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ABSTRACT 

This paper describes an approach to visualizing concurrency control (CC) algorithms for real-time database 
systems (RTDBs). This approach is based on the principle of software visualization, which has been applied in 
related fields. The Model-View-controller (MVC) architecture is used to alleviate the black box syndrome 
associated with the study of algorithm behaviour for RTDBs Concurrency Controls. We propose a Visualization 
“exploratory” tool that assists the RTDBS designer in understanding the actual behaviour of the concurrency 
control algorithms of choice and also in evaluating the performance quality of the algorithm. We demonstrate 
the feasibility of our approach using an optimistic concurrency control model as our case study. The developed 
tool substantiates the earlier simulation-based performance studies by exposing spikes at some points when 
visualized dynamically that are not observed using usual static graphs. Eventually this tool helps solve the 
problem of contradictory assumptions of CC in RTDBs. 
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1    INTRODUCTION 

 Real-time database applications are characterized by their time-constrained access to data and access to data 
having temporal validity. In the literature, considerable work has been devoted to transaction scheduling and 
concurrency control in RTDBs (Abbott & Garcia-Molina, 1988; Abbott & Garcia-Molina, 1989; Buchman et al., 
1989). Most of the proposed algorithms are based on two basic mechanisms: two-phase locking (2PL) (Eswaran, 
et al., 1976) and optimistic concurrency control (OCC) (Kung & Robinson, 1981) and use priority information 
in resolving data conflicts. However, RTDBs are significantly different from conventional DBMSs with respect 
to performance goals and processing considerations. Lee (1996) pointed out that some results from previous 
performance studies on concurrency control protocols for RTDBs, instead of being definitive, are contradictory 
(e.g. between Haritsa et al., 1990 and Huang, 1991 and between Abbott & Garcia-Molina, 1989 and Huang, et 
al., 1991).  

Haritsa and Ramamritham (2000), in “RTDBs in the New Millennium,” agreed among the communiqués that a 
framework that substantiates the earlier experimental results of simulation-based performance of RTDBs need to 
be investigated. Furthermore, in an empirical evaluation of software visualization carried out by Lawrence et al. 
(1994), it was found that students who were able to control and interact with a variety of algorithm animations 
gained better understanding of the algorithm's behavior than those who could only passively observe the 
visualizations. 

For a designer of real-time database concurrency control algorithms to be able to conceive imaginative solutions 
and understand the ideas presented by other members of the design team, he or she needs to possess outstanding 
visual thinking and design modeling abilities. Keim (1997) found that application of visualization techniques to 
support people's understanding of a database structure has been receiving growing attention during the last few 
years. By enabling RTDBs users and designers to observe and interact with their algorithms, it is hoped that a 
better understanding of the behavior of the algorithms is achieved. However, visualization can be achieved only 
with a good understanding of the structural meaning of the components of the RTDBs. 

The major problem that needs to be addressed is how to visualize the runtime behaviour such as concurrency 
control algorithms. This study focuses on designing a framework that substantiates earlier experimental results 
of simulation-based performance using a visualization approach. To resolve the conflicts among different CC 
algorithms, as in the examples above, a method of visualization is now proposed. 
 
The rest of this paper is organized as follows. Related work is presented in Section 2. The architecture is 
described in Section 3. The implementation procedure and evaluations of the design are presented in Section 4. 
In Section 5 we present conclusion and future works.  
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2    A REAL-TIME DATABASE MODEL 
 
In a real-time database system, transactions travel through various components until their termination. Here a 
RTDB system model is presented with all its various components described as shown in Figure 1 below. This 
model is adopted with minor modifications from Stankovic (1991). In contrast to tasks in conventional real-time 
operating systems, the model assumes transactions to be the schedule unit. Thus, it is unlike the model proposed 
in Bauchmann et al. (1989), where the system’s load consists solely of tasks, which in turn may contain a 
number of transactions within it. The model here contains transactions as schedulable-units counter to tasks 
(Bauchmann, et al., 1989). In the Bauchmann model, where tasks are the main schedulable unit, the following 
issues must be considered: 

(i) The type of deadline associated with a task, that is, soft, firm or hard. 
(ii) Type of deadline associated with the transaction within a task, that is, soft, firm or hard. 
(iii) Derivation of a deadline for each of the transactions within a task such that all of them are initially 

feasible. 
(iv) Determination of whether transactions within a task are cooperative or independent. 
(v) Determination of whether the execution of transactions within a task is serial or concurrent. 
(vi) Consideration of when a transaction’s deadline is soft, what happens if a transaction misses its 

deadline? That is, could a transaction’s behavior jeopardize the execution of other transactions 
within the task if the transaction is allowed to execute past its absolute deadline. 

