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ABSTRACT 

Petascale data management and analysis remain one of the main unresolved challenges in today's computing. 

The 6
th

 Extremely Large Databases workshop was convened alongside the XLDB conference to discuss the 

challenges in the health care, biology, and natural resources communities. The role of cloud computing, the 

dominance of file-based solutions in science applications, in-situ and predictive analysis, and commercial 

software use in academic environments were discussed in depth as well. This paper summarizes the discussions 

of this workshop. 

Keywords: Analytics, Database, Petascale, Exascale, XLDB, Big data, Extreme-scale 
 

1 EXECUTIVE SUMMARY 

The 6th XLDB workshop (held during XLDB-2012) focused on the health care and biology communities, in-situ 
and predictive analytics, cloud computing, commercial software use in academic environments, and a new 
community (natural resources). 
 
The workshop began with an unplanned discussion on why scientists overwhelmingly store and manage data as 
files while databases are mostly unused. Files and hierarchical directory structures have become common 
computer knowledge while databases remain cryptic, cumbersome, and unpredictable. A divide between data 
producers and users further complicates the situation: producers usually do not provide an integrated platform for 
analysis, and nearly all downstream software operate on files (as retrieved from producers) not databases. The 
database community should recognize that files are the canonical forms of data and deal with it. 
 
The biology and health care attendees identified six main data-related problems endemic within their 
community: sociological impediments to integration, high velocity and variance of the data, a lack of single-pass 
algorithms, insufficient understanding of data, poor provenance, and the absence of a widely-known repository 
for computational use cases. Attendees agreed that establishing evaluation criteria for measuring and comparing 
various implementations and proposed solutions, building prototype database-solutions based on existing public 
data, constructing a benchmark, and open sharing of computing and data management practices would be 
helpful. 
 
Predictive and in-situ analyses will be required for exascale computing, but participants did not know of a vision 
for integrating them into the workflow of simulation-based experiments. Ideally, such scientific projects would 
follow the example of the Sloan Digital Sky Survey by engaging top science and computing experts as 
champions who would help them overcome the resistance to data sharing. 
 
Cloud computing discussions centered on four themes: economics, novelty, deployment, and reliability and 
control. Overall, participants felt that cloud computing, whether public or private, had significant advantages, 
especially for smaller organizations and groups without sufficient backfill load and for applications designed 
with cloud considerations. Calculating the benefits of using cloud resources is very complex and involves 
accounting for reliability, security, and entire infrastructure costs. Nobody questions the trade-offs: privacy, 
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security concerns, and complications with post-intrusion forensics. Attendees expect cloud computing to become 
more cost-competitive over time and funding agencies to revise their policies to be more compatible with cloud 
computing. 
 
Vendors asked why so few academic scientists and institutions adopt proprietary software and hardware. Reasons 
mentioned ranged from tight, short-term budgets and geographically-distributed collaboration to uncertain 
corporate product lifetimes and future licensing costs. Debuggability, documentation, and product support were 
cited as particular areas where science needs and a company's target use case diverge. Participants noted that 
nearly every new DBMS is open-source while every old one is closed-source. 
 
XLDB participants from the natural resources community said their rapidly-growing large-scale data are 
dominated by information collected by equipment instrumentation and now-ubiquitous sensing. The resource 
extraction industry faces the challenge of integrating data from disparate sources (e.g., satellite sensors and 
climate models) and different formats. However, the huge scale of many mining operations means that relatively 
minor improvements in data-driven efficiency and management have translated into multimillion-dollar cost 
savings. 
 
Participants found the 6th XLDB workshop to be useful and not needing major changes. One suggested tweak 
was to choose one or two topics to be re-visited regularly for updates. New participants found the written reports 
especially useful. 

