
SEMANTIC QUERY ON MATERIALS DATA BASED ON MAPPING
MATML TO AN OWL ONTOLOGY

Xiaoming Zhang1*, 2, Changjun Hu1, and Huayu Li1

1School of Information Engineering School, University of Science and Technology Beijing, Beijing, 100083,
China
*Email: zxm1975@gmail.com
2School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang,
050054, China

ABSTRACT

MatML plays an important role in materials data applications while structure-aware query techniques (e.g.,
XPath and XQuery) are used to search the content of MatML. However, both XPath and XQuery cannot
efficiently retrieve sets of MatML on a conceptual level. In this paper, we propose an approach to transform
MatML-based materials data into an OWL ontology. As such, materials data can then be explored in a more
semantic way. The proposed method formally defines a set of rules to extract the corresponding OWL ontology
(named MatOWL) from a given MatML schema. The instance transformation from MatML to MatOWL is
implemented with the help of an intermediate object model. The algorithm for instance transformation is also
given. Further, MatOWL can be mapped to other ontologies with logic rules to provide more semantic context
for domain experts, and more materials knowledge can be obtained by reasoning on the OWL ontology. An
experimental prototype demonstrates the effectiveness of our proposed approach.

Keywords: MatML, OWL Ontology, Semantic query, Materials data, Domain data engineering

1 INTRODUCTION

In recent years, industrial communities and research institutions have accumulated immeasurable amounts of
materials data (Westbrook, 2003), which are sure to facilitate materials science research. However, the
complexity of materials data makes it hard for users to integrate and share these scientific data (Iwata, Shichijo,
& Ashino, 2001). Materials data uses, such as access, acquisition, and interoperability, have gradually become
the most challenging problems facing materials informatics (Hunt, 2006). As stated at the materials informatics
workshop held at University of Queensland in 2006 (U Queensland, 2006), informatics is still in its infancy in
the materials domain, and researchers of materials informatics should keep up with other scientific communities
such as biology, astronomy, and social sciences. In order to exchange, integrate, and share materials data, a
unified materials data model is needed. MatML (MatML Schema, 2004) and NMC-MatDB (NMC-MatDB
Schema, 2007) are materials data models built for this purpose. A CODATA Task Group for Exchangeable
Materials Data Representation (Task Group, 2006) was established at 2006 to focus on topics related to
interoperability of heterogeneous data resources. Swindells (2002) described the representation of engineering
properties, which includes material properties, by the use of ISO 10303 standards (ISO, 1994). ISO 10303-45
Edition 2 (ISO, 2008) defines an information model to enable the representation of materials and other
engineering properties of a product. This standard is extended by the development of ISO 10303-235, which
focuses on the representation of the measurement process of a property and will shortly be published. The

Data Science Journal, Volume 8, 10 January 2009

1

terminologies of properties and measurement processes are specified in ISO 13584 (ISO, 2001) as a series of
dictionaries.

MatML is an extensible markup language developed especially to facilitate the exchange of materials
information. It can uniformly represent materials property data to resolve syntactic and structural heterogeneity.
As MatML is simple, flexible, and understandable, it offers many benefits (Sturrock, Begley, & Kaufman, 2001)
to materials scientists and engineers. Research and applications about MatML have emerged in recent years.
MatML is used in NSDL MatDL (Bartolo, Lowe, Sadoway, Powell, & Glotzer, 2005), and a web GUI has been
developed to compare the properties of more than 80 types of materials. Begley and Howard-Reed (2005) have
discussed the application of MatML to containment emission data, and a mapping approach from RDBMS to
MatML is presented to transform these emission data into an exchangeable format. Bartolo & Lowe (2003)
mapped MatML tags to Dublin Core elements to reuse the detailed information provided by MatML, so as to
equip Dublin Core metadata with the capability of describing materials domain features. Varde, Begley, and
Fahrenholz-Mann (2006) have presented some success stories for MatML in data mining applications, such as
failure analysis and decision support systems.

As MatML uses a tree-based structure to represent its content, queries (XPath or XQuery) on MatML are tightly
coupled with the tree structure of the XML documents. However, materials scientists are more likely to write a
semantic query by using domain terms that they are familiar with, instead of exploring the complex document
structure. Therefore, MatML can not meet this requirement elegantly. MatML currently has not defined the
names of materials properties and experiment data items (Ashino & Fujita, 2006). As such, it lacks the
capability to describe the high-level abstraction of concept semantics, and machine-processable ontologies are
required to provide the semantic mappings between related terms (Cheung, Drennan, & Hunter, 2008).
Furthermore, from the perspective of data integration, the semantics of XML data should be specified explicitly
to resolve semantic heterogeneity. Ashino and Oka (2007) have shown that MatML is not adequate for data
exchanges between heterogeneous materials databases and have proposed a framework by using an ontology to
define the structure of domain concepts. Hunter, Little, and Schroeter (2008) have developed an ontology for
integration of disparate materials databases. These excellent research achievements pay more attention to the
semantic integration of databases. Differing from the existing work, we believe that both integration and
utilization of MatML data are becoming more and more important. However, this topic has not yet been well
studied.

