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ABSTRACT 
 
Herein, an extension to the object query language (OQL) for incorporating binary relational expressions is 
investigated. The extended query language is suitable for query submissions to an object oriented database, whose 
functionality is based upon the algebra of binary relations. Algebraic expressions, consisting of simple and multiple 
merged chains of binary relations, are stated in SQL syntax-based object queries, which are utilized by a 
multiwavefront algorithm mapped on a multi-directional multi-functional engine(M2FE), for object oriented parallel 
query processing. The proposed extension also attempts to solve other object oriented database issues, such as 
inheritance, relationships between objects and literals, and recursive queries.  
 
Keywords: Object oriented databases, Object query language extension, Object oriented recursive queries, Parallel 
query processing, Algebra of binary relations   
 
1 INTRODUCTION 
 
During the operation of an object oriented information system, objects are derived, which are holding references one 
to another. Thus, sets of related (connected through references) pairs of objects are formed. In a pair of objects, the 
direction of the relationship between its members is defined to be from the object that holds the reference towards 
the other whose reference in being held. A binary relation is considered as a set of ordered object pairs. These sets 
of ordered object pairs can constitute an object oriented database, whose object manipulation (Gyssens, 1994b; 
Sarathy, 1993; Van den Bussche, 2001) can be based upon the algebraic framework of the binary relations algebra 
(Tarski, 1941; Givant, 1994; Desharnais, 1989).  
 
Attempts to use the algebra of binary relations for object manipulation purposes resulted in graph-oriented systems, 
where graphs were used for querying object databases (Gyssens, 1994a; Gyssens, 1994b; Sarathy, 1993) or 
structural manipulation of software system architectures (Hold, 1998; Fahmy, 2000). These graph systems obviously 
have serious disadvantages, because the large number of derived objects results in large scheme graphs, which are 
difficult to understand, handle or even to be displayed. To avoid graph complexities and disadvantages in querying 
object-oriented databases, an extension to the existing OQL (Cattell, 2000) for incorporating expressions of binary 
relations algebra in queries, is proposed. 
 
Because OQL has adopted the use of the SQL form, the algebraic expressions can be stated using SQL syntax, 
which can also facilitate users familiarized with legacy database systems. Connecting a series of binary relations 
through the algebraic composition operator, simple and multiple chains are formed. The multiple chains can be 
merged for query optimization purposes. These chains are stated in queries using SQL syntax. A multiwavefront-
like algorithm, which is mapped on a multi-directional multi-functional engine, is proposed for efficient query 
processing purposes. This algorithm (and engine) processes the simple and multiple merged chains of binary 
relations introduced in the OQL extension and stated in queries. The basic elements of the multi-functional engine 
architecture can be of two types of array processors: a (synchronous) square systolic device for wavefront-like 
computations - S2DWC (Fountoukis, 2004) or a bidirectional parallel cubic engine - BPCE (Fountoukis, 2005). 
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Issues concerning object inheritance, relationships between objects and literals, and the object oriented recursive 
queries are attempted to be solved in the framework of the algebra of binary relations.   
 
The paper is structured as follows. Section 2 describes the basic concepts of binary relations between objects. 
Section 3 provides an overview of the algebra of binary relations. The proposed object query language extension is 
covered in Section 4. In section 5 a short description of the multiwavefront algorithm, which processes the simple 
and multiple merged chains of binary relations and synthesizes multiple relations, along multiple directions is given. 
Section 6 concludes the whole work. 
 
2 BINARY RELATIONS OF OBJECTS 
 
There are three types of relationships (except inheritance) between classes of objects: association, aggregation and 
composition. All these relationships imply that one object is tied to another through a reference stored in an instance 
attribute. The direction of the relationship is considered to be from the object that holds the reference towards the 
other whose reference is being held and used (left part of Figure 1).  
 
 
 
                            cares                                                                               performs 
                                                                                                                                    
 
 

 
 
 

Figure 1. The directed binary relationship between two (classes of) objects at left and two (classes of) dependent 
objects at right. 
 
If an object has a method that uses another object (e.g., through a reference as parameter), then the first object 
depends upon the second object to do something. In this case the relationship and its direction are considered to be 
as in the previous case (right of Figure 1).  
 
The pairs of objects, thus formed, are entered in two column tables constituting the binary relations. Because each 
object has a unique identifier (“id”), which discriminates it from other objects, instead of pairs of objects, pairs of 
their corresponding “ids” can populate these tables (relations). The identifiers can be integers or combination of 
letters and integers, which are again equivalent to integers. Each binary table can be named with the name of 
relationship between the corresponding classes of objects (Figure 1). Object relations (tables) are illustrated in 
Figure 2.    
 
                          cares                performs 
                               
      
 
 
 
 
 
 
 
 
Figure 2. Object relations (binary tables), which are populated by pairs of object “ids” 
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3 ALGEBRA OF BINARY RELATIONS 

Assume that a set A of object binary relations, whose relations r, s are members, exists. Each member of the set A is 
also a set, having as members ordered pairs of object ids. Each ordered object pair indicates a directed relationship 
between its two members. The algebra of binary relations is an important model of relation algebras axiomatized by 
Tarski and his colleagues (Tarski, 1941; Givant, 1994). According to their original works, the core of the binary 
relations algebra consists of five operators: union, inverse, complement, composition and identity. However, in the 
works of (Gyssens, 1994b; Sarathy, 1993; Van den Bussche, 2001) only the first four of the previous listed operators 
are considered; the identity is excluded while two new operators, the left and the right tagging, are introduced. The 
identity and the intersection operators are expressed through these new operators (Gyssens, 1994b). 
 
