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ABSTRACT 
 
This work proposes a data mining algorithm called Unordered Rule Sets using a continuous Ant-Miner 
algorithm. The goal of this work is to extract classification rules from data. Swarm intelligence (SI) is a 
technique whereby rules may be discovered through the study of collective behavior in decentralized, self-
organized systems, such as ants. The Ant-Miner algorithm, first proposed by Parpinelli and his colleagues 
(2002), applies an ant colony optimization (ACO) heuristic to the classification task of data mining to discover 
an ordered list of classification rules. Ant-Miner is a rule-induction algorithm that uses SI techniques to form 
rules. Ant-Miner uses a discretization process to deal with continuous attributes in the data. Discretization 
transforms numeric attributes into nominal attributes. Discretization may suffer from a loss of information, as 
the real relationship underlying individual values of a numeric attribute is unknown. The objective of this work 
is to apply ACO heuristic techniques to discover unordered rule sets for mixed variables in a data set. The 
proposed algorithm handles both nominal and continuous attributes using multimodal functions. It has the 
advantage of discovering more modular rules, i.e., rules that can be interpreted independently from other rules 
– unlike the rules in an ordered list, where the interpretation of a rule requires knowledge of the previous rules 
in the list. The results provide evidence that the accuracy of the Unordered Rule Set Continuous Ant-Miner 
algorithm is competitive with other Ant-Miner versions and generates simpler rule sets. 
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1  INTRODUCTION 
 
Data mining refers to the extraction of knowledge from large amounts of data. Classification is one of the most 
frequently occurring tasks of human decision-making. A classification problem encompasses the assignment of 
an object to a predefined class according to its characteristics. Many decision problems in a variety of domains, 
such as engineering, medical sciences, human sciences, and management science, can be considered as 
classification problems. Rule discovery is an important data mining task, as it generates a set of symbolic rules 
that describe each class or category in a natural way. However, these rules need to be simple and 
comprehensive; otherwise, a human is unable to comprehend them. To our knowledge, Parpinelli, Lopes, and 
Freitas (2002) were the first to propose Ant Colony Optimization (ACO) for discovering classification rules 
using the system Ant-Miner. They argue that an ant-based search is more flexible and robust than traditional 
approaches. Their method uses a heuristic value based on entropy measure and generates ordered rule sets. Ant-
Miner uses a discretization process to deal with continuous attributes in the data. Even though the discretization 
process reduces the overhead of handling large sets of values occurring in a data set, the real relationship among 
numerical values is unknown. In our work, we handle continuous attributes directly using multimodal functions 
and also generate unordered rule sets.  
 
The remainder of the paper is organized as follows. In Section 2, we present the basic idea of the ant colony 
systems, and the Ant-Miner algorithm (Parpinelli et al, 2000) is introduced. In Section 3, the ACO in continuous 
space is discussed. In Section 4, the ACO algorithm for a mixed variable, i.e., the proposed algorithm, is 
discussed. Then the computational results are reported in Section 5. Finally, we conclude with general remarks 
on this work and directions for future research in Section 6. 
 
2  ANT COLONY SYSTEM (ACS)  
 
Ant Colony Optimization (Dorigo, Colorni, & Maniezzo, 1996) is a branch of a newly developed form of 
artificial intelligence called swarm intelligence. Swarm intelligence is a field that studies “the emergent 
collective intelligence of groups of simple agents” (Bonabeau, Dorigo, & Theraulaz, 1999). In groups of insects 
living in colonies, such as ants and bees, an individual can do only simple tasks on its own, while the colony's 
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cooperative work is the main reason for the intelligent behavior it exhibits. Most real ants are blind. However, 
each ant, while it is walking, deposits a chemical substance on the ground called a pheromone (Dorigo et al., 
1996). Pheromones encourage the following ants to stay close to previous moves. The pheromone evaporates 
over time to allow search exploration. 
 
A number of experiments presented in Dorigo et al. (1996) illustrate the complex behavior of ant colonies. For 
example, a set of ants built a path to some food. An obstacle with two ends was placed in their way such that 
one end of the obstacle was more distant than the other. In the beginning, equal numbers of ants had spread 
around the two ends of the obstacle. Because all ants had almost the same speed, the ants going around the 
nearer end of the obstacle returned before the ants going around the farther end (differential path effect). With 
time, the amount of pheromones the ants deposited increased more rapidly on the shorter path, and so more ants 
preferred this path. This positive effect is called autocatalysis. The difference between the two paths is called the 
preferential path effect; it is the result of the differential deposition of pheromones between the two sides of the 
obstacle. The ants following the shorter path made more visits to the source than those following the longer path. 
Because of pheromone evaporation, pheromones on the longer path vanished with time.  
 