2 ABOUT THE WORKSHOP 

      Since 2007, the annual Extremely Large Database (XLDB) workshop has hosted influential discussions on 
topics related to databases of terabyte through petabyte to exabyte scale. The 6th workshop (http://www-
conf.slac.stanford.edu/xldb2012/Workshop.asp) in this series was held at Stanford University in Stanford, 
California, on September 13, 2012. The main goals of the workshop were to: 

 reach out to a new community – natural resources – and explore more deeply the health care and 
biology communities, 

 review community and hybrid cloud computing and commercial software in academic environments, 
and 

 discuss a specific use case: in-situ analytics at one national lab. 
 
The workshop was held on the last of XLDB-2012's four days. Information regarding the tutorials and 
conference portions of XLDB-2012, which were held during the first three days, can be found at the conference 
website (http://www-conf.slac.stanford.edu/xldb2012/). Information about past XLDB workshops, including the 
reports, can be found at http://xldb.org/events. 

2.1 Participation 

Attendance at the 6th workshop was, like its predecessors, by invitation. This keeps the group small enough for 
interactive discussions and the represented communities balanced. Fifty-seven attended, representing science and 
industry database users, academic database researchers, and database vendors. Industrial representation 
continued to grow. Further attendance details are on the workshop website. 

2.2 Structure 

Maintaining XLDB tradition, the workshop's loose structure stimulated candid but productive discussions on the 
most important topics for XLDB practitioners. It began with an unplanned debate on storing and analyzing data 
in file systems versus in databases. Subsequent sessions covered data usage in biology, integrated analysis at a 
national lab, practical cloud computing for large data, natural resource extraction, and the use of commercial 
software in academic environments. The workshop concluded with an update on the state of the XLDB use case 
collection and planning for the next XLDB event. 
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3 BIOLOGY AND HEALTH CARE 

Discussion about biology and health-care began at the 5th XLDB (see Data Science Journal, Vol. 11: 
https://www.jstage.jst.go.jp/article/dsj/11/0/11_012-010/_article). Biology and health-care representatives 
attending the 6th XLDB workshop described the state of data management in their disciplines' communities as 
universally poor. The biggest problems are undisciplined data practices, reduction algorithms, and non-
standardized data that are difficult to integrate. Real scalability is rarely the primary problem, but the size of raw 
datasets is growing beyond what many organizations can currently store and manage affordably. It is difficult to 
predefine biology-relevant schemas because large databases are relatively new in biology, and it is not clear what 
information should be saved for later processing. As a result, the biology and health-care communities require 
flexible systems that allow relatively free-form tagging and associations. 
 
Workshop attendees described the information culture in biological disciplines as being detail-focused, data-
possessive, fragmented, and suspicious of computer technologies. One biologist complained about the difficulty 
of managing data locked away in many spreadsheets. Other participants said that the simple, loose model of 
spreadsheets is an advantage because it facilitates sharing. Moreover, scalability is not difficult because 
spreadsheets are relatively small—the interface discourages inputting larger amounts of data. 
 
Because the spreadsheet model is so prevalent in biology, data-analysis tools must integrate with spreadsheet 
interfaces. Figure 1 shows where spreadsheets are used in a common process for producing science from data. 
Attendees considered cloud-hosted spreadsheets (e.g., Google Docs) to be an advance due to their built-in 
collaborative features. Some attendees suggested using Tableau (http://www.tableausoftware.com/), a popular 
data analytics package, for its power and scalability. But others noted that this tool did not seem to be a good fit 
with biological data and was best used for operational metrics and cube-structured data. 
 

