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ABSTRACT 
 

The Inverted Exponential Distribution is studied as a prospective life distribution. In this paper, we derive Bayes’ 
estimators for the parameter θ  of inverted exponential distribution. These estimators are obtained on the basis of 
squared error and LINEX loss functions. Comparisons in terms of risks with the estimate of θ  under squared error 
loss and LINEX loss functions have been made. Finally, numerical study is given to illustrate the results. 
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1 INTRODUCTION  
 
In reliability studies commonly used models in life testing include the gamma, lognormal and inverse Gaussian 
distributions. These models are usually chosen on the basis of what is understood about the failure mechanisms. If 
the failures are mainly due to aging or the wearing out process, then it is reasonable in many applications to choose 
one of the above mentioned distributions (see Chhikara & Folks, 1977; Sinha & Kale, 1980; Von Alven (ed.), 1964; 
Sherif & Smith, 1980). In this paper, we consider the inverted exponential distribution as life distribution (see Lin., 
Duran, & Lewis, 1989). The probability density function (pdf) of the inverted exponential distribution with 
parameter θ is  
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              = 0, otherwise, 
which has no finite moments. 
The reliability function, i.e., the probability of no failure before time ‘t’ is  
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where F(t) is the distribution function of X. 
The failure rate of an inverted exponential distribution with parameter θ  is  
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In the estimation of reliability function, use of symmetric loss function may be inappropriate as has been recognized 
by Canfield (1970) and Varian (1975). Zellner (1986) proposed an asymmetric loss function known as the Linex 
loss function which has been found to be appropriate in the situation where overestimation is more serious than 
underestimation or vice-versa. 
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Suppose Δ = 
θ
θ̂

 - 1, where θ̂  is an estimate of θ. Consider the following convex loss function. 

L (Δ) = e a Δ - aΔ – 1; a≠ 0          (3) 
 
The sign and magnitude of ‘a’ represent, respectively, the direction and degree of asymmetry. A positive value of ‘a’ 
is used when overestimation is more costly than underestimation; while a negative value of ‘a’ is used in the reverse 
situation. For ‘a’ close to zero, this loss function is approximately squared error loss and therefore almost symmetric. 
Several authors (Basu & Ebrahimi, 1991; Rojo, 1987; Soliman, 2000; Zellner, 1986) have used this loss function in 
various estimation and prediction problems. 
If we define Δ1= θθ −ˆ , then L(Δ1 ) is equivalent to the loss function used by Varian (1975) and Zellner (1986). 
 
Here, we consider the non-informative prior: 
 

( )
θ

θ 1
∞g  ,    θ>0         (4) 

The plan of the article is as follows: In section 2, we obtain Bayes estimator ofθ . The estimates are based on the 

squared error loss function and Linex loss function L(Δ1) where Δ1 = θθ −ˆ . By using g(θ) as the prior distribution, 
the risk of estimates have been obtained. Comparison in terms of risk with the estimates of θ under squared error 
loss and Linex loss functions have been made. Also, we give a numerical example to compare our results. 
 
2  BAYES’ ESTIMATE  OFθ  
 
In this section we are concerned with the estimation of the unknown parameter θ  of the inverted exponential 
distribution based on a complete random sample of size n. The likelihood function (LF) is given by: 
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The natural logarithm of the LF (5) is  
 

)|( θxnLll =  = Const +  21

1

i

n

i x
n

=
Πl  - n θnl  -  

θ
s

 

Assuming that the parameter θ  is unknown, the MLE (Maximum Likelihood Estimator) of the parameter θ  can be 
shown to be  

n
S

ML =θ̂           (6) 

 

because 
ix

1
 ; i = 1, 2, . . . , n, are independent and identically distributed exponential random variables with 

parameter θ. It is also known that a sum of independent exponentially distributed random variables gives a Gamma 
distributed variable where the probability density function of S is 
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 ; S > 0        (7) 
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2.1  Bayes’ Estimator of θ  based on squared error loss function 
 
Combining the prior distribution g(θ ),with the likelihood function L(x|θ ) using Bayes’ theorem, the posterior 
density of θ  is  
 