In this paper, we propose an approach to use the achievements of the semantic web (Berners-Lee, Hendler, &
Lassila, 2001) by transforming MatML to an OWL (Bechhofer, Harmelen, Hendler, Horrocks, McGuinness,
Patel-Schneider, et al., 2004) ontology, so that materials scientists can perform semantic queries on materials
data derived from the MatML documents. The approach formally defines a set of rules to extract the ontology
(called MatOWL) from a given MatML schema and utilizes an intermediate object model to help instance
transformation from MatML to MatOWL. The proposed MatOWL can be easily extended by mapping it to other
ontologies with logic rules. As such, more semantic context for domain experts can be provided for
semantic-related retrieval tasks.

The remainder of this paper is organized as follows. The related work is discussed in Section 2. Section 3 gives
the problem description. Section 4 introduces the rules used for extracting MatOWL. Section 5 describes the
process and algorithm for the instance transformation. Section 6 discusses how to enhance MatOWL and

Data Science Journal, Volume 8, 10 January 2009

2

compose SPARQL query on the translated materials data. Section 7 shows experimental results and
demonstrates the prototype. Section 8 concludes the paper.

2 RELATED WORK

In the recent years, much research has concentrated on how to build mapping from XML to an ontology
efficiently. From the view point of real-life applications, some researchers focus on metadata generation for web
pages, while others focus on data integration. From the view point of implementation techniques, some
approaches aim at extracting an ontology from XML documents or XML schema (Ferdinand, Zirpins, &
Trastour, 2004; Bohring & Auer, 2005), while others are dedicated to mapping the XML documents to an
existing ontology (Reif, Jazayeri, & Gall, 2004; Rodrigues, Rosa, & Cardoso, 2005; Kobeissy, Genet, &
Zeghlache, 2007).

WEESA (Reif, et al., 2004), JXML2OWL (Rodrigues, et al., 2005) and XMLTOWL (Kobeissy, et al., 2007)
generate mappings between an XML schema and a specific OWL ontology. WEESA and XMLTOWL use XML
to express mappings, whereas JXML2OWL adopts XSLT. Once the mappings are defined, these approaches can
transform XML documents to the corresponding OWL instances automatically. The advantage of this kind of
solution is that an existing ontology can be utilized to provide a semantic interpretation for the XML data.

The XML2OWL (Bohring & Auer, 2005) framework also supports instance transformation, and it can extract an
OWL ontology from a XML schema or even from XML documents. The extraction and transformation rules are
implemented by XSLT. On the other hand, Ferdinand, et al. (2004) proposed a method to convert XML to RDF
as well as to transform a XML schema to OWL, though the two transforming processes are independent of each
other.

From the perspective of data integration, Lehti & Fankhauser (2004) use an OWL ontology as the global view in
the data integration system and then construct mappings between the XML schema of a data source and the
OWL ontology. It does not dump all instances from the data source, whereas the original query on the OWL
ontology has to be translated into the corresponding XQuery. Different from the simple value correspondence
between XML and ontology, An, Borgida, & Mylopoulos (2005) propose an approach to help end-users
construct complex mapping formulas between XML schemas and OWL ontologies. The mappings are expressed
as a subset of First Order Logic.

Compared with the approaches mentioned above, our method has the following features. First, we do not map a
XML document to a particular ontology. Alternatively, we focus on how to extract the OWL ontology from the
XML document and then how to associate it with other OWL ontologies. Second, we are concerned with a
particular type of XML document (i.e., MatML) in the materials domain. Hence, we must use some specific
rules to extract information from MatML. Third, we use logic rules to express the relationships between the
extracted ontology and other domain ontologies, and therefore the extracted ontology can be further used in a
user-preferred manner.

3 PROBLEM DESCRIPTION

As more and more materials resources emerge in the MatML format, it is significant and necessary to provide a

Data Science Journal, Volume 8, 10 January 2009

3

convenient interface for users to access these scientific data. The motivation of our work is to bridge the
semantic gap between materials experts and structure-aware queries on MatML, so that users can exploit the
content of MatML in a more semantic way. Structure-aware query here means that the query should more or less
be aware of the structural information of the source data. Thanks to the rapid development of semantic web
technology, we therefore can use technologies such as ontology and logic rules to help to solve this problem.
Before we give the overview of our approach, some related definitions are given below.

The MatML version 3.1 schema contains more than 50 complex and simple types. Elements and attributes of
MatML are declared as these types. Accordingly, the MatML schema can be formally defined as follows.

Definition 1. The MatML schema is a 2-tuple _ (,)MatML Schema CT ST= , where

{ | is xsd:complexType}CT ct ct= and { | is xsd:simpleType}ST st st= . Further, NR RST ST ST= U where

simple types with enumeration restriction belong to RST and the other simple types belong to NRST ;

(,)CT E ATT= where { | is a xsd:Element}E e e= and { | is a xsd:Attribute}ATT att att= . For

each ct CT∈ , ct.Elements and ct.Attributes are used to get E and ATT of CT respectively. For each st ST∈ ,

getBaseType(st) is defined to get the base type of st. For each x E ATT∈ U , x.name and x.type are used to get

the name and type of x respectively. If x.type is xsd:IDREF, getRefType(x) is used to get the type referenced by x.

