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ABSTRACT 
 

Attribute reduction aims to reduce the dimensionality of large scale data without losing useful information and is an 
important topic of knowledge discovery, data clustering, and classification. In this paper, we aim to solve the 
current problem that a continuous attribute in a clustering or classification algorithm must be made discrete. We 
propose a new algorithm of data reduction based on a correlation model with data discretization. It deals with 
selection of continuous attributes from a very large set of attributes. The proposed algorithm is an extended version 
of the Fast Correlation-based filter algorithm and is named FCBF+. The FCBF+ algorithm performs the 
discretization of continuous attributes in an efficient manner. Then it selects the relevant attributes from a very large 
set of attributes.  Performance evaluation is done on clustering accuracy for all the features, and a reduced set of 
features is obtained using FCBF+. It is found that the proposed FCBF+ algorithm improves the clustering accuracy 
of various clustering algorithms.  
 
Keywords: Clustering, Attribute reduction, Data discretization, Correlation-based model, Knowledge discovery, 
Data mining  
 
1 INTRODUCTION 
 
Data mining or knowledge discovery in databases (KDD) (Han & Kamber, 2005) simply means the non-trivial 
extraction of implicit, previously unknown, and potentially useful information from data. It deals with the discovery 
of hidden knowledge, unexpected patterns, and new rules, especially from large databases. KDD is the process of 
identifying a valid, potentially useful, and ultimately understandable structure in data.  
 
Feature selection (Liu & Motoda, 1998; Pyle, 1999; Blum & Langley, 1997; Liu & Motoda, 1998; John, Kohavi, & 
Pfleger, 1994; Kira & Rendell. 1992; Kohavi & John, 1997) is a fundamental problem in data mining that selects out 
relevant features and casts away irrelevant and redundant features from an original feature set based on certain 
evaluation criteria. Feature selection improves mining performance such as predictive accuracy and result 
comprehensibility.  
 
Feature selection algorithms fall into two broad categories (Witten & Frank, 2000): the filter model or the wrapper 
model. The filter model (Dash, Choi, Scheuermann, & Liu, 2002) relies on general characteristics of a set of training 
data to select some features without involving any learning algorithm. The wrapper model (Kohavi & John, 1997) 
requires one predetermined learning algorithm for feature selection and uses its performance to evaluate and 
determine which features are selected. In these algorithms, first, a goodness measure of feature subsets based on data 
characteristics is used to choose best subsets for a given cardinality. Then, cross validation is exploited to identify 
the best subset across different cardinalities. These algorithms mainly focus on combining filter and wrapper 
algorithms to achieve the best possible performance for a particular learning algorithm with a similar time 
complexity of filter algorithms alone. In this work, we focus on the filter model and aim to develop a new feature 
selection algorithm that can effectively remove both irrelevant and redundant features. 
 
Early research efforts mainly focused on feature selection for classification with labeled data (supervised feature 
selection) where class information is available (Jimenez & Landgrebe, 1997; Dash & Liu. 1997; Ng. 1998; W. 
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Siedlecki & J. Sklansky, 1988; Jain & Zongker, 1997; Han & Fu, 1996; J. Novovicova, Malik, & Pudil, 2004; 
Hastie, Tibshirani, & Friedman, 2000). The latest developments, however, show that the above general procedure 
can be well adopted to feature selection for clustering with unlabeled data (or unsupervised feature selection) where 
data is unlabeled (Mitra, Murthy, & Pal. 2002; Kim, Street, & Menczer, 2000; Dash & Liu. 1999; Dash, Liu, & Yao, 
1997; Dy & Brodley, 2000; Yu & Liu. 2003) 
 
 2     PROBLEM DEFINITION 
 
The set of techniques that can be employed for attribute reduction can be partitioned into two important types: 
techniques that apply to supervised or unsupervised learning and techniques that entail feature selection or feature 
extraction. 
 
Feature extraction can be viewed as a preprocessing step that removes distracting variance from a dataset so that 
downstream classifiers or regression estimators perform better (Liu & Motoda, 1998). The area where feature 
extraction ends and classification or regression begins is necessarily murky: an ideal feature extractor would simply 
map the data to its class labels for the classification task. 
 