In the present work, the five operators, originated by Tarksi and his colleagues are considered, instead of these 
alternative definitions. The tagging operators, introduced in (Gyssens, 1994b), herein are defined as direct product 
functions, whose images satisfy the direct product properties, which will be proved later on. The existence of the 
identity is required by the definition of the direct product of the algebra. The intersection operator does not belong to 
the core of the algebra; however it is naturally expressed, through the union and the complement, as a derived 
operator.  
 
Let ∈r A  be a relation. The set of atomic objects involved in the relation r is defined as 

{ | : ( , ) ( , ) }= ∃ ∈ ∨ ∈r u v u v r v u r . The active domain of r consisting of all the pairs of atomic objects involved in 

the relation r is the Cartesian product 2× =r r r . The active domain of a relation can be used instead of infinite 
relations (Gyssens, 1994b; Sarathy, 1993; Bussche, 2001), since the number of objects participating in an object 
oriented database is finite.  
 
The five operators, which consist of the core of the binary relations algebra, are: 
(1) Union: ∪r s  that is the union of two sets (relations) r, s. More explicitly: {( , ) | ( , ) ( , ) }∪ = ∈ ∨ ∈r s u v u v r u v s . 
(2) Inverse: 1−r , that is the set 1 {( , ) | ( , ) }− = ∈r u w w u r .  

(3) Finite Complementation: r , that is the set 2= −r r r . More explicitly: {( , ) | ( , ) }= ∈ × ∉r u v r r u v r . 
(4) Composition: or s , that is the set {( , ) | : ( , ) , ( , ) }= ∃ ∈ ∈or s u w v u v r v w s . 
(5) Identity: {( , ) | }= ∈rI u u u r . 
The algebra of binary relations is a Boolean algebra, according to the relation algebras axiomatization. Therefore, 
from De Morgan laws (Kelley, 1975; Dugundji, 1965), the intersection can be expressed through union and 
complement: 
(6) ∩ = ∪r s r s . 
The pair (r, s) of relations is called direct product (Desharnais, 1989) if and only if: 
       (a)  1− =or r I ,   (b)  1− =os s I ,   (c)  1 1− =or s  and (d) 1 1− −∩ =o or r s s I . 
Two functions 2 2, : → ×< >r r r r r , named left and right tagging operators, respectively, are defined with:  

(7) <r (x, y) = ((x, y), x),  , ∈x y r  and 

(8) >r (x, y) = ((x, y), y),  , ∈x y r . 

Their images {(( , ), ) | , }= ∈<r x y x x y r  and {(( , ), ) | , }= ∈>r x y y x y r  constitute the pair ( <r , >r  ), which is a 
direct product, since:  

(a) 1( )− =< <or r {( , ( , )) | , } {(( , ), ) | , }∈ ∈ox x y x y r x y x x y r 2{( , ) | }= ∈ =
r

x x x r I .  

(b) 2
1( )− => >o

r
r r I  (similarly). 

(c) 1( )− =< >or r {( , ( , )) | , } {(( , ), ) | , }∈ ∈ox x y x y r x y y x y r 2{( , ) | , } 1= ∈ =
r

x y x y r ,  

due to the fact that 21
r  is defined as the whole set r x r = 2r  and 20

r
 as the empty set ∅ .  

(d) 1 1( ) ( )− −∩ =< < > >o or r r r  
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{(( , ), ) | , } {( , ( , )) | , }∈ ∈ ∩ox y x x y r x x y x y r {(( , ), ) | , } {( , ( , )) | , }∈ ∈ =ox y y x y r y x y x y r  

{(( , ), ( , )) | , } {(( , ), ( , )) | , }∈ ∩ ∈ =x y x y x y r x y x y x y r  

2 2{(( , ), ( , )) | , }
×

∈ =
r r

x y x y x y r I .  

(9) 1( )π −= < <olr r r , left projection operator, which is derived by the property (a). It maps the relation r onto the set 
{( , ) | : ( , ) }∃ ∈u u v u v r . 

(10) 1( )π −= > >orr r r , right projection operator, which is derived by the property (b). It maps the relation r onto the 
set {( , ) | : ( , ) }∃ ∈v v u u v r . 

(11) 1 1( ) ( )π − −= ∪< < > >o or r r r r , combined left and right projection operator, which is derived by the combination 
(union) of the left and right projection operators. It maps the relation r onto the set 
{( , ) | : ( , ) ( , ) }∃ ∈ ∨ ∈u u v u v r v u r , that is the set {( , ) | }∈u u u r .  

(12) The operator derived by (c), preserves the relation, that is, it maps r onto itself, while the operator derived by 
(d), maps r onto the set{( , ) | ( , ), ( , ) }= ∈t t t u v u v r . 

The tagging operators are very useful in object ids creation (Gyssens, 1994b; Sarathy, 1993).  
 
3.1 Extensions of the binary relations algebra 
 
Adding a while construct and multiple assignments, the algebra of binary relations becomes a computationally 
complete database language (Gyssens, 1994b). Multiple assignments (assignment queries) are defined as expressions 
that compute several binary relations and return a single relation. They are used extensively in while loops.  
 