(vii) If one of its transactions misses its deadline, would the tasks abort or continue its execution? If a 
transaction’s failure signals the task’s failure, it implies that the failure of one transaction 
jeopardizes the execution of the remaining transactions within the task. 
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Figure 1. Real-time database system model (developed from Stankovic, 1991) 

Our model consists of transactions only, with each transaction having attributes just as tasks in conventional 
real-time operating systems, for example, deadlines, periodicity, criticalness, priority, etc. However, the 
database itself is considered the main resource. Therefore, transaction’s scheduling in this study as opposed to 
CPU scheduling (which exists at a lower level below that of database) is concerned with scheduling of 
transaction access to the database. 
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2.1  Concurrency Control 
 
Ramamritham (1993) and Stankovic (1991) stated that the fundamental challenge of RTDB systems is the 
unification of priority-driven CPU scheduling, and database control protocols in order to maximize both 
concurrency and resource utilization, while subjected to data consistency (logical and temporal), transaction 
correctness, and transaction timing constraints. Some of the several techniques that can implement concurrency 
control protocols for conventional non-real-time database systems are: loading, time stamping, multi-version, 
and validation (also known as certification and as optimistic concurrency control protocols). Different 
assumptions are used to design each of these mechanisms, all of which have the same goal, enforcing 
serializability. Existing concurrency control protocols ensuring serializability are based on either blocking 
and/or restarting transactions. Blocking periods might outlive the prescribed deadlines in addition to 
introducing deadlocks and the priority-inversion problem, while restarting transactions wastes processing time 
and system resources. In addition, the previous works of Graham (1992), Kao (1995), Ulusoy (1992), and 
Ulusoy (1995) suggested that it might cause the restarted transactions to miss their prescribed deadlines. Deep 
investigations have been carried out on the performance and characteristics of those mechanisms for 
conventional database systems. However, Haritsa, et al. (1992) showed that there is need for modification of 
such data access protocols and proper re-evaluation of their trade-offs under RTDB systems. 
 
2.2  Conflict Resolution 
 
Conflict resolution protocols determine which of the conflicting transactions will actually obtain access to a data 
item while priority assignment governs CPU scheduling. The result of concurrent execution of transactions 
performing incompatible operations is usually conflict, that is read or write, on the same data item at the same 
time. Schedulers differ in detecting resource conflicts among transactions and the manner in which the conflicts 
are resolved once they are detected. Abbott (1989) suggested that the preempted transaction usually must be 
rolled back if in place. Updates are employed for shared database resources. 
 
If a request by a transaction is a lock on a data item and the lock on the data item is in a conflicting mode from 
another transaction, both transactions have time constraints, yet only one can hold the lock. The conflict should 
be resolved according to the characteristics of the conflicting transactions. 
 
2.2.1 Priority-base Wound-Wait Conflict Resolution 
 
The wound-wait technique was originally proposed by Rosekrantz,, et al. (1978) for avoiding deadlocks. The 
original scheme was designed to use timestamps. However, the scheme was modified by Abbott and Garcia-
Molina (1988) and Abbott (1989) so that it uses priorities instead of timestamps. The modified version is 
applied to resolve conflicts in RTDB systems. Abbott (1988) and Abbott (1989) modified it into versions known 
as High-Priority (HP) and as Priority-Abort (PA). Below is the outline of the general algorithm  

 
Let: P(Ti) be the priority of transaction Ti. 
      Ti requests a lock on data item D. 
If (no conflict) then Tr accesses D 
    Else – Th is holding the requested data item; resolve the conflict as follows 
If (P(Tr)> P(Th) then Th is aborted 
   Else Tr waits for the lock, that is, blocks. 
 

