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ABSTRACT

The Inverted Exponential Distribution is studied as a prospective life distribution. In this paper, we derive Bayes’
estimators for the parameter 0 of inverted exponential distribution. These estimators are obtained on the basis of
squared error and LINEX loss functions. Comparisons in terms of risks with the estimate of @ under squared error
loss and LINEX loss functions have been made. Finally, numerical study is given to illustrate the results.
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1 INTRODUCTION

In reliability studies commonly used models in life testing include the gamma, lognormal and inverse Gaussian
distributions. These models are usually chosen on the basis of what is understood about the failure mechanisms. If
the failures are mainly due to aging or the wearing out process, then it is reasonable in many applications to choose
one of the above mentioned distributions (see Chhikara & Folks, 1977; Sinha & Kale, 1980; Von Alven (ed.), 1964;
Sherif & Smith, 1980). In this paper, we consider the inverted exponential distribution as life distribution (see Lin.,
Duran, & Lewis, 1989). The probability density function (pdf) of the inverted exponential distribution with
parameter 0 is

PN
f(xﬁg)_exz

=0, otherwise,
which has no finite moments.
The reliability function, i.e., the probability of no failure before time ‘t’ is
1

R)=1-Fo=1—e "
where F(t) is the distribution function of X.
The failure rate of an inverted exponential distribution with parameter & is
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In the estimation of reliability function, use of symmetric loss function may be inappropriate as has been recognized
by Canfield (1970) and Varian (1975). Zellner (1986) proposed an asymmetric loss function known as the Linex
loss function which has been found to be appropriate in the situation where overestimation is more serious than
underestimation or vice-versa.
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Suppose A= — - 1, where 6 is an estimate of 8. Consider the following convex loss function.

|

o

L(A)=e**-aA—1;a#0 3)
The sign and magnitude of ‘a’ represent, respectively, the direction and degree of asymmetry. A positive value of ‘a’
is used when overestimation is more costly than underestimation; while a negative value of ‘a’ is used in the reverse
situation. For ‘a’ close to zero, this loss function is approximately squared error loss and therefore almost symmetric.
Several authors (Basu & Ebrahimi, 1991; Rojo, 1987; Soliman, 2000; Zellner, 1986) have used this loss function in
various estimation and prediction problems.

A

If we define A\= @ — @, then L(A, ) is equivalent to the loss function used by Varian (1975) and Zellner (1986).

Here, we consider the non-informative prior:

g(@)oo% . 60 @

The plan of the article is as follows: In section 2, we obtain Bayes estimator of @ . The estimates are based on the

squared error loss function and Linex loss function L(A;) where A;= @ — @ . By using g(0) as the prior distribution,
the risk of estimates have been obtained. Comparison in terms of risk with the estimates of 6 under squared error
loss and Linex loss functions have been made. Also, we give a numerical example to compare our results.

2 BAYES' ESTIMATE OF#@

In this section we are concerned with the estimation of the unknown parameter & of the inverted exponential
distribution based on a complete random sample of size n. The likelihood function (LF) is given by:

==
|
Q

L(x|8)= (5)

0 no;2q xiZ

no ]
where, S= ¥ —
i=l X,

The natural logarithm of the LF (5) is

¢ = fnL(x| 0) = Const + fnnli2 0 lné - %
i= xi

Assuming that the parameter & is unknown, the MLE (Maximum Likelihood Estimator) of the parameter € can be
shown to be

0 =— (6)

because — ;i =1, 2, ..., n, are independent and identically distributed exponential random variables with
X,
1
parameter 0. It is also known that a sum of independent exponentially distributed random variables gives a Gamma

distributed variable where the probability density function of S is

1 _s
hS)=—3S8""e ¢

;8>0 7
0 > @)
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2.1 Bayes’ Estimator of ¢ based on squared error loss function

Combining the prior distribution g( & ),with the likelihood function L(x| @) using Bayes’ theorem, the posterior
density of & is