Ant-Miner is a sequential covering algorithm that incorporates the concepts and principles of ACO and rule 
induction. The goal of Ant-Miner is to extract classification rules from data (Parpinelli et al., 2002). In Ant-
Miner, an artificial ant conducts loops of three procedures, rule construction, rule pruning, and pheromone 
updating, to induce rules from a current training data set. An artificial ant then constructs a rule by visiting a set 
of possible nodes in the graph and forms a path that ends at a class term node. A complete path is a constructed 
rule. Ant-Miner has the limitation that the numerical attributes have to be preprocessed. The Ant-Miner 
algorithm is presented as follows. 
  
Ant-Miner algorithm: 
 
Training set = all training cases; 
WHILE (No. of cases in the Training set > max_uncovered_cases) 
i=0; 

REPEAT 
i=i+1; 
Anti incrementally constructs a classification rule; 
Prune the just constructed rule; 
Update the pheromone of the trail followed by Anti; 
UNTIL (i = No_of_Ants) or (Anti constructed the same rule as the  
               previous No_Rules_Converg-1 Ants) 

Select the best rule among all constructed rules; 
Remove the cases correctly covered by the selected rule from the training set; 
END WHILE 
 
3  ACO IN CONTINUOUS OPTIMIZATION 
 
The original ant system (AS) introduced by Dorigo et al. (1999) was applicable only to a discrete problem space. 
ACO is an efficient tool for solving various combinatorial optimization problems. As a result, Bilchev and 
Parmee (1995) suggested a method to extend ACO to continuous spaces in their work called Continuous Ant 
Colony Optimization (CACO). They suggested considering a finite set of regions at each iteration of the AS 
algorithm. Agents (ants) are sent to these regions, from which they explore randomly selected directions within 
a radius of exploration. Agents reinforce their paths according to their performance. However, CACO does not 
perform an incremental construction of solutions, which is one of the main characteristics of the ACO meta 
heuristics. Further, CACO is dedicated strictly to continuous optimization problems and is not used for mixed 
variables. In the Pachycondyla Apicalis (API) optimization algorithm (Monmarche, Venturini, & Slimane, 
2000), ants perform their search independently and do not use any artificial pheromone information. Continuous 
Interacting Ant Colony (CIAC) (Dreo & Siarry 2002) uses two types of communication among ants. However, 
CIAC does not perform an incremental construction of the solution, which is a virtual part of the standard ACO 
algorithm. Another notable work in this area is that of Krzysztof Socha (2004) who suggests a way to extend the 
generic ACO to the continuous domain by considering a mixture of several Probability Density Functions 
(PDFs). The Probability Density Function(PDF) of a continuous random variable is a function which can be 
integrated to obtain the probability that the random variable takes a value in a given interval. PDF is used to find 
the point of Normal Distribution curve. Continuous Probability Density Function of the Normal Distribution is 
called the Gaussian Function. 
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4  ACO IN MIXED VARIABLE OPTIMIZATION 
 
In the original Ant-Miner (Parpinelli et al, 2000), ants choose terms for a rule with the goal of decreasing 
entropy in the class distribution of examples matching the rule in construction. The consequent of the rule is 
then assigned afterwards by determining the class value that would produce the highest quality rule. The goal of 
the original Ant-Miner algorithm was to produce an ordered list of rules, which was then applied to test data in 
the order in which they were discovered. This makes it difficult to interpret the rules at the end of the list, as 
their conditions make sense only in the context of all the previous rules in the ordered list of rules. In Unordered 
Rule Set Ant-Miner (Smaldon, & Freitas, 2006), the consequent for the rule is known by the ant during rule 
construction at the initial stage and  leads to faster convergence on good rules in comparison with the original 
Ant-Miner. The reason for this is that in Unordered Rule Set Ant-Miner each term’s pheromone value directly 
represents that term’s relevance for predicting a fixed target class value. By contrast, in the original Ant-Miner 
each term’s pheromone is associated with that term’s relevance in reducing the entropy associated with the 
entire class distribution, a less focused relevance. In Ant-Miner and Unordered Rule Set Ant-Miner any 
continuous attributes in the dataset have to be discretized prior to the rule induction process. Continuous Ant-
Miner (Swaminathan, 2006) handled continuous attributes in the datasets without any preprocessing. It chose 
the terms for a rule based on entropy value and generated an ordered rule list. The proposed algorithm handles 
both nominal and continuous attributes. In this case, ants choose terms for a rule based on Laplace-corrected 
confidence (Clark & Boswell, 1991) and generated an unordered rule set.  
 