 
With human genomics data, scalability is an impending concern. While a sequence for a single genome can be 
described in “only” about 30 GB, sequencing the genomes of 100 million people quickly adds up to 3 exabytes. 
Furthermore, doctors may need to take multiple sequences to get the information needed for individual cancer 
patients because a tumor's genetic fingerprint is often unique and may evolve rapidly. One biologist pointed out 
that effective compression techniques may be very helpful in reducing genomic data storage needs because the 
human genome is 99 percent identical among individuals. Multiple sequences for one person should be highly 
compressible while genomic information from different people may be more difficult to compress. Another 
biologist countered that funding agencies are applying considerable pressure on scientists to archive the raw 
measurement data from sequencing machines, even though such noisy and poorly compressible data are rarely 
used. Since genetic sequence data is still relatively new to biologists, some have considerable concern about 
discarding data before exhausting their analyses. Fortunately, funding agencies are beginning to understand the 
tradeoff between keeping all data versus having more data storage capacity available to collect more sequences 
and do more science. Although sequencing data has significant uncertainties, genomic theory has placed an 
upper bound on the information content in each sample. 
 
The rapid development of gene-sequencing technologies is also producing challenges familiar to those who 
worked in the early days of computing: new sequencing machines are continually being developed that are 
dramatically reducing the cost of genome sequencing but delivering their data in constantly changing forms. 
Different machines employ different chemistries, different precisions, different probabilities, and different error 
models. Even if the community agreed upon a standard data format, integration would still remain difficult 
because similar measurements from different machines have slightly different data models. This diversity of 
instruments and data makes integration difficult for even data-management-savvy biologists. Subjective 
inconsistency and variability in medical attributes (for example, the different ways that individual doctors 
annotate electrocardiograms) also complicate defining and adopting standards. One attendee described how 

Figure 1. Generalized data-focused science production 
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diverse data was stored using MongoDB, archived to Amazon's Glacier, and retrieved only when needed for 
analysis. This approach kept data safe and accessible but preserved their diversity in form, effectively deferring 
integration to each scientist's analysis. 
 
Sequence data across non-human species is another significant problem that is likely to increase as human 
sequencing matures. Soil genomics (and more generally, population genomics) was one example. Because they 
are concerned with genes in entire populations rather than a single species (e.g., human), soil geneticists 
encounter problems of scale that are qualitatively and numerically different—compression is less obviously 
effective for genomes of countless species that likely undergo far greater rates of mutation. 
 
Provenance is a growing problem in biology. Historically, scientists shared data in papers and described their 
provenance in detailed prose. As new instruments and equipment have enabled scientists to collect more and 
different types of data, provenance has not caught up, except at the most sophisticated, large institutes, such as 
the National Center for Biotechnology Information. Wet lab results can vary drastically, so recording their 
provenance, as well as that of the samples, is essential. For example, the same sample processed at two different 
labs will often yield answers that differ by up to 20 percent while processing the same sample at three places 
might result in a spread as high as 40 percent. 
 
Biologists want to migrate from hypothesis-driven science to hypothesis-free science, but the hardware, 
software, and cultural infrastructure are not yet ready. Too often, developing a new algorithm leads to re-reading 
the entire dataset, which many attendees deemed impractical. 
 
Overall, biology and health care attendees identified six main problems. One, sociological not technological 
factors are impeding integration among multiple data sets. Two, incoming data come too quickly (velocity) and 
in too many forms (variance) to be handled easily. Three, the lack of online, single-pass algorithms causes 
significant delays in analysis and stymies iterative analysis and discovery. Four, a poor understanding of what 
data are needed for reanalysis results in bloated and unnecessarily wasteful data archival. Five, with a few 
exceptions, poor provenance practices make reproducing experiments difficult, which in turn leads to 
unnecessary repetition of past work. Six, there is no widely-known repository for computational biology use 
cases. 
 
Attendees agreed that one way to improve the computing and data management in biology and health care is to 
establish evaluation criteria for measuring and comparing various implementations and proposed solutions. One 
suggestion is to prototype a database-based solution by ingesting existing public data (such as 1000Genomes: 
http://www.1000genomes.org/) into a database and reproducing the analysis described in an ENCODE: 
http://genome.ucsc.edu/ENCODE/) paper. This has not happened yet partly because the reference data 
supporting these papers are typically not archived publicly. Although papers are required to provide URLs to 
their data, the authors' and publishers' neglect has left the linked data unusable. Another reason is that the extract-
transform-load (ETL) process is inherently expensive, amounting to about 70 percent of the cost of installing a 
data warehouse, according to one participant. Despite these difficulties, attendees believed that prototyping such 
a solution as a benchmark would have significant value in guiding more effective data use in biology. Open 
sharing of scientists' and institutions' computing and data management practices would also be helpful. 
 