Variable selection is a search problem with each state in the search space specifying a subset of the possible 
attributes of the task (Liu, Motoda, & Yu, 2002). Exhaustive evaluation of all variable subsets is usually intractable. 
Genetic algorithms, population-based learning, and related Bayesian methods have been commonly used as search 
engines for the variable selection process (Jimenez & Landgrebe, 1997). Particularly for SVMs, a variable selection 
method was introduced based on finding the variables that minimize bounds on the leave-one-out error for 
classification (Hastie, Tibshirani, & Friedman, 2000). The search of variable subsets can be efficiently performed by 
a gradient descent algorithm. The method, however, was limited to separable classification problems and thus is not 
directly applicable to the regression problems. Liu et al. (2002) proposed another variable selection method for 
classification by recursively eliminating the input variables that decrease the margin the least. 
 
Existing discretization algorithms can classified as top-down or bottom-up, Top-down methods can be further 
divided into unsupervised or supervised (Liu, Hussain, Tan, & Dash, 2002). Experiments by Kurgan and Cios 
(2004) showed that the Class-Attribute Interdependence Maximization (CAIM) discretization algorithm is superior 
to other top-down discretization algorithms because its schemes can generally maintain the highest interdependence 
between target class and discretized attributes, resulting in the least number of generated rules and attaining the 
highest classification accuracy.  Fast Class-Attribute Interdependence Maximization (FCAIM), which is an 
extension of the CAIM algorithm, has been proposed to speed up CAIM (Kurgan & Cios, 2003). The main 
framework, including the discretization criterion and the stopping criterion, as well as the time complexity between 
CAIM and F-CAIM, are all the same. The only difference is the initialization of the boundary point between the two 
algorithms. Compared to CAIM, F-CAIM is faster and had a similar C5.0 accuracy but obtained a slightly worse 
Class-Attribute Interdependence Redundancy (CAIR) value. As the main goal of our approach is to reach a higher 
CAIR value and attain an improvement in the accuracy of classification, we compared our approach to CAIM 
instead of F-CAIM in our experiments. Of course, Class-Attribute Contingency Coefficient (CACC) can be easily 
extended to Fast Class-Attribute Contingency Coefficient (F-CACC) with the same considerations as in F-CAIM if 
faster discretization is considered more important than the quality of a discretization scheme.  
 
The computational complexity of bottom-up methods is usually larger than top-down ones, as they start with a 
complete list of all continuous values of the attribute as cut-points and then remove some of them by merging 
intervals in each step. Another common characteristic of these methods is in the use of the significance test to check 
if two adjacent intervals should be merged. ChiMerge (Kerber, 1992) is the most typical bottom-up algorithm. In 
addition to the problem of high computational complexity, the other main drawback of ChiMerge is that users have 
to provide several parameters during the application of this algorithm that include the significance level as well as 
the maximal and minimal intervals. Hence, Chi2(Liu, Huan and Setiono, Rudy,1995) was proposed, based on the 
ChiMerge. Chi2 improved ChiMerge by automatically calculating the value of the significance level. However, Chi2 
still requires users to provide an inconsistency rate to stop the merging procedure and does not consider the freedom 
that would have an important impact on the discretization schemes. Thereafter, a Modified Chi2( Francis E.H. Tay, 
Lixiang Shen,2002) takes the freedom into account and replaces the inconsistency checking in Chi2 by the quality of 
approximation after each step of discretization. Such a mechanism makes Modified Chi2 a completely automated 
method to attain a better predictive accuracy than Chi2. After ModifiedChi2, Extended Chi2( Su, C. & Hsu, J. 2005)  
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was developed to take into consideration that the classes of instances often overlap in the real world. Extended Chi2 
determines the predefined misclassification rate from the data itself and considers the effect of variance in two 
adjacent intervals. With these modifications, Extended Chi2 can handle an uncertain dataset. Experiments on these 
bottom-up approaches by using C5.0 also showed that the Extended Chi2 outperformed other bottom-up 
discretization algorithms as its discretization scheme, on average, can reach the highest accuracy (Su & Hsu, 2005). 
 
In recent years, datasets have become increasingly larger in both number of instances and number of features in 
many applications. This enormity of data may cause serious problems for many machine learning algorithms with 
respect to scalability and learning performance. For example, high dimensional data (i.e., data sets with hundreds or 
thousands of features) can contain a high degree of irrelevant and redundant information, which may greatly degrade 
the performance of learning algorithms. Therefore, feature selection becomes very necessary for machine learning 
tasks when facing high dimensional data. However, this trend of enormity of both size and dimensionality also poses 
severe challenges to feature selection algorithms. Some recent research efforts in feature selection have been 
focused on these challenges caused by handling a very large number of instances to deal with high dimensional data. 
Our work is concerned with feature selection for high dimensional data along with discretization of continuous 
values in an efficient manner. Feature selection is done using an improved Fast Correlation-based filter algorithm 
(FCBF+). 
 