4 OBJECT QUERY LANGUAGE EXTENSION 
 
The object-oriented system, illustrated in Figure 3, partially represents an information system designed for a 
microsurgery clinic. The classes of the system are related through aggregation, composition and inheritance. 
Aggregation and composition are special forms of association, and they can be handled uniformly as associations. 
Inheritance relationships are also shown in the diagram. Two tables explaining the association and inheritance 
relationships between the classes follow the system diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Draft class diagram of an object oriented system. 
 
 

Patient Operation 

PreoperativeCare Diagnosis TissueDefect 

ChronicTissueDefect AcuteTissueDefect 

Closure 

TwoStepClosure DelayedClosure PrimaryClosure 

PreoperativeBlood 
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Table 1. Associations between classes. The order designates the direction of the relationships. 
 

Associations 
Aggregations Compositions 

PreoperativeCare PreoperativeBlood PreoperativeCare Diagnosis 
  Diagnosis TissueDefect 
  Operation PreoperativeCare 
  Operation Patient 
  Operation Closure 

 
 
 
Table 2. Inheritance relationships between classes. 
 

Inheritance 
Parent Class Child Class 

TissueDefect ChronicTissueDefect
TissueDefect AcuteTissueDefect 

Closure TwoStepClosure 
Closure DelayedClosure 
Closure PrimaryClosure 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4. Binary relations of objects for the system of Figure 3. 
 

PC PB 
pc0 pb0 
pc1 pb2 
pc1 pb3 
pc2 pb5 

PC D 
pc0 d0 
pc2 d1 
pc2 d3 
pc3 d4 

D TD
d0 td0
d2 td1
d3 td3
d5 td5

O P 
o0 p1 
o2 p1 
o3 p4 
o5 p5 

O PC 
o1 pc0 
o2 pc1 
o4 pc2 
o6 pc3 

O C 
o0 c0 
o2 c1 
o3 c3 
o5 c5 
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For each association (associated pair of classes) of the system (Figure 3 & Table 1), an ordered binary table 
(relation) is created (Figure 4) containing pairs of objects (or their identifiers – “ids”) derived by the two classes that 
are related. The following table explains the header names of the binary tables according to the relationships 
(associations) between classes that they represent.  
                                                      
Table 3. Correspondence betweeen header names of the relations (Figure 4) and associations (Table 1).  
 
 
 
 
 
 
 
 
 
 
In the works of Sarathy (1993) and Gyssens (1994b), where graph oriented systems are studied, binary relations are 
also formed for:  
(a) the inheritance relationships,   
(b) the relationships between objects and literals,  
(c) each class separately. 
In this paper, for all the above cases, a different approach is followed attempting to avoid additional complexity.  
 
4.1 Dealing with inheritance 
 
According to inheritance and polymorphism characteristics of the object oriented programming, an object of a 
subclass can be referred by a reference variable of the type of its super class. The following script of code illustrates 
this case:  

Employee emp = new Director();  
where Director is a subclass of the Employee super class. Therefore, in each column of each binary table, where 
super class objects are stored, its subclasses objects can also be stored and a super class reference variable can refer 
to any object of the column. For example, in the column TD, which represents the class TissueDefect, of the binary 
table (relation) D – TD (Figure 4), the objects of the subclasses (Figure 3) ChronicTissueDefect and 
AcuteTissueDefect can also be stored. Hence, the subclasses objects will be treated exactly as their super class 
objects. This extends the notion of the relation between the objects of two classes to the notion of the relation 
between the objects of two hierarchies of classes. The proposed solution is best suited for single inheritance object 
systems.  
 
4.2 Representation of single objects and binary relations between objects and 

literals.  
 
Let p represent an object of the Patient class containing the variables named age, sex, address and name of data 
types: int (integer), String, String and String, respectively. The values of type int are literals having no ids because 
they are not objects, while the values of type String are considered to be objects having as ids the values themselves. 
The binary relations between the class objects and the values stored in their variables can be represented writing the 
pairs: ( ), ( ), ( )− − −p age p sex p address , ( )−p name . If the principle of encapsulation has been applied during the 
design and implementation of the object oriented system, the instance variables of the objects and the values held by 
them might not be directly accessed. However, they can be indirectly accessed through set and get methods. In this 
case the pairs that represent the binary relations can be written: ( ()),−p getAge ( ()),−p getSex ( ())−p getAddress , 
( ())−p geName . In this way, the applied encapsulation property does not have any negative impact in the object 
oriented query processing.  
 
The binary relations between objects and literals should be treated as purely conceptual taking no care to encode 
them as binary tables, in contrast to the relations between objects. They can be derived from the single objects 

PC – PB 
PC – D 
D – TD 
O – P 
O – PC 
O – C 

PreoperativeCare – PreoperativeBlood
PreoperativeCare – Diagnosis 
Diagnosis – TissueDefect 
Operation – Patient 
Operation – PreoperativeCare 
Operation – Closure 
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themselves, which in the algebra of binary relations are represented as pairs of the form: (p – p). The binary 
representation of a single object is required because everything in the algebra of binary relations is handled 
uniformly. In this case, if the binary form of a single object is not written explicitly in a query, it is assumed that it is 
derived from left or right projection operators applied on other relations containing the required object as a member. 
These relations should be involved in any clause of the query. It is an implementation issue to realize this 
assumption.  
 