In Continuous Ant-Miner (Swaminathan, 2006), the discretization process is handled within the algorithm. As a 
result, statistical information about the data, such as the mean and standard deviation of the ranges, can be 
calculated and used in the rule induction process. In this process, any continuous attribute present in the original 
dataset is split into ranges by the C4.5 discretization procedure (Bonabeau, Dorigo, & Theraulaz, 1999). C4.5 
discretization procedure follows a Divide and Conquer strategy. C4.5 first sorts the numeric values and then 
uses the mid point between two numeric values as the branching value. The information gain is calculated for 
each of the branching points in a similar manner to nominal attributes, and the branching point with the highest 
information gain is chosen to split the data set into smaller subsets. The minimum and the maximum values of 
the ranges are stored for further use during the calculation of the mean and standard deviation of the ranges. 
After preprocessing, the Continuous Ant-Miner algorithm generates k runs, where k is the number of folds in a 
k-fold cross validation. In a k-fold cross validation, the dataset is randomly shuffled and split into k 
approximately equal-sized, mutually-exclusive subsets. Each of the k subsets forms the testing dataset, while the 
other (k-1) subsets are used as the training dataset. Each set of training and testing sets forms a fold of data, and 
each fold of data is applied to an algorithm to test the performance of the algorithm (Kohavi, 1995). 
 
 
4.1 Algorithm for Continuous Ant-Miner for Unordered Rule Set  
 
RuleSet = [ ] // initialized as empty set 
FOR EACH Class 
TrainingSet = {all training cases} 
PositiveSet = {training cases of current class} 
NegativeSet = TrainingSet – PositiveSet 
Calculate the mean and the standard deviations of each range  
Initialize the pheromones; in case of continuous attributes pheromone is a mixed kernel PDF with each range 
representing a PDF with the corresponding mean and standard deviation 

WHILE (|PositiveSet| > max_uncovered_cases) 
t = 1; 
j = 1; 
REPEAT // iteration for constructing a rule 

 
Antt starts with an empty rule and incrementally constructs a classification rule Rt by adding one term 
at a time to the current rule; 
Prune rule Rt; 

IF(LaplaceCorrectedConfidence(Rt)>ruleConfidenceThreshold 
         THEN increase pheromone of terms in rule Rt  
In case of a continuous attribute add a PDF corresponding to the range 
END IF 
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Update pheromones in all other terms by normalising the pheromone values (simulating evaporation) 

IF (Rt equals Rt -1) THEN j = j + 1; 
ELSE j = 1; 
END IF 

t = t+1; 
UNTIL (t = No_of_ants) OR (j = No_rules_converge) 
Select the best rule among all constructed rules; 
Add the best rule to RuleSet; 
TrainingSet = TrainingSet – {set of positive cases covered by Rbest }; 
PositiveSet = PositiveSet – {set of positive cases covered by Rbest }; 
END WHILE 