The discussion also underlined two fundamentally different perspectives on data: scientists manage data as 
samples and files while the database community thinks of data in terms of algebra, structures, and models. 

4 IN-SITU ANALYSIS AND PREDICTIVE COMPUTING 

“In-situ analysis” is defined as analysis performed alongside or embedded within modeling or simulation code. 
Such analysis immediately computes derived products (possibly including visualizations) from the raw 
simulation products to avoid storing raw data determined to be of low value. In-situ analysis provides scientists 
with a shorter feedback delay while they explore parameter spaces of thousands of variables in their predictive 
models. This type of immediate analysis will be required for exascale computing, where I/O bandwidths will 
likely be insufficient to dump out all the raw data for later analysis offline. 
In reinventing predictive, or simulation-based, computing, scientists aim to modernize scientific computing with 
the same bleeding-edge technology popular in technology companies. What participants felt is lacking, however, 
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is a vision of how to incorporate in-situ analysis and visualization into the overall workflow of simulation-based 
experiments, including a UI for experimenters to control and direct the process. Ideally, scientific projects would 
mimic the close collaboration with computer scientists that was prevalent in the Sloan Digital Sky Survey. 
Participants identified two reasons for Sloan's success: (a) the collaboration of arguably the world's foremost 
database expert (J. Gray) with a recognized science domain expert (A. Szalay), who championed the use of 
advanced computation (and became an expert programmer in the process), and (b) the open-access model and 
distribution of Sloan's data – 4,900 of the 5,000 published papers based on Sloan data came from outside the 
Sloan collaboration. In attempting to replicate this success in other scientific communities, major challenges will 
be identifying domain experts (equivalent to Szalay) and overcoming the traditional resistance to data sharing 
that unfortunately pervades several scientific disciplines. 

5 PRACTICAL CLOUD COMPUTING 

This session's moderator identified four areas for discussing cloud computing. The first was economics: how 
important is the time-share-style cost savings of an available elastic computation resource compared with 
provisioning for rare peak demands? The next was novelty: how much of the current interest is from aggressive 
marketing as opposed to recent technological advances? The third was deployment: what problems or 
environments demand private cloud deployments instead of public cloud services? The last was reliability and 
control: how important are potential problems with reliability (i.e., unexpected failures) and privacy (e.g., 
unintended data or information leakage) that are inherent in current cloud implementations, both public and 
private? 
 
Regarding economics, participants agreed that while in-house resources are often cheaper than cloud resources, 
the calculation is not simple. A tally of in-house costs includes much more than those of just the computing 
equipment and administration staff. Costs associated with the physical building, land, operations, data 
replication, and data movement (including application performance and metered bandwidth) must also be 
included. In many cases, the high reliability offered by cloud providers is not necessary, and lower reliability at a 
lower cost is preferred. Some funding agencies, such as the NIH, do not allow project data to be stored in a 
public cloud. The privacy required for HIPAA compliance is also difficult in public clouds. Cloud-infrastructure 
is also difficult to “turn over” to forensic investigators in the event of intrusion. Still, participants claimed that 
cloud providers are likely to have superior security compared to most individual users and institutions. Cloud 
computation is also not an automatic solution for managing load spikes. The cost of moving data to/from cloud 
providers is often significant. Some computing loads are also difficult to port to cloud environments. That is, 
they would exhibit poor performance on cloud resources due to less-than-optimal generic implementation 
assumptions. 
 