4.3 Extension of the object query language  
 
The incorporation of the following features of the extended (Section 3.1) binary relations algebra in the object query 
language – OQL is proposed: 1) the specification of the binary relations, 2) the original and derived algebraic 
operators, and 3) the extensions of the algebra (looping constructs). The proposed extension is described in the 
following paragraphs.  
 
4.3.1 Input and result of queries  
 
Let relation be a type of data defined by the algebraic binary relation concept.   
The query: 

select distinct ( )rp age π−  
from ( )p p−  

where ( ) (" "," ")rp name Mike Mikeπ− ==  
selects the set of ages of all persons named “Mike”, returning a set of pairs having identical integer numbers as 
members. For example, a member of the set of pairs can be the (35, 35), where 35 is a distinct age. Therefore, the 
result is of type: set<(age: int, age: int)>. Obviously the age and name are variables of the object holding integer and 
String values, respectively. The pair (“Mike”, “Mike”) is a value of the variable name having binary form. The 
exponential operator πr is the right projection operator. It holds: ( )π− rp age == ( )−age age .  
The query:  

select distinct struct (( ) ,( ) )r rp age p sexπ π− −  
from ( )p p−  

where ( ) (" "," ")rp name Mike Mikeπ− ==  
performs similarly, but for each person named “Mike”, it builds a structure containing pairs of values of the 
variables age and sex. Thus, the result is of type: set<(struct((age: int, age: int), (sex: String, sex: String)). For 
example, the structured pairs: ((35, 35), (“male”, “male”)) can be a member of the result set.  
The query:  

select distinct struct (( )ro type π− ,  

                        select distinct ( )rp name π−   

                        from ( )ro p π− ) 

from ( )lo p π−  
returns a structure: set<struct((type: String, type: String), set<(name: String, name: String)>)>, where for every type 
of surgical operation (=o) builds the set of names of patients (=p) who have undergone it. The exponential operator 
πl is the left projection operator. It holds: ( ) ( )π− == −lo p o o . This query has a nested form, as a part of it is another 
query.   
Similarly, the following query has also a nested form, because another query is declared in the from clause: 
relation r; 

select distinct struct π π− −(( ) ,( ) )r rp age p sex  
from (select r  
      from ( )p p−  

      where ⊂ −( )r p p  and ( ) (" "," ")rp city Athens Athensπ− == ) 

where ( )rp name π− ==(" "," ")Mike Mike  
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The result of the whole query is of type:  set<(struc((age: int, age: int), (sex: String, sex: String)))>. The result of the 
internal query is a sub relation: ( )r p p⊂ − , where the String value of the variable city contained in the object p of 
the Patient class is “Athens”. In other words, it is the subset of all the patients living in the city of “Athens”. 
 
4.3.2 Path expressions 
 
Consider the partial object oriented system illustrated in Figure 3 and Tables 1 and 2. Suppose that a diagnosis is 
required of the type (acute or chronic) of the tissue defect of a patient who has undergone a surgical operation. The 
diagnosis is assumed to be formed during the preoperative care phase. Because both the ChronicTissueDefect and 
AcuteTissueDefect are subclasses of the TissueDefect class, objects of either can be referred by the tissueDefect 
reference. Therefore, in the (not extended) OQL the following path expression gives the required type of tissue 
defect of a patient:  

patient.operation.preoperativeCare.diagnosis.tissueDefect 

where, patient, operation, preoperativeCare, diagnosis, tissueDefect are references of the corresponding classes: 
Patient, Operation, PeoperativeCare, Dagnosis, TissueDefect. Since the objects involved in the path hold references 
one of the other according to the diagram in Figure 3, the path written above expresses a complex object.  The dot 
“.” operator permits the entrance into the complex objects.  
 
In the algebra of binary relations only relationships between objects are considered. A path expression can be 
written as a series of compositions of binary relations of objects. By applying the composition operator to them 
successively, a binary relation is derived, which expresses what is required. The expression:   

−− − − −1( ) ( ) ( ) ( )o o oo p o pc pc d d td ,  
is a series of compositions of binary relations, where the exponent -1 is the reverse operator defined as 

1 {( , ) | ( , ) }r u w w u r− = ∈ . The successive application of the composition operator on this expression produces the 
relation ( )−p td . This relation expresses the patient and the diagnosed type of tissue defect.  
These results introduce the use of series of compositions of relations in the queries syntax. 
 
4.3.3 Definition of the extended composition of relations 
 
In the algebra of binary relations, the expression ( ) ( ) ( )− − −o oa b b c c d  implies the relation ( )−a d , which is 
finally derived by successive applications of the composition operator on the relations of the given expression. 
When the composition concept is applied successively to a series of relations, it is by definition limited to a single 
relation. However, relations considered as intermediate in a successive composition process can be very useful in 
queries (Section 4.3.4). The extension of the concept of relation composition to include all the possible (initial, 
intermediate and final) relations derived during the successive application of the composition operator on a series of 
relations can be defined as follows: 
I) A series of connected relations through the composition operator is defined as a chain of relations. The example 

expression ( ) ( ) ( )− − −o oa b b c c d  is a chain of relations.  
II) Given a chain of relations 1 2 ...o o o nr r r , where 1>n , the extended composition is the union of the set of 

relations , 1 ... , , :1+= ∀ ≤ < ≤o o oi j i i jr r r r i j i j n  and the set { | 1, 2,..., }=ir i n . 
Applying the extended composition on the example chain, the set of the derived relations is 
{( ), ( ), ( ), ( ), ( ), ( )}− − − − − −a c b d a d a b b c c d . Note that the initial relations are all included in the extended 
composition. In case where the given chain consists of two relations, the application of the extended composition 
gives exactly the relation that is derived by the application of the original composition, plus the two initial relations.  
 