(π θ | x) =  
n

eS
n
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 ,  θ  > 0       (8) 

 
By using (8) under squared error loss (L( 2)ˆ(),ˆ θθθθ −= ), the Bayes’ estimator of θ  denoted by θ̂ SB  is the 
posterior mean )(θπE :     
 

θ̂ SB =  )
1
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S

          (9) 

 
 
2.2  Bayes’ Estimator of θ  based on LINEX Loss Function 
 
Under the Linex loss function (1.3), the posterior expectation of the loss function L( 1Δ ) with respect to (π θ | x) in 
(8) is  
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The value of θ̂  that minimizes the posterior expectation of the loss function L( 1Δ ) denoted  by LBθ̂  is obtained by 
solving equation  
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that is, LBθ̂  is the solution of the equation       
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provided  that all expectation exists and are finite. Using (8) and (13), we get the optimal estimate of θ  relative to 
L( 1Δ ):  
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2.3  The Risk Efficiency of LBθ̂ with respect to SBθ̂ under LINEX Loss L( 1Δ ) 
 
The risk function of estimators LBθ̂ and SBθ̂  relative to L( 1Δ ) are of interest. These risk functions are denoted by 

(LR LBθ̂ ) and (LR SBθ̂ ), where subscript L denotes risk relative to L( 1Δ ) and are given by using h(S) in (7) as 
follows: 
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In the same manner, we get  
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The risk efficiency of LBθ̂  with respect to SBθ̂  under LINEX  Loss  L( 1Δ ) may be defined as follows: 
 

(LRE LBθ̂ , SBθ̂ ) =
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2. 4 The Risk Efficiency of estimators LBθ̂ with respect to SBθ̂ under squared  
error loss   
 
The risk functions of the estimators LBθ̂  and SBθ̂ under squared error loss are denoted by (SR LBθ̂ ) and 

(SR SBθ̂ ) and are given by : 

(SR LBθ̂ ) = dSShLB )()ˆ( 2
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The efficiency of LBθ̂ with respect to  SBθ̂  under squared error loss is defined as: 
 

(SRE LBθ̂ , SBθ̂ ) =
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3 NUMERICAL EXAMPLE 
 
To compare the proposed estimator LBθ̂  with the estimator SBθ̂ , the risk functions are computed so as to see 

whether LBθ̂  out performs SBθ̂  under LINEX loss L( 1Δ ) and how LBθ̂  performs as compared to SBθ̂  when true 
loss is squared error. A comparison of this type may be needed to check whether an estimator is inadmissible under 
some loss function. If so, the estimator would not be used for the losses specified by that loss function. For this 
purpose the risks of the estimators and risk efficiency have been computed. Since one sample does not tell us much, 
so we generated N=500 samples of sizes n=10, 20, 30 from (1) with θ=1. The results are presented in Table 1 to 
Table 6.  

Table 1.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a=2 
______________________________________________________________________________________ 

n SBθ̂  LBθ̂    (RL LBθ̂  ) (RL SBθ̂ )         RS ( LBθ̂ ) RS ( SBθ̂ )   (LRE LBθ̂ , SBθ̂   )  (SRE LBθ̂ , SBθ̂  ) 

____________________________________________________________________________________________________________ 
 
10 1.1042 .8261 .1713 .4483 .0973 .1358 2.6170 1.3928 
20 1.0500 .9062 .0923 .1464 .0496 .0582 1.5861 1.1734 
30 1.0110 .9159 .0631 .0856 .0332 .0369 1.3566 1.1114 
______________________________________________________________________________________ 
 

Table 2.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a=1 
______________________________________________________________________________________ 

n SBθ̂  LBθ̂  (RL LBθ̂  )  (RL SBθ̂ )     RS( LBθ̂ )      RS ( SBθ̂ )   (LRE LBθ̂ , SBθ̂ ) (SRE LBθ̂ , SBθ̂ ) 

____________________________________________________________________________________________________________ 
 
10 1.1146 .8718 .0441 .0835 .0927 .1358 1.8934 1.4649 
20 1.0434 .9219 .0234 .0321 .0481 .0582 1.3718 1.2099 
30 1.0240 .9427 .0160 .0197 .0325 .0369 1.2319 1.1354 

