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ABSTRACT  
 

This paper provides the Bayes estimators of the failure rate and reliability function for a one-parameter, 
exponential distribution by utilizing a point guess estimate of the parameter. For deriving the Bayes estimators, 
the prior distributions are chosen such that they are centered at the known prior values of parameters. The 
validity of proposed estimators is examined with respect to their maximum likelihood estimators (MLE) and 
Thompson's Shrinkage estimator on the basis of Monte Carlo simulations of 1000 samples.  
 
1         INTRODUCTION 

In life testing experiments, experimenters often possess certain information about a parameter of interest, 
through past experience or familiarity with the experiment. The most common type of information is a probable 
value of the parameterθ , say 0θ . This 0θ  has been referred in statistical literature as the point guess aboutθ . 
The use of the point guess for inferences regarding a parameter has been considered by many authors. Perhaps 
the most popular technique that utilizes the knowledge of point guess is the shrinkage technique, originally 

suggested by Thompson (1968). He suggested shrinking the usual estimator 
^
θ  of θ  towards the prior guess 

value 0θ and proposed the shrunken estimator T = k
^
θ + ( ) 01 k θ−  , where k is a constant ( ) . (1-k) 

represents the experimenter's belief in the guess value

0 k≤ ≤1

0θ . It was found that the estimator T is more efficient 

than 
^
θ  if the true value of θ  is close to 0θ but may be less efficient otherwise. The technique was further 

modified by Mehata and Srinivasan (1971), Pandey (1979), and Lemmer (1981). Point guess in Bayesian point 
estimation problems has been used by Lemmer (1981) and Pandey and Upadhyay (1985), among others. These 
authors have postulated a prior distribution forθ , which places a weight (1-k) at 0θ and distributes the rest of 

the mass k according to some distribution ( )g θ . Such a prior has a point of discontinuity at 0θ . Moreover, a 

sudden change in the confidence for a value close to 0θ seems to be unrealistic. Another Bayesian estimation 

procedure as an alternative to the shrinkage estimation procedure that utilizes the point guess 0θ  has been 
suggested by Pandey and Srivastava (1985) and Pandey and Upadhyay (1988). Their technique chooses a 
subfamily from a family of priors such that the mean of the prior distribution is equal to 0θ . Equalization of the 

mean to 0θ , however, does not seem appropriate unless the prior guess 0θ  is specified as the average value of 

θ . As mentioned above, prior to the sample selection, the experimenter believes that the point guess 0θ  is a 

possible value of the parameter. Thus, it seems more appropriate to interpret 0θ as the most probable value 

rather than interpreting it as the average value of θ . Therefore, we propose that the choice of subfamily of the 
prior be made by equalizing the mode of the prior distribution to 0θ . As an illustration of our proposition, we 
have considered the problem of estimation of the failure rate and reliability for a one-parameter exponential 
distribution. 

The exponential distribution is a widely used model in a variety of statistical procedures. Among its most 
prominent applications are those in the field of life testing and reliability problems. 
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 The probability density function (pdf) of one parameter exponential distribution is 

   ( ), ;Xf X e λλ λ −=                , .X o oλ> >                                                                      (1) 

where λ is the failure rate. The reliability function R(t) which is probability of survival for at least time t is 
given by  

    ( ) tR t e λ−= .                         (2) 

The Bayesian and classical inferences regarding parameter λ and R(t) have been considered by many authors 
(Martz & Waller, 1982; Sinha, 1985) ). In the next section, we obtain the Bayes estimator of λ and R(t) under a 
quadratic loss function when prior distribution is chosen as mentioned above. In Section 3, performance of the 
proposed estimators is compared with the corresponding MLE and shrinkage estimators on the basis of a Monte 
Carlo simulation study. 