The extended composition operator is also included in the proposed OQL extension.  
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4.3.4 Expressions of chains of relations in queries 
 
The following query has a nested form: 
select distinct struct ( )rp td π−  (select distinct π−( )ro type  
                 from −( )o d  

                 where π−( )rd date ==(“Dec 3 2006”, “Dec 3 2006”) and 

                       π−( )ro date =={“Dec 4 2006”, “Dec 4 2006”}) 

from 1( ) ( ) ( ) ( )o p o pc pc d d td−− − − −o o o  

where ( )rp name π− ==(" "," ")Mike Mike     
A chain of binary relations of objects appears in the from clause of the outer query.  It must be clarified that  (o-p), 
(o-pc), (pc-d), (d-td) are relations of the object database (Figure 4). Clearly the (p-td) is the final relation derived by 
successively applying the composition operator on the from clause relations. The (o - d) relation, declared in the 
from clause of the inner query, is an intermediate relation derived during the process of the successive application of 
the composition operation on the chain of relations in the from clause of the outer query. Both the relations (p-td) 
and (o - d) can be considered as derived by the application of the extended composition operator.  
 
The result of the above query is of the form: set<struct((td: TssueDefect, td: TssueDefect), set<(type: String, type: 
String)>)>, where the reference variable td can be referred to any object of the TissueDefect class hierarchy. The 
AcuteTissueDefect and the ChronicTissueDefect object, which either can be referred by the td reference, contain 
detailed information about the tissue defect of the patient. If the query was further declared in detail, all the detailed 
information contained in the object could be displayed. 
 
4.3.5 Merging of common parts of chains for optimization purposes  
 
In the query: 

select distinct stuct π−( )rp name , π−( )rtd defectType , π−( )rc closureType  

from −− − − −1( ) ( ) ( ) ( )o o oo p o pc pc d d td ,   

     −− − − −1( ) ( ) ( ) ( )o o oo c o pc pc d d td  

where π π− == −( ) ( )r rp td c td  
two chains of relations, having a common part, appear in the from clause. In this case merging the common parts of 
the single chains should be applied. The result is a unified chain having branches:   

from − −− − − − −1 1[( ) ,( ) ] ( ) ( ) ( )o o oo p o c o pc pc d d td  
which is equivalent to the following diagram of relations: 
 

−− 1( )o p  
                                   − − −( )( )( )o pc pc d d td  

−− 1( )o c  
 

where, two branches emerge from the common part of the chain. The unified chain will also be called a merged 
chain. Note that the two relations ( ), ( )p td c td− −  appearing in the where clause, do not exist among the initial 
relations of the merged chain. Instead, they are derived as final relations after the successive application of the 
composition operator upon the unified chain, starting concurrently from both the left branches towards the opposite 
right single end. 
 
The merging of multiple chains with common parts into unified ones plays an important role in the processing of 
queries. The M2FE undertakes the processing of all the single and merged chains, applying the extended 
composition and using parallel techniques. The design and the functionality of the parallelism of this engine are 
dependent upon the merged chains of relations. Therefore, the algorithm that is mapped upon the M2FE utilizes the 
herein introduced merged chains to achieve efficiency.  
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Even the sequential processing of the chains is better to be applied upon the merged than the single chains because 
the path of the merged is sorter than the total sum of the paths of the singles. Thus, in both the parallel (M2FE) and 
sequential processing of the chains, query optimization can be achieved applying the merging of chains. 
 
The result of the above query is a structure: set <struct ((name: String,  name: String), (defectType: String, 
defectType: String), (closureType: String, closureType: String))>. 
 
4.3.6 Join  
 
Two chains of relations (as singles or merged), appear in the from clause of the previous example query. These 
chains are not directly related; however, they can be joined applying the identity expression written in the where 
clause:  

π π− == −( ) ( )r rp td c td  
where the td objects of type TissueDefect existing in both relations must be identical. The last expression takes the 
final form:  

− −− == −( ) ( )( ) ( )p td c tdtd td td td  
where both the left and the right sides are derived by the right projections (πr) on the relations ( ), ( )p td c td− − , 
respectively.  
 
4.3.7 Group-by, having and order-by 
 
The last example query can be rewritten as: 

select distinct struct π−( )rp name , π−( )rtd defectType , 

                       π−( )rc closureType  

from − −− − − − −1 1[( ) ,( ) ] ( ) ( ) ( )o o oo p o c o pc pc d d td        

where π π− == −( ) ( )r rp td c td  

group by π−( )rc closureType  

having π−( )rp age  > (“28”, “28”) 

order by π−( )rp name  
where the operators group by, having and order by appear. Applying the right projection (πr), the last part of the 
query takes the final form: 

group by −( )closureType closureType  
having −( )age age  > (“28”, “28”) 
order by −( )name name  

The result of the query is of type: set <struct((name: String,  name: String), (defectType: String, defectType: String), 
(closureType: String, closureType: String))>,where all the names of the patients above the age of the 28 with the 
corresponding type of the (tissue) defect and the type of closure applied during the surgical operation are displayed. 
The results are grouped by the type of the closure, which can have the distinct object values twoStepClosure, 
delayedClosure and primaryClosure (Figure 3) and are ordered by the names of the patients. 
 