3      RELATED WORK 
 
Blum and Langley (1997) classified the feature selection techniques into three basic approaches. In the first 
approach, known as the embedded approach, a basic induction method is used to add or remove features from the 
concept description in response to prediction errors on new instances. The second approach is known as the filtering 
approach, in which various subsets of features are explored to find an optimal subset that preserves the classification. 
The third approach is known as wrapper methods, which evaluate alternative feature sets by running an induction 
algorithm on the training data and using the estimated accuracy of the resulting classifier as its metric.  ID3 
(Quinlans,  1986), C4.5 (Quinlan, 1993), and CART  (Breiman, Friedman, Olshen, & Stone, 1984) are some of the 
most successful supervised learning algorithms. These algorithms use a greedy search through the space of decision 
trees, at each stage using an evaluation function to select the attribute that has the best ability to discriminate among 
the classes. Michalski (1980) proposed the AQ learning algorithm, which uses positive and negative examples of a 
class along with a user-defined criterion function to identify a disjunctive feature set that can maximize the positive 
events and minimize the negative events. Narendra and Fukunaga (1977) presented a Branch and Bound algorithm 
for finding the optimal feature set that uses a top-down approach with back-tracking. Pudil et al. (1994) proposed a 
set of suboptimal algorithms called the floating search methods that do not require the fulfillment of a monotonicity 
condition for feature selection criterion function. Somol et al. (2000) provided a modified and efficient branch and 
bound algorithm for feature selection. Though computationally less expensive than the branch-and bound algorithms, 
no theoretical upper bound exists on the computational costs of the algorithms because of their heuristic nature.  
 
John et al. (1994) proposed another feature selection framework known as the wrapper technique. The wrapper 
methods evaluate alternative feature sets by running an induction algorithm on the training data and using the 
estimated accuracy of the resulting classifier as its metric. The major disadvantage of the wrapper methods is in the 
computational cost involved in running the induction algorithm repeatedly for each feature set considered.  
 
A number of feature selection techniques based on evolutionary approaches have also been proposed. Casillas et al. 
(2001) present a genetic feature selection technique that is integrated into a multi-stage genetic learning process to 
obtain a Fuzzy Rule Based Classification system (FRBCS). In the first phase of this method, a filtering approach is 
used to determine an optimal feature subset for a specific classification problem using class-separability measures. 
This feature subset, along with expert opinion, is used to obtain the adequate feature subset cardinality in the second 
phase, which is used as the chromosome length. Xiong  (2002) proposed a hybrid approach to input selection, which 
distinguishes itself from existing filter and wrapper-based techniques but utilizes the advantages of both. This 
process uses case-based reasoning to select candidate subsets of features, which are called ‘hypothesis.’ The 
performance of case-based reasoning under a hypothesis is estimated using training data on a “leave-one-out” 
procedure. The error estimate is then combined with the subset of selected attributes to provide an evaluation 
function for a genetic algorithm (GA) to find the optimal hypothesis. Kuncheva and Bezdek (1998) proposed a 
genetic algorithm for simultaneously editing and doing feature selection to design 1-nn classifiers. They had posed 
the problem as a bi-criteria combinatorial optimization problem having an NP-hard search space. Ho et al. (2002) 
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proposed the design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Thawonmas and 
Abe (1997) suggested a feature selection technique to eliminate irrelevant features based on an analysis of class 
regions generated by a fuzzy classifier. The degree of overlap in a class region is used to define the exception ratio, 
and the features that have the lowest sum of exception ratios are the relevant ones. Irrelevant features are eliminated 
using a backward selection search technique. 
 