In general, the sentiment of XLDB participants is that cloud-aware applications are substantially more efficient 
on cloud hardware than applications designed without cloud considerations. The latter are usually slower than 
expected and occasionally too slow to be worthwhile. One cloud-specific feature example is the storage API. 
Legacy applications are typically written to read/write out of a shared file system for overall job input and output 
while clouds typically provide specific APIs for storing “blobs” of data. 
 
One participant claimed that over the long term, operating a private cloud or batch farm in-house would cost 
one-third that of AWS, as long as an institution has enough computation work to occupy it fully. Cloud providers 
are for-profit businesses and naturally have to charge cost-plus-profit. Spikes in demand are treated as high-
priority tasks/allocations, and providers assume they will have enough low-priority tasks to “backfill” during 
low-demand periods. Several participants questioned the claim that in most situations there would be enough 
low-priority tasks to fill in the “valleys of demand” but agreed that backfill would not be a problem in larger 
institutional environments. 
 
Participants agreed that cloud computing's advantages are not strictly marketing hype. A key advantage is 
standardized machine management, which converts system administration and server operations to merely script 
management. Software and workflows can also be published as machine images, thus simplifying reproduction. 
A key disadvantage is the difficulty of moving data although one cloud provider has mitigated this network 
bandwidth problem by allowing shipments of physical disks for data ingestion. 
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Some advantages are less obvious. One participant claimed that cloud resources are especially useful for 
debugging because allocating jobs among virtual machines could provide insights into whether problems are 
related to hardware, software, or the network. Clouds' elasticity enables some to use them as on-demand 
prototyping platforms and others to use them as deployment platforms that naturally handle load spikes. Finally, 
upcoming features, such as guaranteed IOPS, can further reduce current disadvantages. 
 
Overall, participant sentiment was that cloud computing, whether public or private, has significant advantages 
although there are always trade-offs. Smaller organizations and groups that did not have enough backfill should 
be better served by sharing private clouds rather than running their own clusters. Participants thought it would be 
challenging to deploy certain combinations of cloud and other computing resources. Complexity is especially 
problematic for scientific computing because a heavy fraction of legacy code is involved, and because scientific 
computing is a low-revenue market for cloud providers, less support is available for its unique issues. Also, 
algorithms might have to be adapted to run with the weaker consistency guarantees and slower communication 
found in a cloud environment. 
 
Some users were concerned that a public cloud might have poor security compared to a private cloud or private 
system but were challenged by one participant, “Amazon has better security than you.” In addition, using a 
public cloud can make sharing of data and even complete analysis setups easier than with a private cloud. 
 
Attendees expected the decision calculus for cloud computing to change over time. The spot market for AWS 
resources, for example, was created by Amazon to sell excess capacity of the resources partially purchased 
because third-party demand exceeded the available backfill capacity of resources to fulfill its own business 
operations. Some believed that while cloud costs are declining more slowly than Moore's Law, they should 
eventually become much more competitive as the cloud services industry matures and computing technology 
improvements fall short of the Moore's Law rate. Participants expected that funding agencies will eventually 
revise their policies to be more compatible with cloud computing. One participant noted that the NIH wants to 
stop funding private clusters and servers because biologists are terrible at running clusters. 

6 COMMERCIAL SOFTWARE IN ACADEMIC ENVIRONMENTS 

Vendors attending XLDB pressed for specific reasons for academics' limited adoption of proprietary software or 
hardware. Several reasons were discussed. 
 
In academic environments, the standard practice favors trading capex (capital expenditures) for opex (operating 
expenditures). In other words, because funding is always tight and short-term (grants are typically for less than 
three years), the pressure is to minimize equipment and software purchase costs relative to operating expenses 
(i.e., graduate students at below-market rates). All agreed, however, that scientific output would likely increase 
greatly if grad students did not have to perform system administration or other tasks outside their field. 
 
Projects are often distributed both administratively and geographically, which means there is no centralized 
entity to share licensing or support costs. Some project participants are the lone collaborators at their institutions. 
Open-source community support is often more personal, more direct, and more relevant. Several presented 
examples of users fixing bugs themselves although this was not particularly common. 
 