The set of XML Schema types (e.g., xsd:string) are represented by XSDType.

Applications in the materials science domain need more semantic support, such as that offered by an ontology.
An ontology is a formal, explicit specification of a shared conceptualization (Gruber, 1993; Studer, Benjamins,
& Fensel, 1998). An ontology can be used to capture some shared domain knowledge (e.g., the key concepts of
a domain and important relationships between them), and it can also serve as the basis for logic reasoning on the
information content in a specific domain. Based on the language description of an OWL (Bechhofer, et al.,
2004), the ontology extracted from MatML can be defined as follows.

Definition 2. MatOWL is an OWL ontology extracted from the MatML schema, which is a 5-tuple

MatOWL=(C,OP,DP,I, oA), where C is a finite set of concepts; OP is a finite set of object properties; DP is a

finite set of data type properties; I is a set of instances; and oA is a set of axioms. Given ∑=C,OP,DP,I, oA is a

logic axiom set over ∑. For each x∈∑ , we use x.id to get a resource identifier of x. For ,c x C∈ ,

c.hasSuperclass(x) is defined to express that class c is a subclass of class x. For p OP DP∈ U

and , XSDTypex y C∈ U , p.hasDomain(x) is defined to represent that the domain of property p contains class x,

while p.hasRange(y) is defined to represent that the range of property p contains class y.

Definition 3. f(x) is a name mapping function from the MatML schema into the MatOWL, where x can be a
name of a type, element, or attribute defined in the MatML schema, and the value of f(x) is the name of a class
or property defined in MatOWL.

Based on these definitions, we propose an approach for mapping MatML to MatOWL so that users can perform
semantic queries on materials data. The overview of our approach is illustrated in Figure 1. After four steps,
users can semantically access MatML-based materials data by SPARQL queries.

Step 1: Extraction of MatOWL. This step analyzes the structure of the MatML schema and extracts the concepts

Data Science Journal, Volume 8, 10 January 2009

4

and properties of a MatOWL ontology from the MatML schema by a set of heuristic rules. Through this step, the
TBox of MatOWL is constructed.

Step 2: Instance transformation. Instance data are transformed from MatML documents to MatOWL.
Consequently, MatOWL is populated with materials property data, and the ABox of MatOWL is constructed.

Step 3: Enhancement of MatOWL. This step adds more semantics to MatOWL. MatOWL is associated with
concepts from other existing domain ontology by logic rules.

Step 4: Query building. A SPARQL query is built based on the domain terms that come from MatOWL or the
associated domain ontology.

In the following sections, each of the four steps is described in more detail.

Figure 1. Overview of the approach

4 EXTRACTING MATOWL

Because MatML is a data model for materials property data, the MatML schema can provide the basic
vocabulary and structure for the description of this domain. Therefore, extracting an ontology from the MatML
schema is not only a good idea but also a feasible solution. Hunter, et al. (2008) have designed an ontology
based on MatML for database integration. Inspired by this idea, we deeply analyze the complex types and
simple types defined in the MatML schema and propose a set of heuristic rules for extracting both concepts and
properties from the MatML schema to build MatOWL. The extracted ontology involves the concepts and
properties about materials property data. The main rules for extracting MatOWL from the MatML schema are
given as follows.

Rule 1. Rule for class generation.

()Rt CT ST∀ ∈ U () (. (.))c C c id f t name→ ∃ ∈ ∧ = (1)
This rule implies that each t, which is a complex type or simple type with enumeration restriction, is
transformed to a corresponding class in MatOWL. For example, complex type PropertyData and simple type
ChemicalElementSymbol in MatML are transformed to owl:Class.

Rule 2. Rule for object property generation

(. .) . ()Rct CT x ct Elements ct Attributes x type CT ST∀ ∈ ∧ ∀ ∈ ∧ ∈U U
() (. (.)) (. ((.))) (. ((. .)))op OP op id f x name op hasDomain f ct name op hasRange f x type name→ ∃ ∈ ∧ = ∧ ∧ (2)

Data Science Journal, Volume 8, 10 January 2009

5

. (. :)ct CT att ct Attributes att type xsd IDREF∀ ∈ ∧ ∀ ∈ ∧ =
() (. (.)) (. ((.))) (. ((.)))op OP op id f att name op hasDomain f ct name op hasRange getRefType att type→ ∃ ∈ ∧ = ∧ ∧ (3)

Formula (2) implies that for each complex type ct, if the type of its element (or attribute) x is a complex type or
simple type with enumeration restriction, x is extracted as an object property op. Meanwhile, class f(ct.name) is
added to the domain of op, and class f(x.type.name) is added to the range of op. For example, the element Name
in the complex type PropertyDetails is extracted as an object property hasName. On the other hand, formula (3)
implies that for each complex type ct, if the type of its attribute x is xsd:IDREF, x is extracted as an object
property. As the attribute Property in the complex type Propertydata has type of xsd:IDREF, it is transformed to
an object property.