-5
n 9

el = -
7[( |X) enJrl Fn

, 0>0 ®)

By using (8) under squared error loss (L( é, 0) = (é —6)%), the Bayes’ estimator of @ denoted by @ p is the

posterior mean g,.(6):

R S
Osg = ( ) )

2.2 Bayes’ Estimator of # based on LINEX Loss Function

Under the Linex loss function (1.3), the posterior expectation of the loss function L( A, ) with respect to 77( € x) in
8)is

1

% a[(Z—)—] )
E[L(A)]= [ {e — a[(;) —1]1-1} z(0|x40 (10)
0

— " E [ex {a(é)}]—aﬁné) 1741 (11)
P 0

The value of é that minimizes the posterior expectation of the loss function L(A, ) denoted by 49L 5 1s obtained by
solving equation

OEILA ] _ a0 O o 10
S Bl expla( )]~k () =0 @

A

that is, HLB is the solution of the equation

E_[yep( a(Z)] = e E () 13

provided that all expectation exists and are finite. Using (8) and (13), we get the optimal estimate of & relative to

L(A)):

a

éLB: [1 —_e n+1] (14)

Q |
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2.3 The Risk Efficiency of 4,,with respect to 6 under LINEX Loss L(A,)

The risk function of estimators &, ; and @, relative to L(A, ) are of interest. These risk functions are denoted by

RL( éLB) and R L( é’SB ), where subscript L denotes risk relative to L(A, ) and are given by using h(S) in (7) as

follows:

éLB n
) L al )-1] 6
R (0,5)=E( L(A1)]: .[{e o _a[(%) — 1] = 1} h(s)ds
0
__4 __4
_e " —a-e "y (15)

In the same manner, we get
6
© (=) 1]

" 7] éSB 2
R, (0,)=E (L(A)]= g{e

_a[(T) =1 ps)ds

a .., _a
n-—1 ) n-—1

=e ‘(1 - -1 (16)

The risk efficiency of éLB with respect to éSB under LINEX Loss L(A,) may be defined as follows:

R, ()

RE, (0,,,0,)=—t"—
L LB SB RL(HLB)

(17)

2.4 The Risk Efficiency of estimators 4,, with respect to 6, under squared
error loss

The risk functions of the estimators &,, and @, under squared error loss are denoted by Ry ( 0,,) and

Ry ( éSB) and are given by :

RS( éLB )= {(éw - 0)2 h(S)dS

Thus,
RS(9},9):492[’“(’7—;1)(1—@?)2 —%(1—e’ﬁ)+1] (18)
a
Ry(6,) = {(ésg —~0)’ h(S)dS
Thus,
Re(By)= o2p 2t D 2Zn 19)
(n —1)2 n—1
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A

The efficiency of € | 5 with respect to 6, under squared error loss is defined as:

Ry (D)

RE (0,,,04)=—"
" Ry(B,)

(20)

3 NUMERICAL EXAMPLE

To compare the proposed estimator 9LB with the estimator @, the risk functions are computed so as to see

whether & .5 out performs éSB under LINEX loss L(A, ) and how 0 g performs as compared to éSB when true

loss is squared error. A comparison of this type may be needed to check whether an estimator is inadmissible under
some loss function. If so, the estimator would not be used for the losses specified by that loss function. For this
purpose the risks of the estimators and risk efficiency have been computed. Since one sample does not tell us much,
so we generated N=500 samples of sizes n=10, 20, 30 from (1) with 6=1. The results are presented in Table 1 to
Table 6.