Open-source software also encourages community involvement, whereas commercial software is viewed as a 
black box full of proprietary secrets. Due to the long service life of large scientific experiments, the future cost of 
commercial licenses is also always a worry. Guaranteeing perpetually low pricing for academic/non-profit use 
was mentioned as a worthwhile incentive that vendors should consider. The price would not have to be fixed. 
Rather, a simple company statement guaranteeing an x-percent discount from the regular commercial license fee 
would be a large step forward. 
 
Companies also offer no guarantees that they will survive for the duration of these long projects. In contrast, 
open-source support communities invariably persist. Useful developer documentation is also typically more 
available for open-source software than for commercial programs, for which a source code dump may be all that 
is offered. Software escrow was not seen as a sufficient solution as scientists would eventually need to pick up 
support. 
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Historically, database vendors have not paid sufficient attention to the needs of scientific users. One participant 
said scientists have been burned badly by commercial software. He cited a case where there was a problem with 
a top-tier commercial database used by a group of scientists. The vendor acknowledged the problem but refused 
to fix it, explaining that the scientists' use was not the company's target use case. Scientists feel this experience 
was not unexpected. 
 
Tradition is another reason for limited adoption of commercial software. Scientists have been historically poor, 
and only in recent years have commercial software vendors offered preferentially low pricing for academic/non-
profit use. As a result, very few science educators and mentors have the background to teach commercial 
software. Funding agencies rarely permit line-item billing for support costs although some participants felt that 
this could change soon. Funding agencies are now taking data curation more seriously. They seem increasingly 
willing to pay for long-term data archiving and access to an organization that would guarantee its own survival. 
 
Some participants questioned the proposition that proprietary systems would lower costs. Proprietary systems 
generally assume some intellectual IT infrastructure that generally does not exist in academia. Usually, each 
scientist is her own IT staff. Participants also agreed that enterprise software companies typically assume the 
existence of an enterprise IT department that would provide some insulation between users and vendors. 
 
Cooperation with commercial vendors in testing and support was raised as one possible solution. Participants 
noted that scientific communities are generally prompt and detailed in their feedback, but the litmus test would 
be whether a company accepts fixes from its user community. Some attendees resented the idea of being free 
beta testers for vendors, however, especially before the vendors have proved the advantages of their proprietary 
software. 
 
Transparency in open-source software communities is a key advantage that usually outweighs the often-
unfinished functionality of the program itself. Open-source users share usage, problems, and solutions freely in 
open communities. In contrast, discussions in commercial software communities are typically filtered and 
limited if the companies are even willing to share their usage at all. Participants noted that we are now observing 
a dramatic shift: almost every new DBMS is open source while every old one is closed source. 

7 FILE SYSTEMS VS. DATABASES 

The workshop began with an unplanned discussion on why scientists overwhelmingly store and manage data as 
files in a file system while databases are mostly unused. Several factors were identified. Probably the biggest 
factor is a continuing lack of database training in science curricula, whereas files and hierarchical directory 
structures are common computer knowledge. Some projects place their experiments' metadata in databases, but 
this practice is only adopted by the most advanced scientists. Most scientists instead encode metadata using strict 
file and directory naming conventions. An attendee explained that while file naming is cumbersome, it is also 
transparent and that it is better to teach people how to ask better questions than to teach them how to find files 
using a database. Another factor is the belief that files are the “truth” and databases would only be a cache placed 
on top. Scientists consider files much easier to read and manipulate, whereas databases are mysterious and 
unpredictable. Files can be moved, exchanged, manipulated, and viewed while mobile and organized in obvious 
ways while databases are perceived to require professional management. Files have well-understood failure 
modes while database problems are cryptic. Another attendee said database use is further deterred by their 
incompatibility with specialized analysis tools that are irreplaceable for many scientists. 
 
