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ABSTRACT 
 

In this paper, we have obtained the Bayes Estimator of Generalized-Exponential scale and shape parameter using 
Lindley’s approximation (L-approximation) under asymmetric loss functions. The proposed estimators have been 
compared with the corresponding MLE for their risks based on simulated samples from the Generalized-
Exponential distribution. 
 
1         INTRODUCTION 
 
Exponential distribution is the most exploited distribution for life data analysis, but its suitability is restricted to 
constant hazard rate. For situations where the failure rate is monotonically increasing or decreasing, two-parameter 
Weibull and Gamma are the most popular distributions used for analyzing any lifetime data. Both distributions have 
increasing and decreasing hazard rates depending on the shape parameter. However, one of the major disadvantages 
of the gamma distribution is that its distribution and survival functions cannot be expressed in a closed form if the 
shape parameter is not an integer. Moreover, there are terms involving the incomplete gamma function, and thus, 
one needs to obtain distribution function, survival function, or hazard function by numerical integration. This makes 
the gamma distribution unpopular compared to a Weibull distribution, which has a nice closed form for the hazard 
and survival functions. On the other hand, the Weibull distribution has its own disadvantages. For example, Bain 
and Engelhardt (1991) have pointed out that the maximum likelihood estimators of a Weibull distribution might not 
behave properly for all parameter ranges. 
 
Recently a new distribution, called Generalized-Exponential distribution, has been introduced. This distribution can 
be used quite effectively in situations where a skewed distribution is needed. Gupta and Kundu (1999, 2002) and 
Raqab and Ahsanullah (2001) have investigated several properties of the two parameter generalized exponential 
distribution. 
 
The two-parameter Generalized-Exponential has a distribution function of the form 
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Here α  is the shape parameter, and λ  is the scale parameter. The two-parameter Generalized-Exponential has 
increasing and decreasing failure rates depending on the shape parameter. For any λ , the hazard function is 
increasing if 1>α , decreasing if 1<α , and constant if α =1.  Gupta and Kundu (1999a) observed that because of 
the simple structure of the distribution and survival functions, the two-parameter Generalized-Exponential can be 
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used quite effectively in analyzing many lifetime data, particularly in place of two-parameter gamma and Weibull 
distributions.  
 
The estimation of parameters of the Generalized-Exponential distribution has been attempted by Gupta and Kundu 
(1999), but that work was only concerned with the maximum likelihood estimator or a Bayes estimator under a 
symmetric loss function. It is remarkable that most of the Bayesian inference procedures have been developed with 
the usual squared-error loss function, which is symmetrical and associates equal importance to the losses due to 
overestimation and underestimation of equal magnitude. However, such a restriction may be impractical in most 
situations of practical importance. For example, in the estimation of reliability and failure rate functions, an 
overestimation is usually much more serious than an underestimation. In this case, the use of symmetrical loss 
function might be inappropriate as also emphasized by Basu and Ebrahimi (1991). 
 
A useful asymmetric loss known as the LINEX loss function (linear-exponential) was introduced by Varian (1975) 
and has been widely used by several authors, Zellner (1986), Basu and Ebrahimi (1991), Calabria and Pulcini (1996), 
Soliman (2002), Singh et al. (2005), and Ahmadi et al. (2005). This function rises approximately exponentially on 
one side of zero and approximately linearly on the other side.  It may also be noted here that the squared-error loss 
function can be obtained as a particular member of the LINEX loss function for a specific choice of the loss function 
parameter. However, Bayesian estimation under the LINEX loss function is not frequently discussed, perhaps, 
because the estimators under asymmetric loss function involve integral expressions, which are not analytically 
solvable. Therefore, one has to use the numerical quadrature techniques or certain approximation methods for the 
solutions.  Lindley’s approximation technique is one of the methods suitable for solving such problems. Thus, our 
aim in this paper is to propose a Bayes estimator of the parameter of Generalized-Exponential distribution under the 
LINEX loss function using Lindley’s approximation technique. In Section 2, we discuss estimation of parameters. In 
Section 3 numerical results are presented, and  Section 4 contains the conclusion. 
 
2         ESTIMATION OF PARAMETERS 
 
Suppose x1,x2,…,xn is a random sample of size n from the density function defined in (2). 
The likelihood function of λ and α  for the samples x1,x2,…,xn is 

( ) ( )( ) ( )1 2
1

1
, | 1 1 1 ex pn

n
xx xn n

i
i

L x e e e x
αλλ λλ α α λ λ
−

−− −

=

⎡ ⎤⎡ ⎤= − − − − − − − −⎢ ⎥⎣ ⎦ ⎣ ⎦
∑    ;             

                                                                                       0≥ix                                                              (3)  
 
2.1       Maximum Likelihood Estimators of Generalized-Exponential Distributions 
 
The maximum likelihood estimate of parameters of the Generalized-Exponential distribution is obtained by 
differentiating the log of the likelihood and equating to zero. The two normal equations thus obtained are given 
below:  
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and    
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But these normal equations are not solvable. Therefore the MLE does not exist in a nice closed form. However, 
the maximum likelihood estimator of two-parameter Generalized-Exponential distribution can be obtained by 
iterative procedures.  We propose here to use a bisection method for solving the above-mentioned normal 
equations. 
 