2         ESTIMATION OF EXPONENTIAL PARAMETERS 

We assume that n items are tested and the experiment is continued until the first r failures are observed (type II 
censoring). If ( )1 2, ,.... rX X X= ( )r n; X ≤  denotes the first r ordered observations, then the likelihood 
function is given by 

( ) ( )
!/

!
rnL X

n r
λ λ=

−
    exp ( ) ;       rSλ− .oλ >                        (3) 

Where  and is interpreted as 'total observed failure times.' ( )
n

r i
i=1

S X + n-r=∑ rX

2.1       Estimation of  λ

It is well known that the MLE of  is  λ

^
λm

r

r
S

= .                       (4) 

Suppose that prior to the sample information X , some a priori information including a point guess regarding 

is also available. In such a situation, one may be willing to use a shrinkage estimator which is defined below: 
0λ

λ

( )
^ ^

S m 0λ =k λ + 1-k λ ,                      (5) 

where (1-k) is the confidence in as prespecified by experimenter. The estimator performs better than 

if is close to , but in other situations it be may worse than . The shrinkage estimator utilizes only a 
single piece of prior information in the form of a point guess, which may always be questionable. Perhaps a 
better and more easily justifiable way of utilizing the prior information would be by the Bayes method of 
selecting a family of priors that can describe a variety of information. One such family of priors is the natural 
conjugate prior (see Raiffa & Schlair, 1961). The natural conjugate prior for is 

0λ
^

Sλ
^

mλ λ 0λ
^

mλ

λ
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( ) (
C

c-1
1

ag λ = λ exp -a
Γc

)λ ;             .                                                                                     (6) c,a>o,λ>o

The mode of this distribution is at a/(c-1). In the presence of point guess about , a subfamily of (6) may be 

obtained by choosing a and c such that , i.e., 
0λ λ

( ) 0a/ c-1 =λ ( )0a=λ / c-1  which results in   

    ( ) ( ) ( ){ }0 c-1
2

c-1 /λ
g λ = λ exp c-1 λ/λ ; c>1,λ>0.

Γc
⎡ ⎤⎣ ⎦ − 0                      (7) 

The posterior distribution of λ can easily be obtained by combining (3) and (7) by the Bayes rule as 

( ) ( )
( )

( )
r+c

0 r r+c-1
r

0

c-1 /λ +S c-1
P λ/X = λ exp -λ +S

Γ r+c λ
⎡ ⎤ ⎡ ⎤⎧ ⎫⎣ ⎦

⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

.                     (8) 

Hence the Bayes estimator of λ , denoted by under a quadratic loss function, which is the mean of the 
posterior distribution function from (8) is 

^

Pλ

( )
( )

^
0

P

0 r

r+c λ
λ =

λ S + c-1
.                    (9) 

2.2       Estimation of R(t) 

In this subsection, we obtain the Bayes estimator of the reliability function ( ) -λtR t =e , which is the probability 
that a unit will survive until a specified time t. If we make the transformation 

1λ=- log R
t

, 

where R=R(t), the density and likelihood function, given in (1) and (3) respectively, can be written in terms of R 
as  

( ) x/t 1f X/R =R - log R
t

⎛ ⎞
⎜ ⎟
⎝ ⎠

;                        (10) 0 1R≤ ≤

and 

( ) ( )
( )/! 1/ log ; 0 1.

!
r

r
S tnL X R R R R

n r t
⎛ ⎞= − ≤⎜ ⎟− ⎝ ⎠

≤                 (11) 

A flexible and rich prior (in the sense of being capable of describing a variety of information) is the Beta Prior 
(see Martz & Waller, 1985; Canfield, 1970). If the point guess regarding the reliability at time t is R0, and 
equating it to the mode of Beta Prior, we get a subfamily of priors as  

( )
( )0 0

0

1
1

R
Rg R R
β

α
−

− ( ) 0 11 R β −−  ;       00 1,R 2β≤ ≤ > .                (12) 
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The posterior distribution of R given X can be obtain from the following 

( ) ( ) ( )
( ) ( )

1

0

L X/R g R
P R/X =

L X/R g R dR∫
.             (13) 

Substituting (L X/R ) and g(R) from (11) and (12) in (13) and simplifying under the assumption that 0β is 
integer, we have 

( ) ( )
( )

( )

( ) ( ) ( ) ( )