Rule 3. Rule for data type property generation.

(. .) . NRct CT x ct Elements ct Attributes x type ST∀ ∈ ∧ ∀ ∈ ∧ ∈U
() (. (.)) (. ((.))) (. ((.)))dp DP dp id f x name dp hasDomain f ct name dp hasRange getBaseType x type→ ∃ ∈ ∧ = ∧ ∧ (4)

(. .) .ct CT x ct Elements ct Attributes x type XSDType∀ ∈ ∧ ∀ ∈ ∧ ∈U
 () (. (.)) (. ((.))) (. (.))dp DP dp id f x name dp hasDomain f ct name dp hasRange x type→ ∃ ∈ ∧ = ∧ ∧ (5)
Formula (4) implies that for each complex type ct, if the type of its element (or attribute) x is a simple type
without enumeration restriction, x is extracted as a data type property dp. At the same time, class f(ct.name) is
added to the domain of dp, and class f(getBaseType(x.type)) is added to the range of dp. For example, the
element Notes in the complex type PropertyData is extracted as a data type property notes whose range is
xsd:string. As shown in Formula (5), if x.type is a kind of xsd type, the range of dp is just x.type.

Rule 4. Rule for cardinality generation.
(. .) (.) (.)ct CT x ct Elements ct Attributes Exist x minOccurs Exist x maxOccurs∀ ∈ ∧ ∀ ∈ ∧ ¬ ∧ ¬U

() (. (.)) () (. (.)) . 1)cc C c id f ct name p OP DP p id f x name p Cardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U (6)
(. .) . 0 (.)ct CT x ct Elements ct Attributes x minOccurs Exist x maxOccurs∀ ∈ ∧ ∀ ∈ ∧ = ∧ ¬U

() (. (.)) () (. (.)) (. 1) (. 1)c cc C cid f ct name p OP DP pid f x name p MinCardinality p MaxCardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ = ∧ =U (7)
(. .) (.) (. ' ')ct CT x ct Elements ct Attributes Exist x minOccurs x maxOccurs unbounded∀ ∈ ∧ ∀ ∈ ∧ ¬ ∧ =U

() (. (.)) () (. (.)) . 1)cc C c id f ct name p OP DP p id f x name p MinCardinality→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U (8)
(. .) (.) (. ' ')ct CT x ct Elements ct Attributes x minOccurs m x maxOccurs unbounded∀ ∈ ∧ ∀ ∈ ∧ = ∧ =U

() (. (.)) () (. (.)) .)cc C c id f ct name p OP DP p id f x name p MinCardinality m→ ∃ ∈ ∧ = ∧ ∃ ∈ ∧ = ∧ =U (9)
This set of rules is used to generate cardinality restrictions for the generated property. Exist(x.att) is used to test
whether a xsd:Element (or xsd:Attribute) x has the attribute att. .cp Cardinality .
(.cp MaxCardinality , .cp MinCardinality) represents a Cardinality (MaxCardinality, MinCardinality) restriction on
property p for class c. In the MatML schema, if there is no miniOccurs (maxOccurs) declared in an element or
attribute, it implies miniOccurs=1 (maxOccurs=1). Therefore, if neither miniOccurs nor maxOccurs exists, it
indicates “exactly one.” The expression maxOccurs=’unbounded’ means there is no upper bound for occurring
times, so the corresponding property has no MaxCardinality restriction.

Rule 5. Rule for hierarchy relationship generation.

(. ' ') .ct CT ct name Metadata e ct Elements∃ ∈ ∧ = ∧ ∀ ∈

() (. (. .)) (. ((' ')))c C c id f e type name c hasSuperclass f Metadata→ ∃ ∈ ∧ = ∧ (10)
The complex type Metadata in the MatML schema has eight sub-Elements (i.e., AuthorityDetails,
DataSourceDetails, MeasurementTechniqueDetails, ParameterDetails, PropertyDetails, SourceDetails,

Data Science Journal, Volume 8, 10 January 2009

6

SpecimenDetails, TestConditionDetails), each of which has its own declared types. The corresponding classes to
these types are defined as subclasses of f(‘Metadata’).

An example is given in Figure 2, which illustrates how the above extraction rules are used to accomplish the
MatML schema transformation. The left part of Figure 2 is a snippet of the MatML schema, and the
corresponding MatOWL is on the right. The complex type PropertyData is extracted as the class PropertyData.
The attribute property, whose type is xsd:IDREF, is transformed to the object property isPropertyOf, and the
referenced type PropertyDetails is translated into the class Property, which becomes the range of the property
isPropertyOf. The element Name is converted into the object property hasName whose domain contains the
class Property, and the range is the class Name. The element Notes is mapped to the data type property notes
whose range is xsd:string and the domain contains the classes PropertyData, Specimen, DataSource, etc.

