ˆ
BL under LINEX loss function, is the value ̂ , which minimizes (6). It is 

  1ˆ ln ,k

BL E e
k



          (7) 

provided that the expectation [ ]kE e 



  exists and is finite. The problem of choosing the value of the parameter k  
is discussed in Calabria and Pulcini (1996). The second type of loss function is the generalization of the entropy loss, 
which is discussed by Dey and Liu (1992) and Dey (1987). The general entropy loss is defined as  

                                                                  
ˆ ˆ

ˆ( , ) log 1,

k

BE kL
 

 
 

   
        
   

                                                   (8)                                       

where ̂  is an estimate of  . The Bayes estimator relative to the general entropy loss is                                                 

                                                        
1

ˆ ,k k
BE E 


 

 
                                                                           (9) 

provided that ( )kE    exists and is finite. For k=1, the Bayes estimator (9) coincides with the Bayes estimator 
under the weighted squared error loss function, and for k= -1, the Bayes estimator (9) coincides with the Bayes 
estimator under the squared error loss function. Further, the Bayesian estimators under LINEX loss function and 
general entropy loss function are provided in Appendix.  

4 SIMULATION STUDY 

 
To compare the performance of theoretical results, the samples are generated from Gumbel type-II distribution using  
the inverse transformation technique by considering different values of parameters. Sample size is varied to observe 
the effect of small and large samples on the estimators. For each sample size, we compute maximum likelihood 
estimates of  and  and the Bayesian estimates under LINEX loss and entropy loss were computed using 
Laplace’s approximation and Lindley’s approximation respectively. 
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For Bayesian estimators, we consider that  and   each have independent Gamma 1 1( , )a b  and Gamma 2 2( , )a b   

priors. Further, the Bayesian estimators of  and   are also obtained using general uniform priors. We use 
different values of loss function parameter k=±1 and non-informative priors of both  and  , i.e., a1 = b1 = a2= b2 

= 0 and 1 2 1 2 2.a a b b     The behavior sampling of approximate Bayesian estimators is investigated and 
compared with the MLEs in terms of their MSEs. The results are presented in Tables 1-4. From the results of 
simulation study, conclusions are drawn regarding the behavior of the estimators, which are summarized below. 

1. As expected, it is observed that the performances of both Bayesian and maximum likelihood estimators 
become better when sample size increased. Also, it is observed that for large sample sizes, the Bayesian 
estimates and maximum likelihood estimates become closer in terms of MSEs. 

2. When k=1 and 1 2 1 2 0,a a b b     the MSEs of Bayesian estimators under LINEX loss function and 
general entropy loss function using Gamma priors and general uniform priors are lower than the MSEs of  
maximum likelihood estimators. Therefore the Bayesian estimators are more stable than maximum 
likelihood estimators. 

3. For k= -1 and 1 2 1 2 2,a a b b     the Bayesian estimators under general entropy loss function  and 
LINEX loss function perform better than MLEs obtained by using Gamma priors and general uniform 
priors in terms of their MSEs. 

4. Figure 1 indicates that MSEs decreased as n  increases for all methods of estimation studied. It is to be 
noted that, when sample size is small, the ML method tends to have larger MSE than the Bayesian method, 
and one would prefer Bayesian estimators. Clearly, for small sample sizes, the Bayesian estimators should 
be recommended for Gumbel type-II distribution. From Tables 1-4, we can see that in each scenario, the 
Bayesian estimators under assumption of general entropy loss function and LINEX loss function 
outperform the maximum likelihood estimators since MSEs are significantly smaller. It is worth noting that 
 

   BLU:
 Bayesian estimator under LINEX loss function using general uniform prior. 

   BEU:
 Bayesian estimator under general entropy loss function using general uniform prior. 

   BLG: Bayesian estimator under LINEX loss function using Gamma prior. 
   BEG:

 Bayesian estimator under general entropy loss function using Gamma prior.       
            