0 0

00

0

1
11

0
1

0 0
0

0 0

-logR 1
P R/X = 0 1

1
1 1 1 1

1

r RS
r t R

r
j r

jj

R R
R

RSr j
t R

β
β

β β
β

⎧ ⎫−⎪ ⎪+⎨ ⎬ −−⎪ ⎪⎩ ⎭

− +

=

−
≤ ≤

⎡ ⎤−⎧ ⎫⎛ ⎞⎢ ⎥Γ + − − + + +⎨ ⎬⎜ ⎟ −⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦
∑

 .          (14) 

Under the quadratic loss function, the Bayes estimator of R, 
^
R P , that is the mean of (14) is 

( ) ( ) ( )

( ) ( ) ( )

0

0

- r+1β
j 0 0r

0
j^ j=0 0

P
- r+1β

j 0 0r
0
jj=0 0

R β -1Sβ -1 -1 + +i+2
t 1-R

R =
R β -1Sβ -1 -1 + +i+1

t 1-R

⎡ ⎤⎧ ⎫⎛ ⎞⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠ ⎩ ⎭⎣
⎡ ⎤⎧ ⎫⎛ ⎞⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠ ⎩ ⎭⎣ ⎦

∑

∑

⎦ .           (15) 

The MLE of R,  , is 
^
Rm

^
Rm =exp

r

rt
S

⎛ ⎞
−⎜ ⎟
⎝ ⎠

.          (16) 

The shrinkage estimator of R, , with confidence (1-k) in R
^
R S 0 can be defined as  

( )
^
R exp 1S o

r

rtK k
S

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
R .         (17) 

3         COMPARISON OF ESTIMATORS 

In the previous section, Bayes estimators of λ and R(t) have been obtained as alternative estimators to 
shrinkage estimators, utilizing the knowledge of a point guess. Now the question of comparison of the proposed 
estimators with the corresponding shrinkage and MLE estimators arises. For comparison, we propose the risk 
criterion, which is well accepted by non Bayesians. It is well known that the risk of an estimator T1 of parameter 

is defined as  θ

RE ,        (18) ( ) ( )2
1 1θ,T =E T -θ
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where the expectation is taken over the whole sample space. Naturally, T1 will be superior to another estimator 
T2 of  if R (θ , Tθ 2) > R( , Tθ 1), or in other words, we can say the risk efficiency RE(T1, T2) > 1, where  

( ) ( )
( )

2
1 2

1

RE θ,T
RE T ,T =

RE θ,T
.     (19) 

Unfortunately, in the present case, we cannot find RE , RE , RE , or 

RE in a nice closed form, making the analytical comparison impossible. Therefore, we obtain these 

risk efficiencies on the basis of simulated data using a Monte Carlo technique. 

^ ^

P mλ ,λ⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^

P Sλ ,λ⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^

P mR ,R⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^

P SR ,R⎛ ⎞
⎜
⎝ ⎠

⎟

3.1       Comparison of 
^

pλ  with and  
^

mλ
^

Sλ

To compare the proposed estimator 
^

pλ with  and  given in subsection 2.1, the risk efficiencies 

RE and RE  are simulated on the basis of 1000 samples of size 10 each generated from 

(1). It may be noted that risk efficiency depends on λ, λ 

^

mλ
^

Sλ
^ ^

P mR ,λ⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^

sP ,λλ⎛⎜
⎝ ⎠

⎞
⎟

⎞
⎟

0, c, k, and r besides n, which has fixed to 10 in the 
present study. For generation of data, different values of λ have been considered such that λ / λ 0=0.50, 1.00, 
1.50, 3.00 and 4.00 where λ 0=2.00. The values of r were chosen in each case such that the sample fraction 
r/n=0.20(0.20)0.80. The various values of c and k considered here are c=1.50, 3.00, 6.00 and k=0.25, 0.50, 0.75. 
The results thus obtained are compiled in Table 1. 

On the basis of Table 1, it is seen that RE  for almost all considered situations. It can also be 

seen that RE  increases as 

^ ^

mP ,λ 1λ⎛ ⎞ >⎜ ⎟
⎝ ⎠

^ ^

mP ,λλ⎛⎜
⎝ ⎠

λ /λ 0 increases if c 3.00.≤  Similarly, an increase in the value of c 

generally increases RE up to c=3.00; however, for c>3.00, this trend is observed only for smaller 

values of 

^ ^

mP ,λλ⎛⎜
⎝ ⎠

⎞
⎟

λ /λ 0. On the other hand, increases in the value of r/n decrease the risk efficiencies for small values 
of λ /λ 0 and c. 