Figure 2. Example for extracting MatOWL

5 INSTANCE TRANSFORMATION

After extracting MatOWL from the MatML schema, instance data of MatML can be populated into MatOWL.
As XML has a very different structure from OWL, it is a nontrivial task to get data from MatML and change
them to OWL instances. However, MatML can be naturally described by a set of associated objects because the
structure of MatML can be considered as an element tree. Hence, we design an object model (named MatOO) to
represent the hierarchy of MatML. The object model has a similar structure to MatML, and it has the similar
style (classes and relationships) to the OWL model. Thus, the object model is built as the intermediate model for
instance transformation. The process of instance transformation is shown in Figure 3.

Figure 3. Process of instance transformation

Data Science Journal, Volume 8, 10 January 2009

7

5.1 MatOO model

MatOO is a model that is used to facilitate the process of instance transformation. Actually, MatOO is an
object-tree with the same hierarchy as the element-tree of MatML. The elements are defined as Java classes, and
the children of an individual element are defined as its member variables. If a child element can occur multiple
times, then the corresponding member variable is defined as an object array; if the type of the child is
xsd:IDREF, it is defined as the correcponding referenced type. Figure 4 shows a part of the MatOO model. For
example, PropertyData’s child specimen is the type of xsd:IDREF, so it is defined as the class SpecimenDetails;
because PropertyData’s child ParameterValues may occur multiple times, it is defined as an array. The names of
the Java classes and member variables come from MatML schema, and both getter and setter methods are also
defined in these classes. We also define a mapping table to describe the name correspondence between MatOO
and MatOWL. Currently, we just use a XML document to describe the name mappings by which the name of
class and property from MatOO can be mapped to the identifier of MatOWL class and property.

ParameterDetails
format : String
...

getData()
setData()
getFormat()
setFormat()
getName()
setName()

Name
text : String

getAuthority()
setAuthority()
getText()
setText()

AuthorityDetails
Name : String
Notes : String

getName()
setName()
getNotes()
setNotes()

-authority

PropertyDetails
type : String
...

getUnits()
setUnits()
getName()
setName()
getType()
setType()

-name
SpecimenDetails

type : String
notes : String

getName()
setName()
getNotes()
setNotes()
getType()
setType()

-name

PropertyData

addParameterValue()
getData()
setData()
getParameterValues()
setParameterValues()
getProperty()
setProperty()
getSource()
setSource()
getSpecimen()
setSpecimen()
getTechnique()
setTechnique()

-property

-specimen

-name

-parameterValues[]

Figure 4. MatOO Model (partial)

5.2 Algorithm for instance transformation

Due to the similar structure of MatOO and MatML, it is easy to parse a MatML document and populate the
instance data into the objects of MatOO. How to dump data from MatOO to MatOWL is the key step of our
approach. The algorithm for the instance transformation from MatOO to MatOWL is given in Table 1 as pseudo
code. The input of the algorithm is an ontology (i.e., MatOWL) model OM, a root class C of MatOO, and an
initial instance I. The output of the algorithm is an ontology model OM’ with populated OWL instances.

Data Science Journal, Volume 8, 10 January 2009

8

Table 1. An algorithm for instance transformation from MatOO to MatOWL

Algorithm. transform (OntModel OM, Object C, Individual I)

Input: the MatOWL ontology model OM,
a root class C of MatOO model,
an initial individual I

Output: the ontology model OM’ with populated instances.
1. FC=getAllFieldsFromClass(C);
2. for each cf i in FC
3. pstr=getOntPropNameFromMappingTable(cf i);
4. if pstr!=null
5. p=OM.getOntProperty(pstr);
6. for each ,

cfOi k in cf i
7. if p.isDatatypeProperty()
8. I.addProperty(p, ,

cfOi k);
9. else if p.isObjectProperty()
10. RIp =CreateRangeIndividual(p);
11. I.addProperty(p, RIp);
12. transform(OM, ,

cfOi k , RIp);
13. else transform(OM, cf i , I);

The algorithm first gets all fields (members) of the root class C, with FC being a set of fields of class C (line 1).
For each field ccf Fi ∈ , the algorithm then tries to transform its value to the MatOWL instance (line 2). In the
next step, the property name pstr in MatOWL corresponding to cf i is retrieved from the mapping table
between MatOO and MatOWL (line 3). If the property name is not null, the algorithm gets the ontology
property object p from the ontology model OM (line 4-5). Because cf i may be an array, for each object ,

cfOi k
in cf i array, the algorithm then tries to transform ,

cfOi k to the MatOWL instance (line 6). Obviously, if cf i
is not an array, it can be considered as an array with only one array element. Then we will judge whether p is a
data type property or an object property. If p is a data type property, the content of ,

cfOi k will be assigned to
the property p of the instance I (line 7-8); otherwise, if p is an object property, we first get the range of p (named
RIp), and link I and RIp by property p; then the algorithm makes a recursive call using ,

cfOi k as the root class
and RIp as the initial instance respectively (line 9-12). Finally, if pstr is null, it means that no corresponding
property name is found in the mapping table. The algorithm recursively executes lookup from the next level in
the object-tree in order to check if the corresponding property name can be found (line 13). When this recursive
algorithm stops, it has traversed all MatOO objects whose instance data have been populated into the ontology
model OM, which now becomes the result ontology model OM’.