Output RuleSet; 
END FOR 
 
In unordered rule sets for mixed variables using an ant-miner algorithm, an extra For-Each loop is added as the 
outer loop of the algorithm, iterating over the values in the class attribute domain. Each iteration of the For-Each 
loop discovers an unordered set of rules, all of which predict the current class value. At the beginning of each 
iteration, the entire training set is reinstated, so that a maximal number of negative examples are available to the 
algorithm. Ants discover rules from the training data until the number of positive examples (belonging to the 
current class) remaining in the dataset that have not been covered by a discovered rule is less than or equal to the 
value determined by the max_uncovered_cases parameter. Note that in the original Ant-Miner, 
max_uncovered_cases referred to all examples in the training set, rather than to the positive examples only as in 
the proposed algorithm. For each iteration of the WHILE loop, the amount of pheromone for each term is set to 
an initial value. This initialization is the same as the one used in the original Ant-Miner. An ant starts with a rule 
containing the known consequence and an empty antecedent. The rule is constructed incrementally by selecting 
terms with a probabilistic method that favors terms with a large amount of pheromone and a high Laplace-
corrected confidence value. The ant stops constructing a rule if all the attributes have been used in the rule 
antecedents constructed so far or if there are no terms available that, when added to the rule antecedent, would 
not make the rule cover fewer cases than the limit min_cases_per_rule. The rule is then pruned in an attempt to 
increase its quality. If the rule is of a high enough confidence, the terms making up the rule have their 
pheromone levels increased. The best rule discovered during the REPEAT UNTIL loop is added to the 
unordered set of discovered rules. 
 
4.2 Term Selection-Probability Transition rule  
 
The probability that a term will be added to the current rule is given by the following formula: 

           
where ηij    is the value of a problem-dependent heuristic function to select attribute value pairs used to form the 
conditions of the rule, τij(t) is the amount of pheromone associated with termij at iteration t, and a is the total 
number of attributes. 
 
4.3  Problem dependent heuristic function 
 
The problem dependent heuristic function chosen is the Laplace-corrected confidence (Clark & Boswell, 1991) 
for each term. The Laplace correction is also used in other rule induction algorithms such as CN2 (Clark et al., 
1991). It generates rules that are specific and helpful in reducing over fitting. 
 

| term ij ,k| +1 

ηij =  -------------------------------------------                     (2)  

    

             | term ij| + no_of_classes 
 

(1) 
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where  |termij, k| is the number of training cases having termij and the current positive class k;  |termij| is the 
number of training cases having termij; and No_of_classes is the number of values in the class attribute’s 
domain. 
 
4.4  Pheromone initialization and maintenance 
 
The initial pheromone levels for both nominal and continuous attributes must be set at the initialization step. In 
case of a nominal attribute, the pheromone level for each attribute value is initialized to 1/n, where n is the total 
number of attribute values for all of the attributes including the continuous attributes. Adding as many kernels as 
the number of ranges into which the continuous attribute is split initializes the mixed kernel PDF. Each kernel is 
initialized with the corresponding mean and standard deviation of the range. The pheromone level of a particular 
range is obtained by calculating the area under the mixed kernel PDF curve between the minimum and the 
maximum values of the range. 

 
 Figure 1. A mixed kernel PDF with m normal kernels 
 
Figure 1 shows the different ranges for the continuous attribute. At the initial stage, the initial pheromone levels 
have to be the same for all attribute value pairs so that all the attribute value pairs have an equal probability of 
being added to the rule in the beginning. The continuous attributes, however, have different initial pheromone 
levels. Achieving a uniform distribution over the continuous domain is not possible (Monmarche et al., 2000), 
and hence the attributes are initialized to different values. With the use of the normalization constant ‘k,’ the 
initial pheromone values of the continuous ranges can be made equal to that of other attribute values (1/n). The 
normalization constant ‘k’ (Swaminathan, 2006) is given by 
               

   ki= 

n

XG
h

x

1

)(
1
∑
=       (3) 

 
where 

ki  =normalization constant for the ith range of a continuous attribute 
n  = sum of attribute values for all attributes including continuous attributes  
G(X)  = mixed kernel PDF for the continuous attribute 
l  = the minimum value of the ith range 
h  = the maximum value of the ith range 

 
The normalization constant is calculated at the beginning of the run when the pheromone levels are initialized. 
The pheromone level for a range of the continuous attributes is given by 
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where 

τij = pheromone level of the jth range of the continuous attribute at the ith position 
kj  = normalization constant of the jth range 
G(X) = mixed kernel PDF for the continuous attribute 
l  = the minimum value of the ith range 
h  = the maximum value of the ith range 

 
 
 
4.5  Pheromone Updating 
 
The best rule of each iteration is stored and used to update the pheromone levels of the terms before the next 
iteration is initiated. In the Unordered Rule Set algorithm, the consequent (predicted class) of each rule is fixed 
during the construction of the rule by an ant. Because of the probabilistic nature of the algorithm, it is possible 
to generate rules where the number of true positives (TP) is less that the number of false positives (FP). Such 
rules tend to be bad rules because they have a low predictive accuracy. It is important that the pheromone of 
terms occurring in the rule be increased only when the just-constructed rule has an acceptable confidence value. 
The threshold that determines if a rule is acceptable or not (i.e., whether or not the pheromone of its terms 
should be increased) is expressed by the following formula. 
 