Table 1. The Estimators 6, , 6, the risk efficiencies RE, ( 0, ,0, )and RE( 8,0, ) under the prior
g( @) for the values of a=2

n O 0,5 RLCOp) RL(Ogp) RS (0r3) RS (bsp) REL( éLB’éSB ) RE(Opp,dgs)
10  1.1042 .8261 1713 4483 .0973 1358 2.6170 1.3928
20 1.0500 .9062 .0923 .1464 .0496 .0582 1.5861 1.1734
30 1.0110 9159 0631 .0856 .0332 .0369 1.3566 1.1114

A

Table 2. The Estimators éLB , O, the risk efficiencies RE ( éw , éSB yand RE( éLB , éSB ) under the prior
g( @) for the values of a=1

n GSB eLB RL( éLB ) RL( éSB) RS‘( éLB) Rs ( ‘953 ) REL ( 9LB ’ 933 ) REs( HLB > HSB )
10 1.1146 8718  .0441 .0835 .0927 1358 1.8934 1.4649
20 1.0434 9219  .0234 .0321 .0481 .0582 1.3718 1.2099
30 1.0240 9427  .0160 .0197 .0325 .0369 1.2319 1.1354

Table 3. The Estimators éLB , O, the risk efficiencies RE, ( éLB .0, )and RE( é’LB .0, ) under the prior
g( @) for the values of a= 0.5

n éSB 0.5 RL(0yp) RL(Og5) Rs(05) Rs(Osg) RE (0.5.00) REG(O,.0)

10 1.0947  .8756 .0112 .0186 .0914 1358 1.6607 1.4858
20 1.0288  .9198  .0059 .0076 .0477 .0582 1.2881 1.2201
30 1.0053  .9329  .0040 .0047 .0323 .0369 1.1750 1.1424
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Table 4. The Estimators &, , , éSB , the risk efficiencies RE, ( 6,,, éSB yand REG(0,,, éSB ) under the prior
g( @) for the values of a=- 0.5

n ésg 0.5 RL( ) RLCOgy) Rs(05) Rs(Ogs) RE,(0,5.60g) REG(0,5.00)
10 1.1039 9241 0115 0157 .0914 1358 1.3652 1.4858
20 1.0399 9522 .0059 .0069 0477 .0582 1.1695 1.2201
30 1.0213 .9632 .0041 .0045 .0323 .0369 1.0976 1.1424

Table 5. The Estimators éLB s éSB , the risk efficiencies REL ( éLB R éSB ) and RES( éLB R éSB ) under the prior
g( @) for the values of a= -1

n éSB Op RLCé) RLCigy) Rs(5) Rs(Og) RE (0,5.04) RE(0,.04)
10 1.1404 9767 .0469 .0589 .0929 1358 1.2559 1.4618
20  1.0690 .9906 .0242 0271 .0482 .0582 1.1198 1.2075
30 1.0518 .9999 .0163 0176 .0325 .0369 1.0797 1.1354

A

Table 6. The Estimators &, , , 6, . the risk efficiencies RE, ( 0,5, éSB yand RE( 0,5, ésg ) under the prior
g( @) for the values of a= -2

n ésg Op  RLCiy)  RL(igy) Rs () Rs(Ogp)  rEL(015.0)  RECO,.00)
10 1.1241 1.009 .1934 2155 .0994 1358 1.1143 1.3662
20 1.0455 .9924 .0983 .1036 .0499 .0582 1.0539 1.1663
30 1.0220 9875 .0659 .0682 .0333 0368 1.0349 1.1051

4 CONCLUSION

It is evident from the above Table 1 to Table 6 that, the risk efficiency RE, ( 0 1B ’ésg ) is greater than one for the
sample sizes n = 10, 20, 30 and for all values of ‘a’ (a ==+ 0.5, £1, £2), which indicates that the proposed estimators

A

o 5 is preferable to @, i.e., asymmetric loss function is more appropriate than squared error loss function. Also it

is observed that, the risk efficiency RE ( G 1B éSB ) is greater than the risk efficiency RE ¢ ( éLB , éSB) for all

positive values of ‘a’ and for all sample sizes n =10, 20, 30. However, the risk efficiency RE ( o 1B éSB ) is less

than the risk efficiency RE S ( 0 1B > ésg) for all negative values of ‘a’ and for all sample sizes n = 10, 20, 30.
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