The comparison of 
^

Pλ with 
^

sλ for different values of k shows that in some parametric space, the proposed 
estimator is better than the shrinkage estimator but is worse in some other situations. It may also be noted from 

Table 1 that as the value of c increases, the effective interval of RE  increases. A similar trend is also 

observed for increase in the value of k. The study of the effect of variation in sample fraction r/n on 

RE  shows that an increase in r/n increases the risk efficiencies in general if k=0.25, but for k=0.50 

and 0.75 they decrease. 

^ ^

sP ,λλ⎛ ⎞
⎜
⎝ ⎠

⎟

⎟
^ ^

sP ,λλ⎛ ⎞
⎜
⎝ ⎠
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3.2       Comparison of estimators of R(t) 

The proposed estimator of R(t) and corresponding MLE and shrinkage estimator are given in (15), (16), and 

(17) respectively. To compare with and , the risk efficiencies RE and 

are obtained on the basis of simulated samples of size = 10 for different values of R from (10). 

The values of R have been chosen such that R/R

^

PR
^

PR
^

mR
^

sR
^ ^

P mR ,R⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^
RE R p,R s⎛

⎜
⎝ ⎠

⎞
⎟

⎞
⎟

0 = 0.50(0.50)3.00 where R0 was prefixed at 0.18. Similarly the 
values of r were taken such that r/n=0.20(0.20)0.80. The variation in the prior constant was taken as =3.00 
(3.00)12.00 with k=0.25(0.25)0.75. The results are summarized in Table 2. 

0β 0β

It has been observed from the table that RE >1 if R/R
^ ^

P m,RR⎛⎜
⎝ ⎠

0>1.00. The gains and losses due to use of 
^

PR  

generally reduce as r/n increases. It may also be seen that as R/R0 increases from 0.50, risk efficiency increases 
in the beginning but then starts decreasing with further increases in R/R0. For an increase in the value of the 

prior constant , RE increases for R/R0β
^ ^

P m,RR⎛⎜
⎝ ⎠

⎞
⎟

⎟

0<2.50, but a decrease is noted with large values of for 

R/R

0β

0>2.50. 

A comparison of the proposed estimator with the shrinkage estimator shows that RE >1 if R/R
^ ^

P s,RR⎛ ⎞
⎜
⎝ ⎠

0>2.00. 

Moreover, the range of R/R0, for which risk efficiency is greater than one, increases as k and increase except 

in a few cases when k=0.50. It may also be seen that an increase in the value of k increases RE if 

R/R

0β
^ ^

P s,RR⎛ ⎞
⎜ ⎟
⎝ ⎠

0<2.00. The initial increase in the value of R/Ro results in an increase in the risk efficiency, but at some 
values of R/Ro, which is small for large values of , a further increase causes reduction in risk efficiency. 
Increases in r/n do not have a uniform effect on risk efficiency. However, it may be seen that for large k and β

0β
0 

namely, k=0.75 and β0 =12, an increase in r/n decreases the risk efficiency. 
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Table 1. Risk efficiency of with respect to . and 
^
λ p

^
λm

^
λs for various values of 0λ/λ , c, and k with n=10 and 0λ =2.00 

 

 
^ ^

L sRE λ ,λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
^ ^

L mRE λ ,λ⎛ ⎞
⎜ ⎟
⎝ ⎠

 k=0.25 
 

k=0.50 
k=0.75 

C 

 

 

 

r/n->

0λ/λ

0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 

0.50 1.85 0.82 0.77 0.80 0.29 0.46 0.74 0.95 0.61 0.47 0.61 0.72 1.13 0.59 0.62 0.67 
1.00 2.70 0.87 0.88 0.64 0.17 0.06 0.06 0.04 0.67 0.22 0.22 0.16 1.52 0.49 0.50 0.36 
1.50 8.39 1.72 1.07 1.37 1.08 0.15 0.36 0.23 2.54 0.39 0.44 0.36 4.98 0.91 0.67 0.74 
3.00 14.50 2.95 2.20 2.06 1.40 1.32 1.15 0.83 3.09 0.83 0.64 0.46 7.46 1.38 1.00 0.87 