                                                                                                                    
Rule Confidence Threshold =        MAX ( 0.5, | k |)                                                             (5) 
    | training set | 
 
where |k| is the number of training cases with the current (positive) class, and |training set| is the total number of 
cases in the current training set.  
 
Once a rule has been considered acceptable, the amount of pheromone to be applied to each of the terms in that 
rule increases. In the case of nominal attributes, the pheromone level is increased by using the formula  
 
   τij(t+1) =τij(t)+ (τij(t)* Q)                  (6) 
 
where τij(t) is the current (at time index t) amount of pheromone associated with termij, and Q is a quality 
function is measured based on confidence value. 
 
For continuous attributes, a new normal kernel is added to the mixed kernel PDF. The mean and standard 
deviation of the added kernel are the mean and standard deviation of the range that was selected by the ant 
during the iteration. The addition of a new kernel changes the shape of the mixed kernel PDF curve and thus 
changes the values of the pheromones for the neighboring ranges. The impact of this increase in pheromones on 
the pheromone value of a neighboring range decreases as the distance between the means of the added range and 
the neighboring range increases. This increase in pheromones of the neighboring ranges preserves the 
relationship represented by the continuous values, which was not preserved by the original Ant-Miner. 
 
4.6  Rule Pruning 
 
In Ant-Miner, rules were pruned to remove irrelevant terms and to improve the predictive accuracy of rules. 
This involved speculatively removing each term in turn, evaluating the quality of the rule without that term, and 
then analyzing the change in rule quality. This process was repeated until there was only one term left in the rule 
antecedent or no increase in rule quality was observed during the speculative removal process. A new 
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consequent – namely, the class with the largest frequency among all cases covered by the rule – was assigned to 
the rule after each term was speculatively removed. 
 
However, in unordered rule set Ant-Miner, the consequent must remain the same during this process, and so the 
rule pruning procedure is simplified. After each term is speculatively removed, there is no need to compute the 
quality of the new reduced rule for all possible classes in the consequent, just the quality for the current positive 
class is computed. 
 
4.7 Classifying Test Data with an Unordered Rule Set 
 
In the original Ant-Miner algorithm, classifying test data with the ordered list of rules was accomplished by 
finding for each case the first rule in the ordered list that covered the case and then assigning the consequent 
class value of that rule to the case. A default rule that assigned the majority class in the training set to a case was 
used to classify a test case if none of the discovered rules matched the test case. 
 
When classifying test data with the Unordered Rule Set Ant-Miner algorithm, a different approach is required, 
as a case might be covered by more than one rule. One of the following scenarios will occur when classifying a 
given test case with rules discovered by the Unordered Rule Set Ant Miner (Smaldon & Freitas, 2006): 
 
1. If none of the discovered rules cover the test case, that case is assigned to the default class, which is the     
majority class in the training data set. 
2. If only one of the discovered rules covers the test case, that case is assigned to the class predicted by that rule. 
3. If more than one of the discovered rules covers the test case, but all those rules predict the same class, the 
case is assigned that class. 
4. If more than one of the discovered rules covers the test case, but the rules do not all predict the same class, a 
rule conflict strategy is required to determine which class should be assigned to that case. 
 
Two rule conflict strategies were evaluated: 
1. Classifying the test case with the rule that has the highest rule quality. 
2. Applying a rule conflict resolution procedure based on the class distribution of the rules covering the current 
test case to determine that case’s class value (Clark et al., 1991).  
 