4.3.8 Recursive queries 
 
The need for recursive query declarations in an object oriented database arises from the fact that the architecture of 
the object oriented system, whose objects are handled by the database, may contain cyclic forms. Cyclic 
architectures are often met in advanced applications of object-oriented databases; therefore a query model should 
support recursive queries (Bertino, 1992). Because most of them are linear (Bancilhon, 1986), recursive queries of 
linear type are investigated next. 
 
Let obj be an object of the class Object and let var be a variable of type Object (that is able to hold references of 
instances of Object class) defined inside the class. Considering the type Object objects, which will be referred to by 
the variable var of obj or referred to by the variable var of another object obj1 of type Object, which will be referred 
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to by the variable var of obj, a direct recursion can be defined. In this case the class Object is mutually recursive 
with itself. Employee is such a class, illustrated below (Figure 5). 
 
Indirect recursive relationships require at least two classes to be involved. Let a_1, a_2... a_n be objects of the class 
Alpha and b_1, b_2,... b_n be objects of the class Beta. Let also obj_a be a variable of type Alpha defined inside the 
class Beta and obj_b be a variable of type Beta defined inside the class Alpha. If the object b_i is referred to by the 
variable obj_b of the object a_i and the object a_j is referred to by the variable obj_a of the object b_(j-1), for i = 
1,2,…n and j = 2,…n, then an indirect recursion is defined (Figure 6). The two example classes Device and Interface, 
illustrated below (Figure 6), are recursively related. At the bottom of the left lower part of figure 6, a real life 
representation of the recursively related objects of these classes is shown. 
 
                                                                                                                         Managed by 
                                                                                                                                   r 
                                                                                                                                                                                   

                                                                               

                                                                                                                           

                                                             Managed by              

                                                                             
                                                                             s                         t 
                                                                                                                  
                                                     
 

 

 

 

                                                             
Figure 5. Direct recursive relationships between objects  

 
 
Within the algebraic framework of the binary relations algebra, the problem of direct recursive queries can be 
handled as follows:  
(I) A binary table can be constructed (relation r in Figure 5), where the object pairs derived from the mutually 

recursive class (Employee in Figure 5), are stored.  
(II) Let r be a relation defined as above. It contains recursive relationships of objects of the class, which is mutually 

recursive with itself. Let s (Figure 5) be a sub-relation of r ( s r⊂ ), whose pair-members contain those left 
single-members that the objects recursively related to them (stored as right single-members in the pairs of the 
relation r) are required by a query. That is: ( , )x y s∀ ∈ , x is a left single-member object, y is directly related to x, 
and all the recursively related  to x objects are required. 

A recursive query operator can be used to find a relation (t in Figure 5) containing all the objects that are recursively 
related to all the first single-members of all the pairs of the relation s. The definition of this operator, based on the 
while construct, will be given further on. 

 
Indirect recursive queries can be handled as follows: 
(I)   For each connection between the two interconnected classes Alpha and Beta (upper left part of Figure 6) a 

binary table can be constructed (upper right part of Figure 6). In the first table rp = (Ap-Bp), pairs of the form 
(a_i, b_i) where the object b_i is referred to by the variable obj_b of the object a_i, i = 1,…n, are stored, 
according to the definition of the direction of relationship between two objects (Section 2). Similarly, in the 

Emp Emp 
e0 e1 
e1 e3 
e2 e4 
e3 e6 
e4 e7 
e6 e8 
e9 e10 

Emp Emp
e0 e1 
e0 e3 
e0 e6 
e0 e8 
e2 e4 
e2 e7 

Emp Emp
e0 e1 
e2 e4 

Employee 

name: String 
birthDate: Date 
salary: double 
department: String 
manager: Employee 
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second table rq = (Bq-Aq), pairs of the form (b_(j-1), a_j) where the object a_j is referred to by the variable obj_a 
of the object b_(j-1), j = 2,…n, are also stored. Clearly (Ap-Bp) ≠  (Bq-Aq)-1.  The arrow tails of the lower right 
part of figure 6, indicate the objects whose variables refer to the objects at the arrowheads.         

(II)  The query can be converted to a single recursive relation r problem, and the recursive query operator can be 
used. 

 
                                                                                                     rp                                     rq           
                                                                                                   
                                             rq 
                                                                       
                                        rp 
                                                                      
 
 
 
 
 

                                             rq 
                            
                                        rp 
 
                                        
 
 
 
 
 
 
 
 
 
Figure 6. Indirect recursive relationships between objects. 
 