 
Table 1. Average estimates and corresponding MSEs (within parenthesis) for α when (k =1 and a1=a2=b1=b2= 0). 

n Estimator↓α→ 0.5 1.0 1.5 2.0 

20 α-ML 0.5397(0.0123) 1.0765(0.0478) 1.6178(0.1086) 2.1502(0.1889) 

α-BLU 

α-BLG 
0.5280(0.0113) 
0.5213(0.0112) 

1.0698(0.0439) 
1.0508(0.0411) 

1.6166(0.1039) 
1.5660(0.0884) 

2.1501(0.1824) 
2.0650(0.1474) 

α-BEU 

α-BEG 
0.5168(0.0094) 
0.5159(0.0092) 

1.0554(0.0426) 
1.0370(0.0403) 

1.6085(0.1064) 
1.5586(0.0913) 

2.1403(0.1887) 
2.0715(0.1594) 

30 α-ML 0.5268(0.0068) 1.0470(0.0271) 1.5762(0.0630) 2.0996(0.1129) 

α-BLU 

α-BLG 
0.5195(0.0063) 
0.5110(0.0062) 

1.0429(0.0255) 
1.0305(0.0245) 

1.5753(0.0611) 
1.5430(0.0548) 

2.1002(0.1100) 
2.0445(0.0954) 

α-BEU 

α-BEG 
0.5120(0.0056) 
0.5117(0.0054) 

1.0330(0.0249) 
1.0210(0.0241) 

1.5691(0.0617) 
1.5371(0.0557) 

2.1034(0.1109) 
2.0474(0.1002) 
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50 α-ML 0.5155(0.0037) 1.0282(0.0147) 1.5416(0.0347) 2.0566(0.0573) 

α-BLU 

α-BLG 
0.5110(0.0034) 
0.5103(0.0032) 

1.0258(0.0142) 
1.0168(0.0138) 

1.5411(0.0340) 
1.5223(0.0320) 

2.0569(0.0564) 
2.0246(0.0517) 

α-BEU 

α-BEG 
0.5068(0.0033) 
0.5066(0.0032) 

1.0199(0.0139) 
1.0127(0.0136) 

1.5369(0.0341) 
1.5183(0.0323) 

2.0579(0.0570) 
2.0256(0.0531) 

80 α-ML 0.5090(0.0021) 1.0174(0.0086) 1.5260(0.0188) 2.0381(0.0345) 

α-BLU 

α-BLG 
0.5065(0.0020) 
0.5056(0.0020) 

1.0159(0.0084) 
1.0114(0.0082) 

1.5256(0.0186) 
1.5141(0.0179) 

2.0383(0.0341) 
2.0184(0.0322) 

α-BEU 

α-BEG 
0.5037(0.0020) 
0.5032(0.0020) 

1.0122(0.0083) 
1.0077(0.0082) 

1.5229(0.0186) 
1.5115(0.0180) 

2.0387(0.0340) 
2.0188(0.0327) 

100 α-ML 0.5066(0.0016) 1.0134(0.0065) 1.5209(0.0144) 2.0239(0.0252) 

α-BLU 

α-BLG 
0.5024(0.0016) 
0.5020(0.0016) 

1.0123(0.0064) 
1.0087(0.0063) 

1.5206(0.0142) 
1.5114(0.0138) 

2.0240(0.0249) 
2.0083(0.0240) 

α-BEU 

α-BEG 
0.5023(0.0015) 
0.5022(0.0015) 

1.0092(0.0063) 
1.0057(0.0063) 

1.5184(0.0143) 
1.5093(0.0138) 

2.0242(0.0250) 
2.0085(0.0243) 

 

Table 2. Average estimates and corresponding MSEs (within parenthesis) for β when (k =1 and a1=a2= b1 =b2= 0). 

n Estimator↓β→ 0.5 1.0 1.5 2.0 

20 β-ML 0.5098(0.0249) 1.0380(0.0751) 1.6059(0.1902) 2.1958(0.4431) 

β-BLU 

β-BLG 
0.5081(0.0236) 
0.5073(0.0222) 

1.0378(0.0735) 
1.0032(0.0635) 

1.6058(0.1803) 
1.5234(0.1413) 

2.1758(0.3763) 
2.0398(0.2819) 

β-BEU 

β-BEG 
0.5068(0.0235) 
0.5059(0.0233) 

1.0229(0.0742) 
1.0227(0.0663) 

1.5966(0.1900) 
1.5134(0.1349) 

2.1950(0.4369) 
2.0598(0.3419) 

30 β-ML 0.5075(0.0153) 1.0259(0.0437) 1.5663(0.1052) 2.1192(0.2209) 

β-BLU 

β-BLG 
0.5043(0.0148) 
0.5040(0.0143) 

1.0234(0.0431) 
1.0035(0.0391) 

1.5660(0.1030) 
1.5144(0.0876) 

2.1113(0.2055) 
2.0235(0.1666) 

β-BEU 

β-BEG 
0.5023(0.0148) 
0.5020(0.0145) 