Some researchers have recognized the value in database approaches for organization and have eliminated 
human-understandable directory- and file-naming in favor of databases containing file metadata that refer to 
UUID-named files. Still, one scientist insisted that while metadata and location information could be placed in a 
database, he would never place “primary data” there because there was no added value in doing so. He admitted 
that databases and SQL have good capabilities for searching for data, but scientists are not well-trained in taking 
advantage of such features. Furthermore, SQL semantics are not well-suited for complex scientific data analysis. 
Hybrid approaches, where subsets of scientific algorithms are pushed into the database, are significantly more 
complex and not guaranteed to outperform. 
 
Another reason for scientists' reliance on files is a divide between data producers and data users. The common 
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practice is for a data producer, e.g., a satellite operations center, to make data available for download but not to 
provide an integrated platform for analysis. Thus the integration problem is pushed to individual users and 
groups who are likely to be even less equipped to integrate data into a managed platform, such as a database. 
Thus nearly all (if not all) downstream software tools operate on files not databases. 
 
The representatives of the database community attending the workshop admitted that their larger community 
should “recognize that files are critical pieces of data and deal with it.” 

8 NEW COMMUNITY: NATURAL RESOURCES 

Three new participants engaged the 6th XLDB workshop with a new technical community: natural resources. 
They were: a representative from IBM's Smarter Planet campaign, a researcher who uses water management and 
monitoring for recreation, weather, and climate prediction, and a scientist studying snowpack and remote 
sensing. Overall, commercial interests have use cases, methods, and difficulties similar to those in the geoscience 
community, which was introduced at a past XLDB workshop. Commercial interests seem to be focused on 
resource extraction rather than resource management, however. Data problems in extraction are characteristic of 
a community just beginning to integrate data-driven practices. Large-scale data in this community are dominated 
by information collected by equipment instrumentation and new sensing technologies, which are growing 
rapidly. 
 
As in other disciplines, the natural resource representatives acknowledged their need for a framework for 
accessing and integrating multiple disparate data sources. These might include multiple satellites or sensors, a 
combination of climate models and remote sensing, or data presented in different formats (e.g., sensor data and 
human-recorded logs). This is not simply a “data integration” challenge because properly combining information 
from multiple sources may be analysis-specific and require significant user input. Time series processing is used 
to build predictive models from historical data. 
 
The natural resource extraction representative noted that data analytics has already been shown to produce 
dramatic cost savings in his industry. The scale of mining operations and their equipment means that even 
relatively simple improvements in efficiency and equipment management can easily translate into multimillion-
dollar cost savings. There were two examples. The data-driven management of spare parts saved one mining 
company $200 million annually. Another $100 billion-a-year company saved $2 billion by unifying and 
optimizing its supply and production data. While new sensing technologies and forms of data are not trivial to 
manage, there was little evidence of intractable scale in the problems described. Instead, most of the effort was 
spent coping with new applications of existing data and new forms of data never measured before, such as sensor 
data from struts of huge ore hauling trucks and poor or inconsistent data quality of human-recorded data (e.g., 
from equipment inspections between shifts). 
 
The institutions providing remote sensing data do not expend significant effort on integration. Instead, they are 
concerned with the diversity of analysis that their users desire. Data movement is a significant problem as well. 
Scientists also preferred HDF5 or NetCDF files as “transferable wads of information” over perhaps-more-
integrated databases. 

9 OTHER TOPICS 

Data management associated with large physics collaborations, such as the LHC, was mentioned as far more 
cost-efficient despite the huge price tags. The efficiency comes from sharing knowledge and resources. 
 