 
4.3.9 Definition of a recursive query operator 
 
A recursive query operator: 

recursiveQuery(r : relation, s : relation) : relation 
is defined as a function of the form:   

relation recursiveQuery(relation r, relation s) { 
              relation t, z; 
              = ;t s  
              = ;z s  
                 while ( ≠ ∅z ) { 
                          = ;oz z r  
                          = ∪ ;t t z  
                         }                                       
                  return t; 
            } 
 

Ap Bp 

a_1 b_1
a_2 b_2
a_3 b_3
a_4 b_4
a_5 b_5

Bq Aq 

b_1 a_2 
b_2 a_3 
b_3 a_4 
b_4 a_5 

Alpha 

aName: String 
aValue: int 
obj_b: Beta 
 

 

Beta

obj_a: Alpha 
bName: String 
bValue: int 
 

 

Interface 

type: String 
 
dvice: Device 
 

 

Device

iface: Interface
name: String 
type: String 
 

 

i_1   d_1   i_2   d_2   i_3   d_3   i_4   d_4   i_5   d_5

Alpha Beta 

a_1 b_1 

a_2 

 

a_4 

a_5 

b_2 

b_3 

b_4 

b_5 
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The relation t, z initially contain only the pairs of the sub-relation s. The relation z is used to control the loop. The 
composition z ro  should signal the end of the procedure producing the empty relation. For each (x, y) member of 
the sub-relation s, all the pairs having form (x, v), where v are objects recursively related to x, are stored within the 
relation t, which is returned by the recursive operator recursiveQuery(r, s). In other words, the union t z∪  
accumulates all the pairs of the form (x, v) within the relation t. Note that ⊂s t . 
 
4.3.10 Use of the operator for direct and indirect recursive queries 
 
Let r be the binary relation named managed by containing the recursive relationships of the objects of the class 
Employee (Figure 5). Suppose that the set of the names of all the supervisors of all levels of the organizational 
structure, who are aged over 34, of a specific employee, represented by the object e0, is required.  
 
The query can be handled using the operator (function) defined above (Section 4.3.9). For the detection of all the 
pairs of the form (e0, ey)∈r, which contain as left single-members the object e0, directly related with any objects ey, 
the following sub query can be used: 

relation s; 
select s 
from   r 
where  ⊂s r  and π == ( 0, 0)ls e e  

which returns the subset  s ={( 0, 1)}e e . 
Given r, the whole query is: 

relation s, t; 
select π−( )re name   
from   r,(select s 
          from   r 
          where  ⊂s r  and π == ( 0, 0)ls e e ), 
do as t {     
         t = recursiveQuery(r, s); 
         return t; 
         } 
where  π π== −( )r lt e age  and  π− >) (" 34"," 34")( re age  

All the pairs of the form (e0, ez), where ez are objects either directly or recursively related to e0, are stored in the 
relation t, returned by the recursive procedure. From these pairs, the right single-members, holding values greater 
than 34, in their variables named age are selected and the values held in their name variables are projected as pairs. 
Note that the relation r in the from clause, participates in the subquery that returns the relation s, and both the 
relations r and s participate as arguments in the recursive procedure. It holds ⊂s r  and ⊂s t .  
The result of the query is of type:  set<(name:String, name:String)> containing the required names of supervisors.  
 
Finally, let rp and rq be the two binary relations of the indirect recursive relationships between objects illustrated in 
figure 6. Suppose that the set of all the pairs of the form (a_1, a_z), where a_z are objects of the class Alpha 
recursively related to a_1, are required by a query. Defining p qr r r= o  the query is converted to a single recursive 
relation r problem and the same procedure as above can be followed. 
 
                                                                                             r 
 
 
 
 
 
 
 
 
 
 
4.3.11 Generalization of recursive relationships 

Ap Aq 

a_1 a_2
a_2 a_3
a_3 a_4
a_4 a_5
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Let the classes C0, C1,…Cn-1, n>1 participate in an indirect recursive relationship (upper part of Figure 7). For each 
connection between two successive classes a binary relation (table) is constructed. Let ri = (Ci - Ci+1),  i = 0, 1,…n-2, 
and rn-1 = (Cn-1 - C0) be the constructed relations (lower part of Figure 7). The recursive relationship between the 
objects of the classes thus formed is called recursive relationship of order n. A recursive relationship of order 1 is a 
direct recursion (Figure 5). For an object c of a class Ci, i = 0,1,…n-1, the recursively related objects at k ( ≤  n and > 
0) distance are within the set of the objects of the class C(i+k)mod(n). These objects are a subset of the right single-
members of the pairs of the relation i (i+k-1)mod (n)....  r r r= o o . Applying the recursive operator to r, the required objects 
can be found. Therefore, every recursive query of order n > 1 can be converted to a direct recursion (of order 1) 
problem with a single recursive relation r.  
 
 
 
 
 
                         r0                                   r1                                                                               rn-1 
 
 
 
 
 
 
 
 
 
Figure 7. Recursive relationship of order n 
 
 
5 PARALLEL MULTIDIRECTIONAL MULTIFUNCTIONAL ENGINE-M2FE 
 
Figure 8 illustrates the binary relations based design of the object oriented database, which supports the workings of 
the object-oriented system illustrated in figure 3. For every association between two classes in figure 3, a processing 
node is created, which stores the corresponding binary relation from the figure 4. The multiwavefront algorithm 
utilizes this design to process the simple and multiple merged chains of relations stated in queries. Thus, the design 
corresponds to the algorithm architecture, which is finally mapped on a multidirectional multi-functional engine - 
M2FE, which processes the simple and multiple merged chains of binary relations and synthesizes multiple relations, 
along multiple directions. Herein, only a short description of the algorithm (and engine) is given.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Architecture of the multiwavefront algorithm and engine  
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The architecture in Figure 8 also represents a multiple merged chain of relations which corresponds to the entire 
system of Figure 3. Let us assume that the entire system participates in a query. Because all the possible (initial, 
intermediate and final) relations, derived during the successive application of the composition operator on a chain of 
relations, are required for query processing purposes (Section 4.3.4), the algorithm applies the extended composition 
operator introduced in the OQL extension, to derive all these relations.  
 