Kira and Rendell (1992) proposed a different approach to feature selection, and their proposed RELIEF algorithm 
assigns a weight to each feature based on the ability of the feature to distinguish among the classes, then selects 
those features whose weights exceed a user defined threshold as relevant. The weight computation is based on the 
probability of the nearest neighbors from two different classes having different values for an attribute and the 
probability of two nearest neighbors of the same class having the same value of the attribute. The higher the 
difference between these two probabilities, the more significant is the attribute. Inherently, the measure is defined 
for a two-class problem, which can be extended to handle multiple classes by splitting the problem into a series of 
two-class problems. Kononenko (1994) suggests the use of k-nearest neighbours to increase the reliability of the 
probability approximation. He also suggests how RELIEF can be extended to work with multiple sets more 
efficiently. Weighting schemes are easier to implement and are preferred for their efficiency. 
 
Learning to classify objects is an inherently difficult problem for which several approaches, such as instance-based 
learning or nearest neighbor-based algorithms, are used. However, the nearest neighbor algorithms need some kind 
of distance measure. Cost and Salzberg (1993) emphasized the need to select appropriate metrics for symbolic 
values. Stanfill and Waltz (1984) proposed the Value Difference Metric (VDM), which measures distance between 
values of symbolic features. It takes into account the overall similarity of classification of all instances for each 
possible value of each feature. Based on this, they  proposed the Modified Value Distance Metric (MVDM), which 
is symmetric and satisfies all the metric properties. They have shown that nearest neighbour algorithms perform well 
even for symbolic data using this metric. It is observed that distance-values are similar if the pairs occur with the 
same relative frequency for all classes. Zhao and Tsang (2008) proposed an attribute reduction with fuzzy 
approximation operators. Sharma and Paliwal (2008) proposed a rotational linear discriminate analysis technique for 
dimensionality reduction, which is a supervised learning technique that finds a linear transformation such that the 
overlap between the classes is minimum for the projected  feature vectors in the reduced feature space. 
 
4 PROPOSED WORK 
 
This section presents a new algorithm named FCBF+ that combines a feature selection algorithm named Fast 
Correlation Based Filer (FCBF) algorithm (Yu & Liu, 2003) with feature discretization (Tsai, Lee, & Yang, 2008) 
because discrete values are not handled in the earlier  FCBF algorithm. Discretization algorithms have played an 
important role in data mining and knowledge discovery. They not only produce a concise summarization of 
continuous attributes to help experts understand the data more easily but also make learning more accurate and faster. 
Thus a static, global, incremental, supervised, and top-down discretization algorithm based on a Class-Attribute 
Contingency Coefficient is proposed. Evaluation of this algorithm on a real dataset shows that the proposed 
algorithm could generate a better discretization scheme that improves the accuracy of classification and clustering. 
 
A correlation measure based on the information-theoretical concept of entropy is a measure of the uncertainty of a 
random variable. The entropy of a variable  is defined as   

 
and the entropy of  after observing values of another variable  is defined as  

 
where  is the prior probability for all values of .  is the posterior probability of , given a 
value of . The amount by which the entropy of  decreases reflects additional information about  provided by 

 and is called the information gain, as given by 
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According to this measure, a feature  is regarded as being more correlated to feature  than to feature Z if 

. Symmetry is a desired property for a measure of correlations between features. 
However, information gain is biased in favor of features with more values. Furthermore, the values have to be 
normalized to ensure they are comparable and have the same aspect. Therefore, we choose a symmetrical 
uncertainty defined as follows. 

 
 
This formula compensates for a bias of information gain toward features with more values and normalizes its values 
to the range [0; 1] with the value 1 indicating that knowledge of either value completely predicts the value of the 
other and the value 0 indicating that  and  are independent. 
 
Using symmetrical uncertainty (SU) as the goodness measure, a procedure is developed to select good features for 
classification based on correlation analysis of features.  
 

1 Input: Dataset(A1,A2,…AN, C) with i continuous attributes, M examples and S  target classes; 
2 Begin 

3 For each continuous attribute Ai 

    4 Find the maximum dn and the minimum d0 values of Ai; 

    5 Form a set of all distinct values of A in ascending order; 

    6 Initialize all possible interval boundaries B with the minimum and maximum 

    7 Calculate the midpoints of all the adjacent pairs in the set;  

    8 Set the initial discretization scheme as D: {[d0,dn]} and  Globalcacc = 0; 

    9 Initialize k = 1; 

        10 For each inner boundary B which is not already in scheme D; 

        11 Add it into D; 

        12 Calculate the corresponding cacc value; 

        13 Pick up the scheme D’ with the highest cacc value; 

        14 If cacc > Globalcacc, then 

           15 Replace D with D’; 

           16 Globalcacc = cacc; 

           17 k = k + 1; 