1.50 

4.00 73.70 6.40 2.65 3.31 3.85 2.95 3.73 1.41 14.70 1.60 1.92 0.79 38.00 2.75 1.56 1.42 
0.50 5.57 1.37 1.04 1.01 0.87 0.77 1.01 1.21 1.83 0.79 0.83 0.91 3.39 0.99 0.84 0.85 
1.00 18.60 2.72 1.94 1.35 1.16 0.17 0.12 0.09 4.64 0.68 0.49 0.34 10.4 1.53 1.09 0.76 
1.50 15.20 2.51 2.07 1.97 1.96 0.90 0.70 0.72 4.61 1.15 0.84 0.77 9.03 1.68 1.30 1.19 
3.00 17.50 5.04 6.43 11.60 1.69 2.26 3.28 4.63 3.73 1.42 1.84 0.57 9.02 2.34 2.89 4.9 

3.00 

4.00 33.00 6.29 7.73 8.41 1.73 1.42 2.34 3.31 6.60 0.8 1.38 1.62 17.00 2.43 3.17 3.33 
0.50 9.25 1.85 1.26 1.19 1.44 1.04 1.22 1.42 3.03 1.06 1.00 1.08 5.63 1.33 1.01 1.0 
1.00 89.90 8.49 4.95 2.81 5.62 0.53 0.31 0.18 22.50 2.12 1.24 0.70 50.60 4.77 2.78 1.58 
1.50 41.1 3.02 3.03 3.18 2.64 1.08 1.02 1.16 9.05 1.38 1.23 1.24 21.90 2.02 1.89 1.92 
3.00 9.53 2.07 2.31 3.69 0.91 0.93 1.17 1.47 2.03 0.58 2.66 0.82 4.90 0.96 1.04 1.55 

6.00 

4.00 68.30 2.59 2.70 2.56 2.68 0.59 0.82 1.00 14.20 0.33 0.48 0.49 36.10 1.00 1.11 1.0 
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Table 2. Risk efficiency of  with respect to  and 
^
R p

^
Rm

^
R s for various values of , β0 0R/R 0 , k with n=10, R =0.18, and t=3.00 

 
^ ^

L sRE R ,R⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
^ ^

L mRE R ,R⎛ ⎞
⎜ ⎟
⎝ ⎠

 k=0.25 
 

k=0.50 
k=0.75 

β0

 

 

 

r/n-> 

R/R0

0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 

0.50 0.19 0.19 0.27 0.31 0.08 0.16 0.27 0.38 0.08 0.07 0.14 0.20 0.12 0.07 0.14 0.17 
1.00 0.03 0.76 0.84 0.85 0.06 0.05 0.05 0.05 0.26 0.19 0.21 0.21 0.58 0.43 0.47 0.48 
1.50 1.94 1.52 1.34 1.25 0.28 0.26 0.28 0.25 0.58 0.46 0.42 0.37 1.13 0.85 0.78 0.70 
2.00 3.28 2.18 1.86 1.61 1.04 0.89 1.00 1.10 1.26 0.93 0.92 0.88 2.02 1.36 1.21 1.06 
2.50 3.68 2.47 2.16 1.86 1.47 1.78 2.36 2.53 1.56 0.36 1.67 1.72 2.30 1.59 1.59 1.50 

3.00 

3.00 4.21 2.53 1.94 1.74 2.85 2.41 2.77 2.88 2.43 1.01 1.80 1.78 2.88 1.85 1.53 1.40 
0.50 0.31 0.24 0.33 0.35 0.14 0.22 0.33 0.43 0.13 0.09 0.16 0.22 0.19 0.1 0.16 0.20 
1.00 2.22 1.36 1.32 1.24 0.14 0.08 0.08 0.08 0.56 0.34 0.33 0.31 1.25 0.76 0.75 0.70 
1.50 5.51 3.16 2.37 1.96 0.82 0.54 0.48 0.38 1.67 0.95 0.74 0.58 3.23 1.82 1.37 1.11 
2.00 8.22 4.03 2.95 2.33 2.43 1.64 1.98 1.59 3.06 1.71 1.46 1.22 4.99 2.50 1.91 1.13 
2.50 5.74 3.75 2.72 2.21 2.26 2.73 3.06 3.08 2.40 2.08 2.13 2.07 3.55 2.42 2.02 1.78 