2.2       Bayes Estimator under LINEX loss 
 
The LINEX loss function with parameter k and 1c  is given by 
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where θ̂   is the estimate of the parameter θ . 

Under the above loss function, the Bayes estimator Lθ̂ of θ  is given by 
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where θE  stands for posterior expectation.  

The sign of shape parameter ( )1c  reflects the direction of asymmetry, and its magnitude reflects the degree of 
asymmetry.  
 
For a Bayesian estimation, we need prior distribution for the parameters α  andλ .  It may be noted here that 
when the shape parameter is equal to one, the generalized exponential distribution reduces to exponential 
distribution. Hence, gamma prior may be taken as the prior distribution for the scale parameter of the Generalized-
Exponential distribution. It is needless to mention that under the above-mentioned situation, the prior is a 
conjugate prior. On the other hand, if both the parameters are unknown, a joint conjugate prior for the parameters 
does not exist. In such a situation, there are a number of ways to choose the priors. We propose the use of 
piecewise independent priors for both the parameters, namely a non-informative prior for the shape parameter and 
a natural conjugate prior for the scale parameter (under the assumption that shape parameter is known). Thus the 
proposed priors for parameters α   and λ  may be taken as 
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Substituting ( ), |L xα λ  and ( )λα ,g  from (3) and (10) respectively in the following equation  
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It may be noted here that the posterior distribution of ( )λα ,  takes a ratio form that involves an integration in the 
denominator and cannot be reduced to a closed form. Hence, the evaluation of the posterior expectation for 
obtaining the Bayes estimator of α  and λ  will be tedious. Among the various methods suggested to approximate 
the ratio of integrals of the above form, perhaps the simplest one is Lindley’s (1980) approximation method, which 
approaches the ratio of the integrals as a whole and produces a single numerical result. Thus, we propose the use of 
Lindley’s (1980) approximation for obtaining the Bayes estimator of α and λ . Many authors have used this 
approximation for obtaining the Bayes estimators for some lifetime distributions; see among others, Howlader and 
Hossain (2002) and Jaheen (2005). 
 
If n is sufficiently large, according to Lindley (1980), any ratio of the integral of the form 
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where ( )αλ,u  = function of λ  and α  only ; 

  ( )αλ,L = log of likelihood; 

  ( ),G λ α = log of joint prior ofλ  andα . 
 

can be evaluated as  
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where λ̂   = M.L.E. of  λ ; 
           α̂  = M.L.E. of  .α  
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2.3        The Bayes estimator of λ  under the LINEX loss function 
 
From (7), we see that the Bayes estimator of λ  under the LINEX loss function is  
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Thus, the Bayes estimator of λ under the LINEX loss function is 
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Hence, if the sample size is sufficiently large, the Bayes estimator of λ under the LINEX loss function tends to the 
maximum likelihood estimator ofλ . 
 
2.4       The Bayes Estimator of α  under the LINEX loss 
 
The Bayes estimator of α  under the LINEX loss function is 
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After substituting the value of ( )x|,p αλ from (11), it may be expressed as: 
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where   
( ),u λ α = α1ce−  ,  ( )αλ,L and ( ),G λ α are the same as those given in (14).            
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Thus, the Bayes estimator under the LINEX loss function is 
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It may be noted here that ˆ̂ ˆα α→  as ∞→n  when sample size n is sufficiently large and the Bayes estimator of 
α  under the LINEX loss function tends to the maximum likelihood estimator ofα .   
  
3         NUMERICAL FINDINGS 
 
The estimators λ̂  and α̂  are maximum likelihood estimators of the parameters of the Generalized-Exponential 

distribution; whereas λ̂̂  and α̂̂  are Bayes estimators obtained by using the L-approximation.  As mentioned earlier, 
the maximum likelihood estimators and hence risks of the estimators cannot be put in a convenient closed form. 
Therefore, risks of the estimators are empirically evaluated based on a Monte-Carlo simulation study of 1000 
samples. A number of values of unknown parameters are considered. Sample size is varied to observe the effect of 
small and large samples on the estimators. Changes in the estimators and their risks have been determined when 
changing the shape parameter of loss functions while keeping the sample size fixed. Different combinations of prior 
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parameters λ  and α  are considered in studying the change in the estimators and their risks. The results are 
summarized in Figures 1-10.  
 