1.0154(0.0431) 
1.0140(0.0401) 

1.5584(0.1041) 
1.5055(0.0919) 

2.1217(0.2135) 
2.0316(0.1856) 

50 βML 0.5038(0.0090) 1.0146(0.0238) 1.5373(0.0535) 2.0661(0.1065) 

β-BLU 0.5033(0.0088) 1.0191(0.0236) 1.5370(0.0529) 2.0629(0.1033) 
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β-BLG 0.5031(0.0086) 1.0016(0.0223) 1.5075(0.0482) 2.0119(0.0909) 

β-BEU 

β-BEG 
0.5018(0.0088) 
0.5015(0.0086) 

1.0082(0.0235) 
1.0070(0.0226) 

1.5319(0.0533) 
1.5012(0.0493) 

2.0659(0.1044) 
2.0146(0.0959) 

80 β-ML 0.5030(0.0057) 1.0107(0.0153) 1.5204(0.0318) 2.0448(0.0634) 

β-BLU 

β-BLG 
0.5017(0.0056) 
0.5011(0.0056) 

1.0135(0.0153) 
1.0026(0.0147) 

1.5203(0.0316) 
1.5022(0.0299) 

2.0430(0.0622) 
2.0117(0.0572) 

β-BEU 

β-BEG 
0.5010(0.0056) 
0.5009(0.0055) 

1.0066(0.0152) 
1.0010(0.0148) 

1.5169(0.0315) 
1.5006(0.0303) 

2.0442(0.0624) 
2.0128(0.0591) 

100 β-ML 0.5008(0.0044) 1.0081(0.0119) 1.5120(0.0251) 2.0308(0.0471) 

β-BLU 

β-BLG 
0.5007(0.0044) 
0.5003(0.0043) 

1.0104(0.0118) 
1.0017(0.0115) 

1.5119(0.0250) 
1.5005(0.0237) 

2.0295(0.0464) 
2.0047(0.0436) 

β-BEU 

β-BEG 
0.5006(0.0043) 
0.5001(0.0042) 

1.0049(0.0118) 
1.0001(0.0116) 

1.5102(0.0250) 
1.5000(0.0240) 

2.0301(0.0466) 
2.0053(0.0447) 

Table 3. Average estimates and corresponding MSEs (within parenthesis) for α when (k = -1 and a1=a2= b1=b2=2) 

n Estimator↓α→ 0.5 1.0 1.5 2.0 

20 α-ML 0.5368(0.0120) 1.0805(0.0514) 1.6120(0.1017) 2.2018(0.1934) 

α-BLU 

α-BLG 
0.5365(0.0119) 
0.5304(0.0092) 

1.0727(0.0512) 
1.0705(0.0478) 

1.5910(0.1005) 
1.5597(0.0698) 

2.1741(0.1932) 
2.1730(0.1868) 

α-BEU 

α-BEG 
0.5363(0.0118) 
0.5199(0.0086) 

1.0639(0.0467) 
1.0608(0.0392) 

1.5495(0.0845) 
1.5212(0.0602) 

2.0954(0.1458) 
2.0740(0.1394) 

30 α-ML 0.5247(0.0070) 1.0471(0.0279) 1.5667(0.0594) 2.0920(0.0959) 

α-BLU 

α-BLG 
0.5245(0.0069) 
0.5215(0.0059) 

1.0411(0.0278) 
1.0460(0.0261) 

1.5522(0.0585) 
1.5411(0.0485) 

2.0697(0.0945) 
2.0630(0.0944) 

α-BEU 

α-BEG 
0.5240(0.0070) 
0.5186(0.0056) 

1.0396(0.0261) 
1.0374(0.0239) 

1.5264(0.0528) 
1.5158(0.0440) 

2.0136(0.0823) 
2.0134(0.0737) 

50 α-ML 0.5149(0.0037) 1.0286(0.0146) 1.5415(0.0320) 2.0128(0.0607) 

α-BLU 

α-BLG 
0.5147(0.0036) 
0.5135(0.0034) 

1.0248(0.0143) 
1.0205(0.0141) 

1.5327(0.0315) 
1.5290(0.0287) 

2.0100(0.0596) 
2.0066(0.0470) 

α-BEU 

α-BEG 
0.5143(0.0036) 
0.5140(0.0033) 

1.0182(0.0140) 
1.0139(0.0134) 

1.5179(0.0296) 
1.5143(0.0269) 