Two types of processors can be used by the processing nodes: a (synchronous) square systolic device for wavefront-
like computations - S2DWC (Fountoukis, 2004) or a bidirectional parallel cubic engine - BPCE (Fountoukis, 2005). 
Both these processors synthesize a relation from two existing ones applying the composition operator (Section 3) 
defined by the algebra of binary relations. All the relations start moving concurrently from all the nodes (U, V, X, W, 
Y, Z) towards all possible directions indicated by the arrows of Figure 8. Passing through the nodes, compositions 
are taking place and new relations are derived, which are also starting to move following the directions of the 
moving relations that participated in their compositions. Finally all the relations derived by the application of the 
extended composition are produced and are distributed and stored amongst the processing nodes. 
 
6 CONCLUSIONS 
 
The herein investigated extension to OQL for incorporating algebraic binary relational expressions can be exploited 
for query declarations in an object oriented database, whose functionality is based upon the algebra of binary 
relations. In this extension, chains of relations can be stated in SQL syntax based queries. If the chains contain 
common parts, they can be merged for optimization purposes, and all the relations derived during the successive 
application of the composition operator on them are considered to be participating in the queries. Therefore, the 
extended OQL introduces the concept of the extended relation composition. A multiwavefront algorithm, mapped on 
a Multidirectional Multi-Functional Engine - M2FE, utilizes the herein introduced concept of extended relation 
composition and can process the merged chains of relations. The engine produces all the possible relations from the 
simple or merged chains of relations stated in the queries. The produced relations are distributed amongst the nodes 
of the processing system; from there they can be retrieved for further processing purposes. In the framework of the 
algebra of binary relations, the problem of cyclic forms of queries (recursion), which is common in architectures of 
advanced object oriented software systems, has also been investigated. Further research includes the implementation 
of the multiwavefront algorithm and the corresponding engine. 
 
7 REFERENCES 
 
Bancilhon F., and Ramakrishnan R. (1986) An Amateur’s Introduction to Recursive Query Processing Strategies. 
Proc. ACM SIGMOD International Conference on Management of Data. Washington DC, USA. 
 
Bertino E., Negri M., Pelagatti G., & Sbattela L. (1992) Object Oriented Query Languages: The Notion and the 
Issues. IEEE Transactions on Knowledge and Data Engineering. Vol. 4, No. 3. 
 
Cattell, R.G.G., et al.. (2000) The Object Data Standard ODMG 3.0. Morgan Kaufmann.  
 
Desharnais, J. (1989) Abstract Relational Semantics, PhD thesis, School of Computer Science, McGill University, 
Montreal. 
 
Dugundji, J. (1965) Topology, Englewood Cliffs, NJ: Prentice-Hall. 
 
Fahmy, H.  & Hold, R.C. (2000) Software Architecture Transformations. Proc. IEEE International Conference on 
Software Maintenance, Oct 11 - 14, San Jose, CA, USA. 
 
Fountoukis, S.G. & Bekakos, M.P. (2004) Binary Relational Processing on Wavefront Array Processors. Proc. The 
2004 International Conference on Parallel and Distributed Processing Techniques and Applications. June 21-24, 
Las Vegas, Nevada, USA. 
 

Data Science Journal, Volume 6, 20 October 2007

135



Fountoukis S.G. & Bekakos M.P. (2005) Binary Relational Processing on a Bidirectional Parallel Cubic Engine. 
International Journal of Neural, Parallel and Scientific Computations, Vol. 13, No 3-4, pp. 437 – 454. 
 
Givant S.R. (1994) The Structure of Relation Algebras Generated by Relativizations. Contemporary Mathematics. 
American Mathematical Society: Rhode Island, USA. 
 
Gyssens, M., Paredaens, J., Van den Bussche, J., & Van Gucht, D., (1994a) A Graph Oriented Object Database 
Model. IEEE Transactions on Knowledge and Data Engineering, 6.4, pp. 572-586. 
 
Gyssens, M., Saxton, L., & Van Gucht, D. (1994b) Tagging as an Alternative to Object Creation. In Freytag, J., 
Majer, D., & Vossen, G. (eds.) Query Processing for Advanced Database Systems. Morgan Kaufmann.  
 
Hold, R.C. (1998) Structural Manipulation of Software Architecture Using Tarski Relational Algebra. 5th WCRE, 
Oct 12-14, Honolulu, Hawai, USA. 
 
Kelley, J. L. (1975)  General Topology, New York: Springer-Verlag. 
 
Sarathy, V., Saxton, L., & Van Gucht, D. (1993) Algebraic Foundation and Optimization for Object Based Query 
Languages. Proc. Ninth International Conference of Data Engineering. IEEE Computer Society Press: Vienna, 
Austria. 
 
Tarski., A. (1941) On the Calculus of Relations. Journal of Symbolic Logic. 6, pp. 73-89. 
 
Van den Bussche J. (2001) Applications of Alfred Tarski’s Ideas in Database Theory, Journal of Lecture Notes in 
Computer Science, 2142, pp. 20-37.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Science Journal, Volume 6, 20 October 2007

136