If two transactions are involved in a conflict in the HP scheme, then the lower-priority transaction is aborted in 
order to free up the required resources for the higher-priority transaction. To preserve serializability, the 
preempted lower-priority transaction is rolled back, and when restarted, it must execute from the beginning. 
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3    A FRAMEWORK FOR VISUALIZING A CONCURRENCY CONTROL                      
ALGORITHM FOR A RTDBS                                                                            

3.1  The Visualization Cycle 

This model was first proposed by Upson et al. in 1989. It draws on the similarities between the methods of 
producing results and the analysis of those results. It recognizes that the model used to produce a visual 
representation of the data can be thought of in the same manner as the model used to obtain the data in the first 
place if we consider the model used to describe the production of the results.  

In order to simulate such a system, it is necessary to produce a mathematical approximation of the system that 
we are interested in. The mathematical approximation needs to include information that is relevant to the 
simulation and exclude information that is not. It is vital to the success of the simulation that the correct 
information is included. Once the simulation has been formulated, it is run, and results are produced. Analysis 
of the results of such a simulation frequently exposes either failings in the mathematical approximation itself 
or reveals the need for a greater level of detail. The system is subsequently updated, the simulation repeated, 
and the results re-analyzed.  
 
This process continues until a satisfactory result is obtained. The process is summarized in the diagram below.  
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Figure 2.  The Computational Cycle (adapted from Upson et al., 1989) 

The model proposed by Upson et al. (1989) for visualization follows from the notion of repeatedly performing 
the simulation, perhaps with an increasingly accurate model, until a satisfactory set of results is produced. 
However, in the case of the visualization cycle, it is the analysis, rather than the production of the results, that is 
repeated. The cycle involved in analyzing the results of the numerical simulation is divided into a number of 
steps. These steps are repeated until a satisfactory representation of the data is obtained. The individual steps 
involved are as follows.  
 

(i) The data from the simulation are filtered into an appropriate format. This may be simply a case of 
reordering the data, or it may involve selecting a subset of data, which is of most interest at any 
one time.  

(ii) The filtered data are then mapped into a form that can be displayed. Upson et al. (1989) considers 
the case where the data are mapped onto a number of geometric primitives, such as triangles, 
rectangles, etc., which are used to build up the final picture.  

(iii) The geometric primitives produced in the previous stage are then rendered into pictures which we 
can examine. 

  
Once the image (or perhaps even a series of images) has been produced, it can be compared with the expected, 
or experimental, result. If the image is not sufficiently detailed or is not as expected, the analysis cycle can be 
repeated with more data included or with a finer mapping until the results obtained are satisfactory.  
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3.2  CC-RTDBS Model 
 
In this section, we consider alternatives of modeling assumptions, which have significant impacts on the 
performance of concurrency control protocols in RTDBS. Combining the alternatives of those assumptions, we 
design our experiments for this study. 
 
3.2.1 Concurrency Control Model 
 
Following the Upson et al. (1989) postulation of discussing mathematical representation of the domain area, Lee 
(1996) modeled a soft deadline system of RTDBS as a single M/M/1 queue. The computation of the miss 
percentage for this system can be done as follows: Consider a transaction with slack time, S. Then the 
probability that it misses its deadline is equal to the probability that it must wait in the server queue more than S 
time units. Given an M/M/1 system with mean inter-arrival time 1/λ and mean service time 1.0, the waiting time 
distribution W(s) is given by Kleinrock (1975): 
 

W(s) = Pr (time spent in queue ⊆ s) 
 = 1 - λ e- (1-λ)s             (1) 
 

The probability that the transaction waits more than S time units and misses its deadline is 1 - W(s). To compute 
the expected probability of a missed deadline, we need the distribution of S. However, for simplicity we replace 
S by some constant, D and take this probability to be analogous to the miss percentage of the soft deadline 
system denoted as MPSD.  Thus we obtain the following equation: 
 

 MPSD = λ e-(1-λ) D          (2) 
 

Furthermore, a firm deadline system can be modeled by a M/M/1/N queue, which is identical to a M/M/1 
system except that the size of the queue is finite, and hence customers are turned away and not accepted by the 
queue if it is full. The probability customers are turned away is called the probability of blocking. We take the 
probability to be roughly analogous to the miss percentage of the firm deadline system and denote it by MPFD. 
Given an M/M/1/N system with mean inter-arrival time 1/λ and mean service time 1.0, the blocking probability 
MPFD is given by Kleinrock (1975): 
 
                    MPFD = ((1- λ)/(1- λ (N+1λ)  ))λ N        (3) 
 
Experimental Environment 
 
This section outlines the structure and details of the simulation model and experimental environment, which 
were used to evaluate the performance of concurrency control algorithms for RTDBSs. 
 