______________________________________________________________________________________ 
 

Table 3.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a= 0.5 
______________________________________________________________________________________ 

   n SBθ̂  LBθ̂  (RL LBθ̂ )   (RL SBθ̂ )     RS ( LBθ̂ )    RS ( SBθ̂ ) (LRE LBθ̂ , SBθ̂ ) (SRE LBθ̂ , SBθ̂ ) 

____________________________________________________________________________________________________________ 
 
10 1.0947 .8756 .0112 .0186 .0914 .1358 1.6607 1.4858 
20 1.0288 .9198 .0059 .0076 .0477 .0582 1.2881 1.2201 
30 1.0053 .9329 .0040 .0047 .0323 .0369 1.1750 1.1424 

______________________________________________________________________________________ 
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Table 4.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a= - 0.5 
______________________________________________________________________________________ 

n SBθ̂  LBθ̂  (RL LBθ̂ )  (RL SBθ̂ )    RS ( LBθ̂ )  RS ( SBθ̂ )    (LRE LBθ̂ , SBθ̂ ) (SRE LBθ̂ , SBθ̂ ) 

____________________________________________________________________________________________________________ 
 
10 1.1039 .9241 .0115 .0157 .0914 .1358 1.3652 1.4858 
20 1.0399 .9522 .0059 .0069 .0477 .0582 1.1695 1.2201 
30 1.0213 .9632 .0041 .0045 .0323 .0369 1.0976 1.1424 
______________________________________________________________________________________ 

 

Table 5.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a= -1 
______________________________________________________________________________________ 

n SBθ̂  LBθ̂     (RL LBθ̂ ) (RL SBθ̂ )   RS ( LBθ̂ )     RS ( SBθ̂ )   (LRE LBθ̂ , SBθ̂ ) (SRE LBθ̂ , SBθ̂ ) 

____________________________________________________________________________________________________________ 
 
10 1.1404 .9767 .0469 .0589 .0929 .1358 1.2559 1.4618 
20 1.0690 .9906 .0242 .0271 .0482 .0582 1.1198 1.2075 
30 1.0518 .9999 .0163 .0176 .0325 .0369 1.0797 1.1354 
______________________________________________________________________________________ 
 

Table 6.  The Estimators LBθ̂ , SBθ̂ , the risk efficiencies (LRE LBθ̂ , SBθ̂  ) and  (SRE LBθ̂ , SBθ̂  ) under the prior 

g(θ ) for the values of a= -2 
______________________________________________________________________________________ 

n SBθ̂  LBθ̂      (RL LBθ̂ )   (RL SBθ̂ )          RS ( LBθ̂ ) RS ( SBθ̂ )       (LRE LBθ̂ ,
SBθ̂ )     (SRE LBθ̂ , SBθ̂ ) 

____________________________________________________________________________________________________________ 
 
10 1.1241 1.009 .1934 .2155 .0994 .1358 1.1143 1.3662 
20 1.0455 .9924 .0983 .1036 .0499 .0582 1.0539 1.1663 
30 1.0220 .9875 .0659 .0682 .0333 .0368 1.0349 1.1051 
 
 
4 CONCLUSION 
 
It is evident from the above Table 1 to Table 6 that, the risk efficiency (LRE LBθ̂ , SBθ̂  ) is greater than one for the 
sample sizes n = 10, 20, 30 and for all values of ‘a’ (a = ± 0.5, ±1, ±2), which indicates that the proposed estimators 

LBθ̂  is preferable to SBθ̂  i.e., asymmetric loss function is more appropriate than squared error loss function. Also it 

is observed that, the risk efficiency (LRE LBσ̂ , SBθ̂  ) is greater than the risk efficiency (SRE LBθ̂ , SBθ̂ ) for all 

positive values of ‘a’ and for all sample sizes n =10, 20, 30. However, the risk efficiency (LRE LBσ̂ , SBθ̂  ) is less 

than the risk efficiency (SRE LBθ̂ , SBθ̂ ) for all negative values of ‘a’ and for all sample sizes n = 10, 20, 30. 
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