6.00 

3.00 4.03 2.74 2.09 1.90 2.73 2.58 2.93 3.14 2.34 1.92 1.90 1.92 2.78 1.97 1.62 1.51 
0.50 0.28 0.29 0.37 0.22 0.18 0.25 0.37 0.54 0.14 0.11 0.18 0.25 0.17 0.12 0.18 0.18 
1.00 3.85 2.18 1.91 1.38 0.24 0.13 0.12 0.09 0.96 0.53 0.48 0.34 2.17 1.19 1.08 0.77 
1.50 10.59 5.54 3.70 3.11 1.13 0.96 0.75 0.63 2.73 1.67 1.15 1.04 5.88 3.19 2.14 1.87 
2.00 10.47 5.24 3.69 2.45 3.12 2.14 1.98 1.76 3.93 2.23 1.82 2.65 6.38 3.26 2.39 2.55 
2.50 5.52 3.64 2.54 2.11 2.20 2.62 2.82 2.88 2.33 2.01 1.20 1.96 3.54 2.35 1.9 1.70 

9.00 

3.00 3.10 2.35 1.70 1.72 2.10 2.23 2.57 2.85 1.81 1.67 1.67 1.76 2.14 1.71 1.42 1.38 
0.50 0.34 0.32 0.39 0.24 0.22 0.28 0.40 0.46 0.17 0.12 0.20 0.25 0.21 0.13 0.20 0.18 
1.00 5.93 0.04 2.61 2.09 0.37 0.19 0.16 0.10 1.48 0.76 0.65 0.62 3.33 1.71 1.47 1.43 
1.50 19.28 8.48 5.25 3.69 0.06 1.46 1.07 1.10 4.97 2.55 1.64 0.47 10.07 4.89 3.03 2.01 
2.00 9.71 5.53 3.94 2.58 2.88 2.26 2.11 2.09 3.64 2.35 1.95 1.23 5.92 3.44 2.56 1.78 
2.50 4.90 3.13 2.21 1.88 1.96 2.28 2.48 2.61 1.06 1.74 1.73 1.75 3.04 2.01 1.74 1.51 

12.00 

3.00 2.59 2.03 1.57 1.51 1.73 1.91 2.21 2.51 1.48 1.42 1.43 1.54 1.76 1.46 1.22 1.21 
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4         CONCLUSION 

We have seen that the proposed estimator 

^

Pλ  performs better than MLE over a wide range of parameter space. 

Thus, 
^

pλ  may be recommended as an alternative estimator against MLE with large c ( )1.50≥  , provided λ  is 

not very small as compared to λ0.  It has also been observed that 
^

Pλ  is superior to the shrinkage estimator 
^

sλ  

for k=0.75 for large values of c. For small k, i.e., k=0.25 and k=0.50, however, the proposed estimator 
^

pλ  may 

still be preferred to 

^

sλ  if the true value of λ  is greater than the guessed value λ0.  In brief we may conclude 
that the proposed estimator can be safely used with large values of c when the guessed estimate is an 
underestimate of true value. It has also been seen that the proposed estimator of reliability is always more 
efficient than the corresponding MLE if estimate R0 is less than the true value of parameter R=R(t). 

 On the other hand, comparing the estimator 

^

pR  with shrinkage estimator 
^

sR , it is noticed that if R0 is an 

underestimate of its true value, with the risk of 
^

pR  generally less than that of 
^

sR for k=0.75, the region of gain 

increases for large values of β0. However, if k=0.25 and 0.75, RE  if R/R
^ ^

p sR ,R >1⎛ ⎞
⎜ ⎟
⎝ ⎠

0 is large. Thus, the 

proposed estimator 
^

pR may be recommended for use with large only if R0β 0 is expected to be smaller than its 
true value. 
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