Figure 5 shows an example of the instance transformation from MatML to MatOWL. The left part is a snippet
code of an input MatML document, while the right is the partial MatOWL instances generated by the algorithm.

Data Science Journal, Volume 8, 10 January 2009

9

Figure 5. An example for instance transformation

6 MATOWL EXTENSION AND SEMANTIC QUERY

After getting the OWL instances of MatOWL, we can use the concepts and properties from MatOWL to retrieve
these instances with semantic queries. However, two issues should be taken into consideration in the semantic
query. First, although OWL is more expressive than XML, all contents of MatOWL come from the MatML
schema. Actually, MatOWL is an OWL version of MatML. Therefore, it is hard to say that MatOWL can
provide more semantics than the MatML schema. Second, MatOWL is not convenient enough for users to write
a query. On the contrary, users are more willing to write a query by using domain terms that they are familiar
with, i.e., one user-oriented query view is more convenient for materials scientists. If we would like to get more
interesting query results from MatOWL with an OWL inference engine, additional concepts, axioms, and rules
should be added to MatOWL. Therefore, it is necessary to extend MatOWL.

In our opinion, there are two ways to make MatOWL more useful in the semantic world: (1) to add domain
concepts, property, and axioms to MatOWL directly; (2) to map MatOWL to other existing ontologies in
materials science. Then the DL axiom or logic rules could be built to associate MatOWL with the new contents
in both ways.

After enhancing MatOWL by new domain concepts with the logic rules, writing semantic queries on the
materials data becomes fairly intuitive to materials scientists. When users want to retrieve materials data from
MatOWL, they can utilize not only concepts and properties from MatOWL but also domain concepts and
properties from other domain ontologies. In this way, we can implement a user-oriented and semantic-based
query on the MatOWL instances which are derived from MatML.

For example, a user wants to perform a semantic query for materials selection using domain terms such as
high-strength materials or corrosion-resistant materials. We should build a (or use an existing) materials
selection ontology that defines the related domain concepts and properties. Then we can map the materials
selection ontology to MatOWL by adding the logic rules between them. In other words, we use knowledge from
MatOWL to explain the concepts of materials selection ontology (shown in Figure 6). Once the mapping rules
are created, we can compose a query using terms from the materials selection ontology, which is just a virtual

Data Science Journal, Volume 8, 10 January 2009

10

view for users. The rule engine can help to answer query automatically using the instances from MatOWL.

Figure 6. Mapping between ontologies using logic rules

When users select materials, assuming they intend to find high-strength materials, they can just use the term
HighStrengthMaterial to make a query. The SPARQL query is presented as follows:

SELECT ?mat ?name
WHERE { ?mat rdf:type HighStrengthMaterial.
 ?mat matselect:name ?name
 }

The rule engine can automatically classify the related instances from MatOWL to HighStrengthMaterial. The
materials scientists need to know only the domain terms they are familiar with instead of the concepts from
MatOWL.

7 EXPERIMENTAL PROTOTYPE

An experimental prototype has been implemented to evaluate our proposed method. In particular, the prototype
has the following four functionalities: (1) it can be used to browse materials property data in MatML documents;
(2) one or more MatML documents can be transformed into corresponding MatOWL instances; (3) we can use
this prototype to execute a SPARQL query to retrieve the desired resources from the translated MatOWL; and (4)
the prototype utilizes the OWL reasoner and rule engine to return the inferred query results.

The graphic user interface (GUI) of the prototype is developed by Java Swing, and DOM4j (DOM4j, 2005) is
used to parse MatML. The Jena API (Jena, 2007) is used to manipulate the extracted OWL, and logic rules are
defined based on the Jena rules. We use the MatML schema version 3.1 as on the MatML website, with the
MatML documents from MatDL Materials Selector (MatDL) as our experimental data set.

As shown in Figure 7, we can import one or more MatML documents into our system. Thanks to the proposed
MatOO model, we can easily browse both structure and materials data from an imported MatML document in
detail. When a user selects a MatML document from the tree on the left, he/she can browse detailed information
such as property data, chemical composition, and parameter values.

Data Science Journal, Volume 8, 10 January 2009

11

Figure 7. Loading and browsing MatML

As shown in Figure 8, the button show MatOWL displays the translated MatOWL on the left as a concept tree.
For example, the concept matselect:HighStrengthMaterial is an imported class from a certain ontology, and it
has been mapped to a set of MatOWL concepts and properties by a logic rule. All MatML documents that have
already been imported in the system can be transformed into the corresponding MatOWL instances one at a time
by clicking the button begin transforming. The resulting instances are shown in the text area on the right side
after the transformation.