2.0131(0.0547) 
2.0130(0.0473) 
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80 α-ML 0.5078(0.0021) 1.0185(0.0084) 1.5231(0.0182) 2.0064(0.0346) 

α-BLU 

α-BLG 
0.5075(0.0021) 
0.5071(0.0020) 

1.0160(0.0084) 
1.0155(0.0082) 

1.5175(0.0181) 
1.5162(0.0171) 

2.0053(0.0342) 
2.0047(0.0301) 

α-BEU 

α-BEG 
0.5073(0.0021) 
0.5061(0.0019) 

1.0120(0.0082) 
1.0115(0.0080) 

1.5086(0.0174) 
1.5073(0.0165) 

2.0023(0.0325) 
2.0018(0.0297) 

100 α-ML 0.5034(0.0016) 1.0138(0.0066) 1.5100(0.0151) 2.0006(0.0265) 

α-BLU 

α-BLG 
0.5030(0.0016) 
0.5028(0.0016) 

1.0118(0.0065) 
1.0110(0.0065) 

1.5100(0.0150) 
1.5048(0.0144) 

2.0001(0.0263) 
2.0002(0.0239) 

α-BEU 

α-BEG 
0.5031(0.0016) 
0.5025(0.0015) 

1.0086(0.0064) 
1.0008(0.0063) 

1.5000(0.0143) 
1.5007(0.0140) 

2.0001(0.0253) 
2.0000(0.0235) 

 

Table 4. Average estimates and corresponding MSEs (within parenthesis) for β when (k = -1 and a1=a2=b1=b2=2). 

n Estimator↓β→ 0.5 1.0 1.5 2.0 

20 β-ML 0.5061(0.0246) 1.0362(0.0737) 1.6004(0.1911) 2.1960(0.1783) 

β-BLU 

β-BLG 
0.5049(0.0239) 
0.5038(0.0237) 

1.0164(0.0691) 
1.0152(0.0590) 

1.5706(0.1892) 
1.5512(0.1513) 

2.1705(0.1763) 
2.1508(0.1699) 

β-BEU 

β-BEG 
0.5060(0.0238) 
0.5015(0.0213) 

1.0265(0.0617) 
1.0247(0.0501) 

1.5404(0.1429) 
1.5357(0.1329) 

2.1650(0.1669) 
2.1578(0.1626) 

30 β-ML 0.5047(0.0156) 1.0254(0.0443) 1.5669(0.1027) 2.1120(0.1309) 

β-BLU 

β-BLG 
0.5040(0.0154) 
0.5028(0.0151) 

1.0124(0.0422) 
1.0122(0.0391) 

1.5457(0.0992) 
1.5285(0.0684) 

2.1112(0.1205) 
2.0935(0.1166) 

β-BEU 

β-BEG 
0.5043(0.0149) 
0.5040(0.0141) 

1.0230(0.0394) 
1.0197(0.0353) 

1.5284(0.0849) 
1.5210(0.0603) 

2.1326(0.1305) 
2.1215(0.1156) 

50 β-ML 0.5008(0.0091) 1.0135(0.0250) 1.5398(0.0545) 2.0733(0.1125) 

β-BLU 

β-BLG 
0.5005(0.0090) 
0.5003(0.0089) 

1.0059(0.0243) 
1.0026(0.0233) 

1.5269(0.0530) 
1.5218(0.0448) 

2.0600(0.1124) 
2.0519(0.1030) 

β-BEU 

β-BEG 
0.5006(0.0088) 
0.5005(0.0085) 

1.0129(0.0234) 
1.0111(0.0220) 

1.5084(0.0487) 
1.5072(0.0413) 

2.0420(0.0968) 
2.0349(0.0850) 
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80 Β-ML 0.5003(0.0058) 1.0075(0.0147) 1.5217(0.0316) 2.0399(0.0602) 

β-BLU 

β-BLG 
0.5002(0.0058) 
0.5001(0.0058) 

1.0028(0.0145) 
1.0020(0.0143) 

1.5136(0.0310) 
1.5119(0.0284) 

2.0309(0.0600) 
2.0107(0.0479) 

β-BEU 

β-BEG 
0.5003(0.0057) 
0.5001(0.0056) 

1.0050(0.0141) 
1.0032(0.0136) 

1.5049(0.0296) 
1.5030(0.0271) 

2.0028(0.0551) 
2.0020(0.0460) 