The pseudocode for this procedure is shown in the following algorithm  
 
Algorithm – Rule Conflict Resolution Procedure Based on the Class Distribution of the Rules Covering a 
Case 
FOR EACH Class c 
Count(c) = 0; 
END FOR 
FOR EACH Rule r covering the current test case 

FOR EACH Class c 
Count(c) = Count(c) + Coverage(r, c); 
END FOR 

END FOR 
 
The algorithm starts by assigning the class with maximum value of Count(c) among all candidate classes to the 
current test case. The first For-Each-Class loop of the algorithm initializes the class counts to zero. The For-
Each-Rule loop iterates over all the rules covering the current test case, i.e., the rules whose conflict must be 
solved. The function Coverage(r, c) returns the number of training cases having class c covered by rule r. Hence, 
for each of the rules covering the current test case, the algorithm adds to each class count the number of training 
cases covered by the current rule. Therefore, at the end of the For-Each-Rule loop, each class count will contain 
the frequency of the corresponding class in the total class distribution associated with all rules covering the 
current test case. Finally, the test case is assigned the class with the largest class count value, i.e., the most 
frequent class in the total class distribution associated with all conflicting rules. 
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5  COMPUTATIONAL RESULTS AND DISCUSSION 
 
Data sets 
 
The performance of the algorithm was evaluated using six public domain data sets from the UCI repository 
(www.ics.uci.edu/~mlearn/MLRepository.html). The main characteristics of the data sets are summarized in 
Table 1. The algorithm has four user-defined parameters as defined in Table 2. We have evaluated the 
performance of the algorithm with the existing Ordered and Unordered Rule Set Ant-Miner algorithms. The 
comparison was carried out across two criteria, namely the predictive accuracy of the discovered rule lists and 
their simplicity. We considered the original Ant-Miner and Unordered Rule Set Ant-Miner values as benchmark 
values. We implemented Order Set Continuous Ant-Miner and Unordered Set Continuous Ant-Miner in Java. A 
new class called C45Disc was created to find the split points of a continuous attribute. For the purpose of 
comparing the performances of Continuous Ant-Miner and Ant-Miner, all the data sets on which Ant-Miner was 
originally tested were used.  
 
Table 1. Dataset Characteristics 

 
Data Set 

Total No. of 
Examples 

Nominal 
Attributes 

Continuous 
Attributes 

Classes 

Ljubljana breast cancer  286 9 - 2 
Wisconsin breast cancer 699 - 9 2 
Tic-tac-toe  958 9 - 2 
Hepatitis  155 13 6 2 
Dermatology 366 33 1 6 
Cleveland heart disease 303 8 5 5 
 
 
Parameter settings 
 
Both the original Ant-Miner algorithm and the proposed Unordered Rule Set Continuous Ant-Miner have four 
parameters: 
1. Number of ants (No_of_ants). 
2. Minimum number of cases per rule (Min_cases_per_rule). 
3. Maximum number of uncovered cases in the training set (Max_uncovered_cases). 
4. Number of rules used to test convergence of the ants (No_rules_converg). 
 
Table 2. Parameter settings 
  

Parameter 
 

Original Ant-Miner 
Unordered Rule Set Ant-

Miner 
No_of_ants    3000 3000 
Min_cases_per_rule 5 5 
Max_uncovered_cases 10 5 
No_rules_converg 5 5 
   
In Unordered Rule Set Ant-Miner, Max_uncovered_cases refers to the maximum number of uncovered positive 
cases in the training set, while in the original Ant-Miner it refers to the maximum number of cases (either 
positive or negative ones) in the training set. For this reason, this parameter may need to be set lower in 
unordered rule set Ant-Miner than in the original Ant-Miner. 
 
Predictive accuracy 
 
The results comparing predictive accuracy of Ant-Miner and other algorithms are reported in Table 3. We 
measure the predictive accuracy by using the formula: 
 
Predictive accuracy= Number of test cases correctly classified by the rule set/ Total number of test cases 
 
Ant-Miner and Continuous Ant-Miner use entropy value to select attributes (Parpinelli et al., 2002, 
Swaminathan, 2006). However, Unordered Rule Set Ant-Miner and Unordered Rule Set Continuous Ant-Miner 
use Laplace measure to select the attributes. Because Laplace corrected confidence measure, Clark et al., (1991) 
is biased towards more general rules with higher predictive accuracy than entropy and used to avoid over fitting. 
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The previous implementations (i.e., Ant-Miner and Continuous Ant-Miner) evaluate the quality of the rule 
constructed by an ant based on sensitivity and specificity, Q= sensitivity * specificity (FP + TN). However, in 
the unordered rule set continuous Ant-Miner, we measure the quality of the rule based on the rule confidence 
value. Therefore, this algorithm generates more accurate rules than Ant-Miner. 
 