Parameter Setting 
 
Table 1 gives the names and meanings of the parameters that control system resources. The parameters, 
CPUTime and DiskTime capture the CPU and disk processing times per data page. Our simulation system does 
not explicitly account for the time needed for transaction management, data operation scheduling, data 
management, or context switching. We assume that those costs are included in the CPU on a per data object 
basis. 
 
The use of a database buffer pool is simulated using a probability rather than tracing each buffer page 
individually. When a transaction attempts to read a data page, the system determines whether the page is in the 
memory, so the transaction can continue processing without disk access. Otherwise, an I/O service request is 
created. 
 
Table 2 summarizes the key parameters that characterize system workload and transactions. Transactions arrive 
in a Poisson stream, i.e. their inter-arrival times are exponentially distributed. The ArriRate parameter specifies 
the mean rate of transaction arrivals. The number of data objects accessed by a transaction is determined by a 
triangular distribution (as an approximation of a normal distribution) with mean TranSize, and the actual data 
objects are determined uniformly from the database. A page is updated with the probability, WriteProb. 
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Table 1. System Resource Parameters 
 

Parameter Meaning Base Value 
DBSize Number of data pages in database 400 

NumCPUs Number of processors 2 
NumDisks Number of disks 4 
CPUTime CPU time for processing a page 15 msec 
DiskTime Disk Service time for a page 25 msec 
BufProb Probability of a page in memory 

buffer 
0.5 

 
Table 2. Workload Parameters 

 
Parameter Meaning Base Value 

ArriRate Mean transaction arrival rate - 
WaitingTime Mean waiting time - 

TranSize Average transaction size (in 
pages) 

10 

WriteProb Write Probability per accessed 
page 

0.25 

MinSlack Minimum slack factor 2 
MaxSlack Maximum slack factor 8 

 
 

The assignment of deadlines to transactions is controlled by the parameters MinSlack and MaxSlack, which set 
a lower and upper bound, respectively, on a transaction’s slack time. We use the following formula for deadline-
assignment to a transaction: 

 Deadline=AT + Uniform (MinSlack, MaxSlack)*ET  

AT and ET denote the arrival time and execution time respectively. The execution time of a transaction used in 
this formula is not an actual execution time but a time estimated using the values of parameters TranSize, 
CPUTime, and DiskTime. In this system, the priorities of transactions are assigned by the Earliest Deadline 
First policy (Liu & Layland, 1973), which uses only deadline information to decide transaction priority but not 
any other information on transaction execution time. 

Mapping a Design to Code 

At the very least, design class diagrams depict the class name, super classes, method signatures, and simple 
attributes of a class. This is sufficient to create a basic class definition in an object-oriented programming 
language.  

Animation Control Code 

The animation codes available in CC-RTDBS can be applied either during the RTDBS run (online) or disabled 
while off-line visualization is being displayed. Below is the pseudocode used for animation.  

 
   Dim time01, time02, timeDiff 

Private Sub Form_Load() 
       time01 = Time 

End Sub 
Private Sub tmDelay_Timer() 

       time02 = Time 
       timeDiff = DateDiff("s", time01, time02) 
       If timeDiff >= 3 Then 
          Unload Me   'unload the form 
        End If 

End Sub  
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4    EXPERIMENTS AND RESULTS 
 
The simulation module was included inside the back-end program using Visual-Basic 6.0. The data collection in 
the experiments is based on the method of replication. For each experiment, we ran the simulation with the same 
parameter values for at least 25 different random number seeds. Each run continued until 400 transactions were 
executed. For each run, the statistics gathered during the first few seconds were discarded in order to let the 
system stabilize after initial transient conditions.  
 