Data Science Journal, Volume 8, 10 January 2009

12

Figure 8. MatOWL instance transformation

The SPARQL query generator is still in development and will provide a GUI to help users build a SPARQL
query based on an ontology. Currently, users can use a SPARQL query form to input SPARQL queries as shown
in Figure 9. The right rule list shows the logic rules that have been defined in advance. With user-defined rules,
the system can automatically perform ontology reasoning with the Jena rule engine and return the inferred
answers to the user.

Data Science Journal, Volume 8, 10 January 2009

13

Figure 9. Query interface

By translating the MatML into our MatOWL, we can conclude the following advantages: (1) both XQuery and
XPath on the MatML documents are essentially queries on the structural tree, whereas the SPARQL queries on
the MatOWL instances are queries on a semantic graph. Obviously, the SPARQL query allows users to explore
the content of a MatML document more semantically. (2) Once a common conceptual model (i.e., MatOWL) is
built, the integration of different MatML data sets will become more convenient. (3) Combined with the existing
domain ontology by logic rules, the MatOWL instances can be accessed in a more semantic way. (4) The
existing inference mechanism can be easily integrated into the system to find more useful knowledge from the
original MatML data. The detailed comparison between MatML and MatOWL is shown in Table 2.

Table 2. MatML vs. MatOWL

Comparison Item MatML MatOWL
Structure definition XML Schema Ontology
Data structure tree graph
Query Language XPath/XQuery SPARQL
Query construction structure aware semantic aware
Relationship parent/son/brother subclass /object property
Reasoning ability no yes

Data Science Journal, Volume 8, 10 January 2009

14

8 CONCLUSION

In this paper, we have presented an approach to support semantic query on MatML-based materials data by
transforming the MatML into the corresponding OWL ontology. A set of rules are formally defined for
extracting MatOWL, and an intermediate object model is built to facilitate the instance transformation. The
proposed method allows users to conveniently exploit the original MatML from the view of different domain
ontologies by rule-based mapping between them. The experimental prototype has shown the feasibility and
effectiveness of our proposed approach. The major limitation of the current prototype tool is the lack of GUI
support for both logic rules construction and query generation. In the future, we plan to support SWRL
(Horrocks, Patel-Schneider, Boley, Tabet, Grosof, & Dean, 2004) rules, implement a logic rule editor to
simplify the process of writing logic rules, and develop a query generator based on domain terms, which will
make it much easier for materials scientists to build a semantic query.

9 ACKNOWLEDGEMENTS

This work is partially supported by the Key Technologies Research and Development Program of China under
Grant No. 2006BAK11B03, the R&D Infrastructure and Facility Development Program under Grant No.
2005DKA32800, and the Hi-Tech Research and Development Program (863) of China under Grant No.
2006AA01Z105.

10 REFERENCES

An, Y., Borgida, A., & Mylopoulos, J. (2005) Constructing Complex Semantic Mappings between XML Data
and Ontologies. Proc. 4th International Semantic Web Conference (pp. 6-20). Galway, Ireland.

Ashino, T. & Fujita, M. (2006) Definition of a Web Ontology for Design-Oriented Material Selection. Data
Science Journal 5(Jun), pp 52-63.

Ashino T. & Oka N. (2007) Development of Information Platform for Data Exchange between Heterogeneous
Material Data Resources. Proc. Ensuring the Long-Term Preservation and Value Adding to Scientific and
Technical Data. Munich, Germany.

Bartolo, L.M., Lowe, C.S., Sadoway, D., Powell, A., & Glotzer, S. (2005) NSDL MatDL: Exploring Digital
Library Roles. D-Lib Magazine 11(3).

Bartolo, L.M. & Lowe, C.S. (2003) A Preliminary Investigation of Metadata Description Mechanisms for
Materials Science. Proc. 2003 Dublin Core Conference. Seattle, Washington.

Bechhofer, S., Harmelen, F.v., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., et al. (2004)
OWL Web Ontology Language Reference, W3C Recommendation. Retrieved Mar 10, 2008 from the World
Wide Web: http://www.w3.org/TR/owl-ref/

Begley, E. & Howard-Reed, C. (2005) Application of MatML to Contaminant Emissions Data. ASTM
Standardization News, pp 52-59.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001) The Semantic Web. Scientific American Magazine 284(5), pp

Data Science Journal, Volume 8, 10 January 2009

15

34-43.

Bohring, H. & Auer, S. (2005) Mapping XML to OWL Ontologies. Proc. 13. Leipziger Informatik-Tage (pp.
147-156). Leipzig, Germany.

Cheung, K., Drennan, J., & Hunter, J. (2008) Towards an Ontology for Data-Driven Discovery of New
Materials. Proc. Semantic Scientific Knowledge Integration AAAI/SSS Workshop, Stanford, USA.

DOM4j Version 1.6.1 (2005). Retrieved Jan 5, 2008 from the World Wide Web: http://www.dom4j.org/

Ferdinand, M., Zirpins, C., & Trastour, D. (2004) Lifting XML Schema to OWL. Proc. International
Conference on Web Engineering (pp. 354-358). Munich, Germany.