Table 3. Comparison of the predictive accuracy of rules generated using Unordered Continuous Ant-Miner with 
previous implementations of Ant-Miner. The numbers after the “±”symbol are the standard deviations of the 
corresponding average predictive accuracies. 
 

 
 

Dataset 
 

 
Ant-Miner 
Ordered 
Rule Set 

 

Continuous 
Ant-Miner 

Ordered Rule 
Set 

Ant-Miner 
Unordered 
Rule Set 

Continuous 
Ant-Miner 
Unordered 
Rule Set 

Ljubljana breast cancer 75.28+/-2.24 75.91 +/-8.38 78.42 +/- 1.70 79.87 +/-1.85 
Wisconsin breast cancer 96.04+/-0.93 96.84 +/-2.13 92.38 +/- 0.84 96.96 +/- 0.89 
Tic-tac-toe 73.04+/-2.53 73.52 +/-2.81 72.45 +/- 0.87 73.78 +/- 1.20 
Dermatology 94.29+/-1.20 90.94 +/-4.75 80.50 +/- 1.56 96.84 +/- 1.56 
Hepatitis 90.00+/-3.11 93.16 +/-10.33 95.42 +/- 2.50 96.15+/-2.90 
Cleveland heart disease 59.67+/-2.50 73.93 +/-8.75 

 
64.84 +/- 2.60 84.76 +/- 2.67 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Predictive accuracy 
 
The accuracy of the Unordered Rule Set Continuous Ant-Miner is highly comparable to the accuracy of the 
Ordered Continuous Ant-Miner algorithm in most cases. As shown in these tables, the Unordered Rule Set 
Continuous Ant-Miner discovers rules with a better predictive accuracy than the previous algorithm in four data 
sets, namely Ljubljana breast cancer, Wisconsin breast cancer, Hepatitis, and Cleveland heart disease. Also 
those data sets contained mixed attributes.  The only dataset in which there was no improvement associated with 
the Unordered Rule Set versions of Ant-Miner was Tic-tac-toe. We conclude that the Unordered Rule Set 
Continuous Ant-Miner is greater than the original Ant-Miner, and the heuristic and quality functions play an 
important role. 
 
Simplicity 
 
We now turn to the results concerning simplicity of the discovered rule list, which is measured by the number of 
discovered rules and the average number of terms per rule. The results comparing the simplicity of the rule lists 
discovered by the Unordered Rule Set Continuous Ant-Miner are reported in Tables 4 and 5 and Figures 3 and 4. 
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Table 4. Comparison of the number of rules generated using Unordered Continuous Ant-Miner with previous 
implementations of Ant-Miner. 

 
 
 

Dataset 
 

Ant-Miner 
Ordered 
Rule Set 

 

Continuous
Ant-Miner 
Ordered 
Rule Set 

Ant-Miner 
Unordered 
Rule Set 

 

Continuous 
Ant-Miner 

Unordered Rule 
Set 

 
Ljubljana breast cancer 7.10+/-0.31 8.10 +/- 0.99 6.10+/-0.11 7.75 +/-0.42 
Wisconsin breast cancer 6.20+/-0.25 7.80 +/- 0.63 6.50 +/- 0.19 7.38 +/-0.44 
Tic-tac-toe 8.50+/-0.62 7.60 +/- 1.89 6.30 +/- 0.17 6.25 +/-0.79 
Dermatology 7.30+/-0.15 7.40 +/- 0.69 6.00 +/- 0.0 6.45 +/- 0.4 
Hepatitis 3.40+/-0.16 5.40 +/- 0.52 3.00 +/- 0.0 4.90 +/-0.3 
Cleveland heart disease 
 

9.50+/-0.92 7.20 +/- 0.63 11.00 +/- 0.0 8.25 +/-0.6 
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Figure 3. Number of rules generated 
 
 
The following rule set was generated as one of the 10 fold cross validation procedure using the above parameter 
setting for the Hepatitis data set 
 