Some attendees argued that billing scientists for their real CPU and I/O usage at finer granularity would create 
incentives for devising the efficient, scalable algorithms needed for exascale computing. They said the current 
model encourages inefficient programming by focusing on maximizing the output of fixed-cost purchased 
resources (e.g., trying to scale out to X cores, rather than maximizing the effectiveness of each CPU cycle). 
Scalability is still important, however, because all new “big iron” petascale and exascale machines are, in fact, 
“scaled-out” clusters of simpler nodes, rather than more powerful “scaled-up” single machines. 
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Vendors asked science representatives which software languages they used and needed, noting that tools or 
languages that do not match problems are irrelevant. Attendees replied that there is no small subset of languages 
used across all scientific communities. Each community has its own traditions for using general-purpose 
languages and tools, some of which are domain-specific. Participants speculated that scientists have too little 
time to risk experimenting with tools not already used within their communities. 
 
Database vendors admitted that their community has largely ignored UI design. Science representatives agreed 
that a good UI could trigger greater adoption, noting that web browsers were adopted quickly without much 
resistance. 
 
A recurring theme in the workshop was the problem of poorly organized data. While a big problem regardless of 
scale, poor data organization causes exceptionally difficult problems at huge scales and seems to be steadily 
worsening. Participants noted the common problem of data “hidden” in poorly organized files. One attendee 
related the challenge of dealing with data that a retiring technician had kept in 30,000 spreadsheets, innumerable 
emails, and even some screenshots. Solutions suggested for this problem range from providing a search facility 
for unstructured data to creating and requiring a comprehensive system that imposes structure on the data from 
the moment it is created. 
 
A few topics were suggested for future discussion: 

 Computer memory hierarchies. In current implementations, main memory (traditionally DRAM) is now 
very far from the CPU, a reality that is at odds with the logical computing model of CPUs executing 
instructions read from and manipulating data stored in main memory. 

 Estimation of data value and mobility. A conference panelist noted that data is stored in cheap, but slow, 
storage, from which it is analyzed until its value (a per-byte quantity) is great enough to duplicate and 
write in higher-performance locations, such as databases. Participants noted that it would be useful to 
have metrics that would quantify and identify when it would be beneficial to move data from storage to 
databases, even when large amounts are involved. The panelists did not describe a means of estimating 
such value, nor did workshop participants have any answers. 

 Data publishing and providing open access to data. Involvement of government representatives was 
requested for this topic. 

 Data in files versus data in databases. Participants wanted further exploration, specifically addressing 
the questions of what data could be placed in databases and how databases could support data files. 

 Integration of databases and domain-specific tools, languages, and APIs. Participants felt a 
collaboration of data scientists and database researchers could make considerable progress in 
integration, especially if facilitated by XLDB. 

 In-browser data analytics. Data analysts and database researchers need to discuss what is needed from 
each of their communities to enable in-browser data analytics. 
 

10 NEXT STEPS 

Participants found the 6th XLDB workshop to be useful and not needing major changes. The format, length, 
location, and timing were perfect. One suggested tweak was to choose one or two topics that would be re-visited 
regularly at workshops and process updates. The written reports were found to be useful, in particular by new 
participants who are orienting themselves with XLDB. While most want the workshop to continue to be loosely 
structured, one said that a stronger structure might reduce unnecessarily-repeated discussions and would be more 
sustainable. 
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GLOSSARY 

API – Application Programming Interface 
AWS – Amazon Web Services 
CPU – Central Processing Unit 
DOE – Department of Energy 
DRAM – Dynamic Random-Access Memory 
ENCODE – Encyclopedia of DNA Elements 
GPL – GNU General Public License 
HIPAA – The Health Insurance Portability and Accountability Act of 1996 (P.L.104-191) 
HDF5 – Hierarchical Data Format 5 
I/O – Input/Output 
IOPS – Input/Output operations Per Second 
IT – Information Technology 
LHC – Large Hadron Collider 
NetCDF – Network Common Data Form 
NHGRI – National Human Genome Research Institute 
NIH – National Institutes of Health 
SQL – Structured Query Language 
UI – User Interface 
UUID – Universally Unique Identifier 
XLDB – eXtremely Large DataBases
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