Gruber, T.R. (1993) A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2),
pp 199-220.

Hunt, W. (2006) Materials Informatics: Growing from the Bio World. JOM Journal of the Minerals, Metals and
Materials Society 58(7), pp 88-88.

Hunter, J., Little, S., & Schroeter, R. (2008) The Application of Semantic Web Technologies to Multimedia
Data Fusion within eScience. In Kompatsiaris, Y. & Hobson, P., (Eds.), Semantic Multimedia and Ontologies,
London: Springer.

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004) SWRL: A Semantic
Web Rule Language, Combining OWL and RuleML. Retrieved Mar 10, 2008 from the World Wide Web:
http://www.w3.org/Submission/SWRL/

ISO (1994) ISO 10303–1:1994, Industrial Automation Systems and Integration - Product Data Representation
and Exchange - Part 1: Overview and Fundamental Principles. Geneva: International Organization for
Standardization.

ISO (2001) ISO 13584–1:2001, Industrial Automation Systems and Integration - Parts library - Part 1: Overview
and Fundamental Principles. Geneva: International Organization for Standardization.

ISO (2008) ISO 10303–45:2008 Edition 2, Industrial Automation Systems and Integration - Product Data
Representation and Exchange - Part 45: Integrated generic resource: Material and other engineering properties.
Geneva: International Organization for Standardization.

Iwata, S., Shichijo, N., & Ashino, T. (2001) Modular Simulation Technique for Virtual Experiment of Complex
Phenomena in Materials. Materials & Design 22(1), pp 77-79.

Jena Version 2.5.2 (2007). Retrieved Jan 5, 2008 from the World Wide Web: http://jena.sourceforge.net/

Kobeissy, N., Genet, M.G., & Zeghlache, D. (2007) Mapping XML to OWL for Seamless Information Retrieval
in Context-Aware Environments. Proc. IEEE International Conference on Pervasive Services (pp. 349-354).
Istanbul, Turkey.

Lehti, P. & Fankhauser, P. (2004) XML Data Integration with OWL: Experiences and Challenges. Proc. 2004

Data Science Journal, Volume 8, 10 January 2009

16

International Symposium on Applications and the Internet (pp. 160-167). Tokyo, Japan.

MatDL: MatML and Material Grapher. Retrieved Mar 10, 2008 from the World Wide Web:
http://orbis.kent.edu/matdl/matml/select.php

MatML Schema (2004) MatML Schema Version 3.1. Retrieved Mar 10, 2008 from the World Wide Web:
http://www.matml.org/downloads/matml31.xsd

NMC-MatDB Schema (2007) NMC-MatDB Schema Version 3.08. Retrieved Mar 10, 2008 from the World
Wide Web: http://www.nims.go.jp/vamas_twa10/AMM_DB/XML-Schema.LZH.

Prud'hommeaux, E. & Seaborne, A. (Eds.) (2008) SPARQL Query Language for RDF, W3C Recommendation
Retrieved Mar 10, 2008 from the World Wide Web: http://www.w3.org/TR/rdf-sparql-query/

Reif, G., Jazayeri, M. & Gall, H. (2004) Towards Semantic Web Engineering: WEESA-Mapping Xml Schema to
Ontologies. Proc. WWW2004 Workshop on Application Design, Development and Implementation Issues in the
Semantic Web, New York, USA.

Rodrigues, T., Rosa, P., & Cardoso, J. (2005) Mapping Xml to Existing OWL Ontologies. Proc. IADIS
International Conference WWW/Internet 2006 (pp. 72-77). Murcia, Spain.

Studer, R., Benjamins, V.R., & Fensel, D. (1998) Knowledge Engineering: Principles and Methods. Data &
Knowledge Engineering 25(1-2), pp 161-197.

Sturrock, C.P., Begley, E.F., & Kaufman, J.G. (2001) MatML –Materials Markup Language Workshop Report,
Technical Report NISTIR 6785, National Institute of Standards and Technology, Gaithersburg, MD.

Swindells N. (2002) Communicating Materials Information: Product Data Technology for Materials.
International Materials Reviews, February 47(1), pp 31-46.

Task Group (2006) CODATA Task Group for Exchangeable Materials Data Representation. Retrieved Mar 10,
2008 from the World Wide Web: http://www.codata.org/taskgroups/TGmatlsdata/

U Queensland (2006) Materials Informatics Workshop. Retrieved Mar 10, 2008 from the World Wide Web:
http://www.itee.uq.edu.au/~eresearch/workshops/materials_informatics_06/

Varde, A.S., Begley, E.F., & Fahrenholz-Mann, S. (2006) MatML: XML for Information Exchange with
Materials Property Data. Proc. ACM KDD’s 4th international workshop on Data mining standards, services and
platforms (pp. 47-54). Philadelphia, Pennsylvania.

Westbrook, J.H. (2003) Materials Data on the Internet. Data Science Journal 2(Nov), pp 198-212.

Data Science Journal, Volume 8, 10 January 2009

17