Attribute information:  
     1. Class: DIE, LIVE 
     2. AGE: 10, 20, 30, 40, 50, 60, 70, 80 
     3. SEX: male, female 
     4. STEROID: no, yes 
     5. ANTIVIRALS: no, yes 
     6. FATIGUE: no, yes 
     7. MALAISE: no, yes 
     8. ANOREXIA: no, yes 
     9. LIVER BIG: no, yes 
    10. LIVER FIRM: no, yes 
    11. SPLEEN PALPABLE: no, yes 
    12. SPIDERS: no, yes 
    13. ASCITES: no, yes 
    14. VARICES: no, yes 
    15. BILIRUBIN: 0.39, 0.80, 1.20, 2.00, 3.00, 4.00 
    16. ALK PHOSPHATE: 33, 80, 120, 160, 200, 250 
    17. SGOT: 13, 100, 200, 300, 400, 500,  
    18. ALBUMIN: 2.1, 3.0, 3.8, 4.5, 5.0, 6.0 
    19. PROTIME: 10, 20, 30, 40, 50, 60, 70, 80, 90 
    20. HISTOLOGY: no, yes 
 
 
Class Distribution: 
 1.DIE: 32 
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     2.LIVE: 123 
NUMBER OF Nominal attributes   :13 
Number of continuous attributes:6 
 
Rule set: 
IF< VARICES =2>AND < SPIDERS=2> AND < ASCITES=2> THEN class=2 
IF< MALAISE=1>AND < HISTOLOGY=2>THEN class=1 
IF<AGE <50> AND <LIVER FIRM =2> THEN class= 2 
 
 
Table 5. Comparison of the number of terms per rule generated by Unordered Continuous Ant-Miner with 
previous implementations of Ant-Miner 
 

 
 

Dataset 

Ant-
Miner 

Ordered 
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Ljubljana breast cancer 1.28 1.06 1.85 1.35 
Wisconsin breast cancer 1.97 1.09 2.55 1.35 
Tic-tac-toe 1.18 1.17 1.10 1.15 
Dermatology 3.16 2.93 3.10 2.91 
Hepatitis 2.41 1.96 3.33 2.25 
Cleveland heart disease 1.71 
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Figure 4. Number of terms/rule generated 
 
The Unordered Rule Set Continuous Ant-Miner algorithm discovers more modular rules, i.e., rules that can be 
interpreted independently from other rules – unlike the rules in an ordered list, where the interpretation of a rule 
requires knowledge of the previous rules in the list, than previous algorithms. The experiments show the 
Unordered Rule Set Continuous Ant-Miner accuracy is also superior to that obtained by other Ant-Miner 
versions. In the unordered rule list, we fix the consequent value at the initial stage, so rule pruning is more 
accurate and simple than in the Ordered Rule Set Ant-Miner versions. The main obstacle faced during this 
research was to normalize the pheromone values of the continuous attributes and nominal attributes, as they are 
in two different domains. 
 
6 CONCLUSIONS AND FUTURE RESEARCH 
 
This work has proposed an algorithm to discover unordered rule sets. The main goal of this algorithm is to 
discover classification rules in data sets. We have compared the performance of the proposed algorithm with 
existing algorithms. In existing algorithms, the numerical values are discretized into nominal attributes before 
the algorithm is executed. However, in the proposed method, there is no discretization process. We use 
multimodal functions (PDF) to handle continuous attributes. Compared to previous implementations of Ant-
Miner, the implementations in this paper reduce the potential information loss resulting from the discretization 
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process of continuous attributes. Continuous Ant-Miner is designed and implemented to induce classification 
rules from a training dataset with continuous attributes and nominal attributes. 
 
Our experiments have shown that the proposed Unordered Rule Set Continuous Ant-Miner algorithm is capable 
of discovering rules that are comparable to those discovered by the original Ant-Miner algorithm, in terms of 
both predictive accuracy and rule set simplicity. The rules discovered by the Unordered Rule Set Ant-Miner are 
more modular than the rules discovered by the original Ordered List Ant-Miner because in the Unordered Rule 
Set Anti-Miner algorithm, each rule can be interpreted independently from the others. In contrast, in the rule list 
discovered by the original Ant-Miner, a given rule can be interpreted only in the context of all the previous rules 
in the list. This modularity facilitates the interpretation of the rules by the user, an important point in data 
mining. The main obstacle faced during this research was to normalize the pheromone values of the continuous 
attributes and nominal attributes because they are in two different domains. 
 
Two important directions for future research are as follows: first, a study is needed on how to optimize the user 
defined parameter values. Second, Particle Swarm Intelligence (PSI) techniques should be examined to find the 
appropriate ranges for continuous attributes in datasets. 
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