It is easy to notice that the risk of the estimators will be the function of sample size, population parameters, 
parameters of the prior distribution (hyper parameters), and loss function parameters. In order to consider the wide 
variety of values, we have obtained the simulated risks for sample sizes N=10, 20, 30, and 40. The various values of 
parameters of the distribution considered are scale parameter λ =0.5 (.5) 3.0, shape parameter α =0.5 (.5) 3.0, and 
loss parameter 1c =± 0.5, ± 1.0 and ± 1.5. Prior parameters m and c are arbitrarily taken as 1.0. After an extensive 
study of the results thus obtained, conclusions are drawn regarding the behavior of the estimators, which are 
summarized below. It may be mentioned here that because of space restrictions, all results are not shown in the 
graphs. Only a few are presented here to demonstrate the effects found and the conclusion drawn. However, in most 
of the cases, the proposed Bayes estimator is better than the Maximum Likelihood Estimator (MLE). 
 
3.1       The Effect of Sample Size 
 
It is noted that as sample size increases, the risk of the estimators decreases, and for a sample size greater than 25, 
the risk of the Bayes estimators and MLEs are more or less equal (see Figures 1-4). For small samples, the behaviors 
of risks of estimators depend on the values of c1, λ, and α. For positive values of c1 (i.e., when overestimation is 
more serious then underestimation), the risks of the Bayes estimator of λ are more or less equal to the MLE. 
However, the risk of the Bayes estimator of α  is less than MLE, and the difference is larger for smaller sample 
sizes (see Figures 1 and 2).The trends of the risk of the estimators are reversed if c1 is negative (i.e., when 
underestimation is more serious then overestimation), see Figures 3 and 4.  
 
3.2       Effect of Population Parameters λ  and α  
 
The effect of variation of λ  on the risks of the estimator of λ  and α  has also been studied. It has been noticed that 
for positive values of 1c , as λ  increases, the risk of the estimator of λ  first decreases, then increases. The same 
trend is also noticed forα . It is observed that in most of the cases, the risk of the Bayes estimator of α  is less than 
the risk of the MLE estimator ofα , whereas the risk of the Bayes estimator of λ  is same as the MLE for smaller 
values ofλ . When λ  is large, however, it does not perform well (see Figures 5 and 6). For negative values of 1c , it 
is noted that as the value of λ  increases, the risk of the estimator of bothλ  and α , first increases then decreases. It 
is also noticed that the risk of the MLE estimator has a smaller value than the risk of the Bayes estimator ofλ . In 
the case ofα , there are very few data points for large samples and 1c =-0.5, where the risk of the Bayes estimator of 
α  is less than risk of the MLE estimator of α  (see Figures 7 and 8). 
 
3.3       Effect of Loss Parameter 1c  
 
In studying the effect of variation in the values of 1c , i.e., the LINEX loss parameter, on risks of the estimator of λ  

and α , it may be noted that the risks for negative values of 1c  are less than the risks for positive values of 1c . As 

the magnitude of 1c  increases, the risks of the estimator of λ , as well as the risks of the estimator of α , increase, 

which gives a bath-tub type curve, having minimum risks at 1c =-1.0. In most cases, for positive values of 1c , the 
risks of the Bayes estimator of α  are less than the risks of the MLE estimator ofα , but this may not be true for 
negative values of 1c . The risks of the proposed Bayes estimator of λ  are also not as good as the risks of the MLE 
estimator ofλ , which can be seen in Figures 9 and 10. 
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Figure 1. Risk of λ for overestimation (c1 positive)                  Figure 2. Risk of α for overestimation (c1 positive)      
as function of sample size                                                           as function of sample size 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Risk of λ for underestimation (c1 negative)            Figure 4. Risk of α for underestimation (c1 negative)      
as function of sample size                                                       as function of sample size 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
Figure 5. Risk of λ for overestimation (c1 positive)               Figure 6.  Risk of α for overestimation (c1 positive)  
as function of size of λ                                                             as function of size of α            
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Figure 7. Risk of λ for underestimation (c1 negative)                  Figure 8. Risk of α for underestimation (c1 negative)      
as function of size of λ                                                                  as function of size of λ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Risk of λ as function of loss parameter c1                  Figure 10. Risk of α as function of loss parameter c1 
                     
 
5         CONCLUSION 
 
The performance of the proposed Bayes estimator under the LINEX loss has been compared to the maximum 
likelihood estimator in the previous section. On the basis of these results, we may conclude that for positive 1c , i.e., 
overestimation is more serious than underestimation, the proposed Bayes estimator of λ  performs better than the 
maximum likelihood estimator of λ  for large sample sizes and small values of λ  and α  respectively; whereas 
risks of the proposed Bayes estimator of α  perform better than the maximum likelihood estimator of α  for a large 
portion of parametric space. For negative 1c , i.e., underestimation is more serious than overestimation, the risks of 
the maximum likelihood estimator of λ  perform better than the risks of the proposed Bayes estimator. The risks of 
the proposed Bayes estimator of α  perform better than the maximum likelihood estimator of α  for the whole 
parametric space. Thus, the use of the proposed estimator is to be recommended.          
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