100 β-ML 0.5001(0.0045) 1.0017(0.0118) 1.5156(0.0245) 2.0021(0.0458) 

β-BLU 

β-BLG 
0.5000(0.0044) 
0.5000(0.0044) 

1.0010(0.0116) 
1.0010(0.0115) 

1.5009(0.0241) 
1.5005(0.0225) 

2.0015(0.0457) 
2.0013(0.0388) 

β-BEU 

β-BEG 
0.5000(0.0043) 
0.5000(0.0043) 

1.0003(0.0130) 
1.0001(0.0111) 

1.5002(0.0233) 
1.5001(0.0218) 

2.0010(0.0429) 
2.0003(0.0377) 
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Figure 1. Plot of sample size and MSEs of α and β using different methods of estimation such as k = ±1, 

a1=b1=a2=b2=0 and a1 =a2=b1 =b2= 2. In abscissa (a) MSEs of α (when k =1), (b) MSEs of α (when k =-1), (c) 
MSEs of β (when k =1), (d) MSEs of β (when k =-1). 

5    DATA ANALYSIS 

 
In this section we consider the real data set obtained from Nichols and Padgett (2006), which represents the breaking 
stress of carbon fibres (in Gba). The data consist of 100 observations and are presented in Table 5. 
 
     Table 5. Breaking stress of carbon fibres (in Gba). 

3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9,  
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 
3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 
1.84, 1.59,3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 
1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 
2.88, 2.82, 2.05, 3.65 

 
     Table 6. Point estimates and standard deviations (SD) of α and β. 

Estimator α SD β SD 
ML 1.7687 0.1119 3.0880 0.3271 
BLU 1.7678 0.1117 3.0634 0.3271 
BLG 1.7569 0.1117 3.0238 0.3261 
BEU 1.7670 0.1118 3.0820 0.3264 
BEG 1.7561 0.1116 3.0412 0.3270 

 
The point estimates of α and β and their standard deviations (SD) are summarized in Table 6. It is observed that the 
Bayesian estimates under general entropy loss function and LINEX loss function are close to the ML estimates. 
When we compare the ML estimators with Bayesian estimators using Lindley’s approximation in terms of their 

standard deviations,  the approximate Bayesian estimators perform better than the MLEs.  
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6 CONCLUSION 

 
In this paper we consider classical and Bayesian estimators under the assumption of LINEX loss and general entropy 
loss functions. Neither Bayesian nor maximum likelihood estimators can be obtained in closed forms. Lindley’s 

approximation is used to obtain the Bayesian estimates, and it is concluded that the approximation works very well 
even for small sample sizes though the computation of Lindley’s technique based on the maximum likelihood 
estimators. We compare the performance of different methods by Monte Carlo simulations. Simulations showed that 
the Bayesian estimators under general entropy loss function and LINEX loss function perform better than the 
maximum likelihood estimators.  However, it is observed that for large sample sizes the Bayesian and maximum 
likelihood estimates become closer in terms of their MSEs. 
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9 APPENDIX 
 
For Bayesian estimation, we need prior distribution of  and  . Assuming that  and   each have independent 

Gamma 1 1( , )a b  and Gamma 2 2( , )a b  priors respectively for 1 1 2 2, , , 0a b a b  , i.e., 
1 11

1( )   a be       and 2 21

2( )   a be       . 

Based on the priors, the joint posterior density of  and   can be written as 

                        1 2

1 2
0 0

( | , ) ( ) ( )
, |

( | , ) ( ) ( )

L data
f x

L data d d

     
 

       
 



 
     (10) 

Therefore, the Bayesian estimator of any function of   and  , say g( ;  ) , under the LINEX loss function is 
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                    (11) 

It is not possible for (11) to have a closed form. Therefore, we adopt Lindley’s approximation (1980) procedure to 

approximate the ratio of the two integrals such as (11), which can be evaluated as 

  
2 2
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where ( )l  is the log-likelihood function of the observed data,

i js is the ( , )i j th  element of the inverse of Fisher’s 

information matrix. Therefore, the approximate Bayesian estimators of  and   under LINEX loss function are 
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The Bayesian estimators of  and   under general entropy loss function are 
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 , and̂  and ̂  in equations (12)-(16) are the maximum likelihood estimators of 

 and   from (3) and (4). Similarly, the approximate Bayesian estimators of  and   under LINEX loss 

function and general entropy loss function using general uniform priors i.e. 1

3  ( ) a     and 1

4  ( ) b    can 
be obtained.
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