           18 Goto Line 10; 

        19 Else 

           20 D’ = D; 

        21 End If 

        22 for i = 1 to N do begin 

           23 calculate SUi,c for Fi; 

           24 append Fi to Slist
’; 
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           25 end; 

   26 order Slist
’ in descending SUi,c value; 

   27 FP = getFirstElement(Slist
’, Fp); 

   28 do begin 

      29 FP = getNextElement(Slist
’, Fp); 

      30 if (Fq <> NULL) 

         31 do begin 

         32 Fq
’ = Fq; 

         33 if (SUp,q >= SUq,c) 

            34 remove F from Slist
’; 

            35 Fq = getNextElement(Slist 
‘, Fq

’); 

         36 else Fq = getNextElement(Slist
’
 , Fq); 

     37 end until (Fq == NULL); 

     38 Fq = getNextElement(Slist 
‘, Fp); 

   39 end until (Fp == NULL); 

40 Sbest = Slist
’; 

41 end 

Figure1. Proposed FCBF+ algorithm: an updated procedure with data discretization 
 
Thus the algorithm selects the features after discretizing the continuous attributes, in contrast to the FCBF algorithm 
in which continuous values are not handled. Given a dataset with i continuous attributes, M examples, and S target 
classes, for each attribute Ai, the algorithm first finds the maximum dn and minimum d0 and then sorts them in 
ascending order.  The midpoints of all the adjacent boundaries are obtained. In the kth loop, cacc is computed for all 
possible cutting points to find the one with the maximum value and then this attribute is partitioned accordingly into 
k + 1 intervals. In other words, for every loop, cacc not only finds the best division point but also records a 
Globalcacc value. If the generated cacc value in loop k + 1 is less than the Globalcacc obtained in loop k, cacc 
would terminate and output the discretization scheme. The algorithm further processes the ordered list Slist

’ to 
remove redundant features and only keeps predominant ones among all the selected relevant features. The 
correlation between a feature Fi and the class C is predominant if there exists no Fj such that SUj,i >= SUi,c. If there 
exists such Fj to a feature Fi, we call it a redundant peer to Fi. The iteration starts from the first element in Slist

’ and 
continues as follows. For all the remaining features, if Fp happens to be a redundant peer to a feature Fq, Fq will be 
removed from Slist

’. After one round of filtering features based on Fp, the algorithm will put the current remaining 
feature right next to Fp as the new reference to repeat the filtering process. The algorithm stops until there are no 
more features to be removed from Slist

’.  

Y = [ ∑∑
==

n

r

s

i 11

 (Qir
2/Mi+M+r)-1]/log(M) 

 
cacc= Myy +/  

 
M is the total number of samples, n is the number of intervals, qir is the number of samples with class i (i = 1,2,. . . S, 
and r = 1,2,. . . n) in the interval (dr-1,dr). Mi+ is the total number of samples with class i, and M+r is the total number 
of samples in the interval r-1 to r. 
 
5     PERFORMANCE EVALUATION 
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In our experiments, we chose three representative feature selection algorithms for comparison with FCBF+. One is a 
feature weighting algorithm, ReliefF (an extension to Relief), which searches for several nearest neighbors, is   
robust to noise, and handles multiple classes (Kononenko, 1994). In addition to feature selection algorithms, we also 
selected three different learning algorithms, EM, Farthest First, and K-Means algorithm, to evaluate the accuracy on 
selected features. 
 
The experiments were conducted using Weka’s implementation of all these algorithms, and FCBF+ is also 
implemented in Weka environment (Witten & Frank, 2000). All together five data sets were selected from the UCI 
Machine Learning Repository (Blake & Merz, 1998). A summary of the data sets is presented in Table 1. 
 
For each data set, we executed all four feature selection algorithms, FCBF+, Relief, Chisquared, Principal 
components respectively, and recorded the number of selected features for each algorithm. We then applied EM, 
Farthest First, and K-Means algorithm on the original data set as well as with a reduced dataset containing only the 
selected features from FCBF+ algorithm and recorded overall accuracy by 10-fold cross-validation. 