The experiments conducted for this study were designed to investigate the impact of data contention, resource 
contention, and the two policies for dealing with tardy transactions on the performance of concurrency control 
protocols in RTDBs. The system condition considered for experiment is a soft deadline policy under a finite 
resource situation. For the condition chosen, system performance was evaluated over a wide range of workloads. 
The system workload was controlled by the arrival rate of transactions.   
 
As stated earlier, the bridge between the conventional and real-time databases lies on the algorithms and proper 
evaluation. Visualization assists in evaluating CC-RTDBs performance by studying the characteristics involved. 
However, a snapshot of a representative portion of the output can be examined via a graphical user interface. 
 
Program visualization supports user understanding of the program’s code and data values, whereas algorithm 
visualization supports user understanding of the algorithm’s instructions and generic data structures. 
  
Interface Design 
 
This subsection describes the individual views and navigators available in CC-RTDBs. Figure 3 shows an 
example of a screen image taken from CC-RTDBs and contains a coarse-grained miss ratio versus number of 
transactions. The top right panel shows a fine-gained visualization, and the top left contains a text box range 
selector using the Model-View-Controller (MVC) paradigm. 

 

Figure  3. Description of an interface design of visualizing miss probability (as a ratio) 
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Figure 4 shows offline visualization. 
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Figure 4. Offline visualization of concurrency control miss probability (as a ratio) 
 
Results from Graphical Package: MS-Excel 
 
For comparative studies, Figures 3 and 4 show the former method of displaying performance behaviour 
graphically through electronic spreadsheet program of which the conflicting features are not easily monitored 
dynamically. 
 
One of the main characteristics of performance evaluation in RTDBs is concurrency control. One objective of 
this work relates to the understanding of the actual behaviour of algorithm of choice and the determination of 
quality of the performance evaluation. This is the essence of the next set of experiments. In all the experiments, 
parameters are entered, and the behaviour during the execution is monitored. When needed, the parameters are 
varied, and the visualization tool is re-run. 
 
The graphical user interfaces with their components are displayed in Figures 3 and 4 respectively. From detailed 
analysis, we observe that when the number of transactions (NR) equals 8 and the computed miss ratio (MR) 
equals  0.5, the slope increases; whereas when the number of transactions (NR) equal or exceed 16 and the miss 
ratio(MR) equals 0.9±0.01, the slope fluctuates. However, when the parameters are doubled, the number of 
transactions equals 16, the miss ratio equals 0.6, and the slope increases. Finally, with the number of 
transactions equal to or exceeding 32 and the miss ratio equaling 0.8±0.01, the slope smoothes, tending to a 
linear graph. This example shows the power of visualization in understanding the algorithm and its results. 
 
The same experiments were performed for miss probability and data blocking for both dynamic visualization 
and offline visualization with various test parameters.  
 
5    CONCLUSIONS AND FUTURE DIRECTIONS 
 
The work studies concurrency control protocols performance of RTDBs, which covers a wide range of 
applications. On one hand, there is the question of understanding the actual behaviour of the algorithms of 
choice, and on the other is the question of knowing actual behaviour in determining the quality of the 
performance evaluation of algorithms related to RTDBs. In the former case, the decision to understand actual 
behaviour is largely a voluntary one taken to know the dynamics of the algorithms. In the latter case, the RTDBs 
designers are unaware of the algorithms’ behaviour. They have no way of identifying the contribution of the 
different components of the algorithm and, therefore, no direct way of analyzing the algorithm design and 
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assigning credit to good algorithm components, e.g. parameters, or locating and improving ineffective algorithm 
components. In this investigation, the two extremes were subsumed as special cases for CC-RTDBs algorithms’ 
behaviour. 
 
Furthermore, the study has also derived a "Cc-RTDBs" framework that enables RTDBs designers to specify 
their visualization in terms of players, views, mapping and navigators. As a result, a designer can avoid much of 
the low-level graphics programming associated with visualization. The study presented the "Cc-RTDBs" 
framework that provides designers with an object-oriented view hierarchy from which they can select and apply 
a view to produce a standard visualization or inherit the attributes of an existing view and adapt them to a new 
view. Generally, it has been demonstrated that using our flexible CC-RTDBs visualization tool helps 
substantiate the earlier experimental results of simulation-based performance studies with visualization 
techniques. 
 