    

DATASET No of continuous
attributes 

No of 
attributes 

No of classes No of      Instances

Diabetes 8 8 2 108 

Iris 4 4 3 150 

Chess 0 36 2 3196 

Soybean 35 36 4 47 

Liver 6 7 2 345 

Table 1. Summary of bench-mark data sets 

 
 
 
 
 
 
 
 
 

 

 
Table 2. Number of selected features for each feature selection algorithm 
 
Table 2 summarizes the number of selected features for each feature selection algorithm. From the averaged values 
in the last row of Table 2, it is clear that FCBF+ achieves the highest level of dimensionality reduction by selecting 
the least number of features, which is consistent with our theoretical analysis about FCBF+s ability to identify 
redundant features. 
6 PERFORMANCE COMPARISON 
 
Performance evaluation is done using a software package called WEKA, which includes clustering algorithms. The 
clustering accuracy is determined by using the entire dataset as input for the package. Then the reduced set of 
features is tested with the same set of algorithms, and it is found that the clustering accuracy increases for the 
reduced set of features.  
 

Feature 
Selection 
Algorithms 

Chisquared 
Attribute 
evaluation 

Relief 
Attribute 
Evaluation 

Principal 
 Components 

FCBF+

Diabetes 8 8 7 3 
Iris 4 4 2 4 
Chess 36 36 31 6 
Soybean 35 35 18 5 
Liver 6 6 5 2 
Average 18 18 13 4 
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The farthest-point heuristic starts with an arbitrary point S1. Pick a point S2 that is as far from S1 as possible. Pick 
Si to maximize the distance to the nearest of all centroids picked so far. That is, maximize the min {dist (Si, S1), dist 
(Si, S2), ...}. 
 
The k-means algorithm is an algorithm to cluster n objects based on attributes into k partitions, k < n. It is similar to 
the expectation maximization algorithm for mixtures of Gaussians in that they both attempt to find the centers of 
natural clusters in data. It assumes that the object attributes form a vector space. Its objective is to minimize total 
intra-cluster variance or the squared error function. 
 
 
CLUSTERING 

ALGORITHMS 

           EM   FARTHEST 

FIRST 

       KMEANS 

  ALL REDUCED   ALL REDUCED ALL REDUCED

Diabetes  31.49   59.26    69    70.38   33    34 

Iris    60    76    48     55   67    62 

Soybean  78.73      100  57.45    57.45  57.45    57.45 

Liver 45.51      49.57  56.24    58.48  54.21    54.5 

Chess 47.32      51.54  53.79    58.48  53.32    56.79 

Table 3. Clustering Accuracy of Various Algorithms (In %) 

 
The performance improvement of the EM, Farthest First, and Kmeans algorithms is tabulated for two cases. The 
first case represents the complete full set of features, and the second case represents the reduced set of features. It is 
obvious from Table 3 that the performance of the algorithms with reduced subset doubled with certain datasets like 
Diabetes in particular using EM algorithm. In other cases also the performance improvement is considerable for 
various algorithms. 
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Figure 2. EM algorithm performance comparison 

 

              

                  

 
 

Figure 3. Farthest First algorithm performance comparison 
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Figure 4.  Kmeans algorithm performance comparison 

 
The graphical performance of the various algorithms is illustrated through Figures 2 - 4. It is obvious from these 
graphs that the clustering accuracy with reduced feature subset is substantially high compared with the original full 
features set. It is also obvious from Figure 2 that FCBF+ improves the clustering accuracy dramatically when the EM 
algorithm is used. Also the clustering accuracy is improved for Farthest First and K Means algorithms as shown in 
Figures 3 and 4. These results show that FCBF+ is suitable for classification of high dimensional data. 
 
The above experimental results suggest that FCBF+ is practical for feature selection for classification of high 
dimensional data. It can efficiently achieve a high degree of dimensionality reduction and enhance classification 
accuracy with predominant features. 
 
7       CONCLUSION 
 
Because clustering results are dependent only on the data, the data measure, and the computing method, the data 
measure has to be chosen carefully. In many applications, correlation measures are preferred because of their 
favorable invariance properties, adding a constant offset to components of a data sample or applying a multiplicative 
factor does not affect correlation. 
 
The work proposed here focuses on predominant correlation and introduces an efficient way of analyzing feature 
redundancy known as the Fast Correlation-Based Filter+ approach for feature selection. It is evaluated through 
extensive experiments by comparison to related feature selection algorithms. The feature selection results are further 
verified by applying different clustering algorithms to data with and without feature selection. The FCBF+ approach 
demonstrates its efficiency and effectiveness in dealing with high dimensional data for clustering with feature 
discretization. 
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