6 REFERENCES 
 
Abbott, R. & Garcia-Molina, H. (1988) “Scheduling Real-Time Transactions. SIGMOD Record, Vol. 17, No. 1.  
 
Abbott, R. & Garcia-Molina, H. (1989) Scheduling Real-Time Transactions with Disk Resident Data. 
Proceedings of the Fifteenth International Conference on Very Large Databases, pp. 385-396.  
 
Buchman, A., McCarth, D. R., Hsu, M., & Dayal, U. (1989) Time Critical Database Scheduling: A framework 
For Integrating Real-time Scheduling and Concurrency Control. Proceeding of Real-time Systems Symposium, 
pp. 470-480.  
 
Eswaran, K.P., Gray, J., Lorie, R. & Traiger, I. (1976) The Notions of Consistency and Predicate Locks in a 
Database System.  Communications of the ACM, 19(11).  
 
Graham, M. H (1992) Issues in Real-Time Data Management. The Journal of Real-Time Systems, 4, pp. 185-
202.  
 
Haritsa, J. R., Carey, M. J, & Livny, M (1990) On Being Optimistic about Real-Time Constraints. Proceedings 
of the 1990 ACM SIGACT-SIGART-SIGMOD Symposium on Principles of Database Systems (PODS).  
 
Haritsa, J. R., Carey, M. J, & Livny, M (1992) Data Access Scheduling in Firm Real-Time Database Systems. 
The Journal of Real-Time Systems, 4, pp. 203-241.  
 
Haritsa, J. R., & Ramamritham, K. (2000) Real-Time Database Systems in the New Millenium. Real-Time 
Systems, 2000, 19(3): 205 - 215. 
 
Huang, J. (1991) Real-Time Transaction Processing: Design, Implementation, and Performance Evaluation, 
PhD thesis. 
 
Kao, B. & Garcia-Molina, H. (1995) An Overview of Real-Time Database Systems. In S. H. Son (Ed.) 
Advances in Real-Time Systems. Prentice-Hall: Englewood Cliffs, NJ. 
 
Keim, D. (1997) Visual Data Mining. Tutorial in International Conference on Very Large Databases 
(VLDB’97), Athens Greece.  
 
Kleinrock, L (1975) Queueing Systems, Volume 1. John Wiley and Sons: New York 
 
Kung, H.T. & Robinson, J. (1981) On Optimistic Methods for Concurrency Control. ACM Transactions on 
Database Systems 6(2): 213-226.  
 
Lawrence, A., Badre, A., & Stasko, J. (1994) Empirically evaluating the use of animations to teach algorithms. 
Technical Report GIT-Gvu-94-07, Graphics Visualization and Suability Center, Georgia Institute of Technology, 
Atlanta GA.  
 
Lee, J. (1996) Concurrency Control Algorithms for Real-Time Database Systems, Ph.D. thesis, University of 
Virginia, Charlottesville, VA.  
 

Data Science Journal, Volume 7, 20 October 2008

104



Liu, C., & Layland, J. (1973) Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment. 
J. ACM 10(1). 
 
Ramamritham, K. (1993) Real-Time Databases. Intl. Journal of Distributed and Parallel Databases.  
 
Stankovic, J., Ramamritham, K., & Towsley, D. (1991) Scheduling In Real-Time Transaction Systems. In van 
Tilborg & Koob (Eds.) Foundations of Real-Time Computing: Scheduling and Resource Management. Kluwer 
Academic Publishers.  
 
Ulusoy, O. (1992) Current Research on Real-Time Databases. SIGMOID Record Vol. 21, No.4. 
 
Ulusoy, O. (1995) Research Issues in Real-Time Database Systems. Information Sciences 87, pp.123-151.  
 
Upson, C., Faulhaber Jr., T., Kamins, D., Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., & Van Dam, A. 
(1989)  The Application Visualization System: A Computational Environment for Scientific Visualization. 
IEEE Computer Graphics & Applications (July) 30-42. 
 
 

Data Science Journal, Volume 7, 20 October 2008

105




