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ABSTRACT

To better understand information about human health from databases we analyzed three datasets collected
for different purposes in Canada: a biomedical database of older adults, a large population survey across
all adult ages, and vital statistics. Redundancy in the variables was established, and this led us to derive a
generalized (macroscopic state) variable, being a fitness/frailty index that reflects both individual and
group health status. Evaluation of the relationship between fitness/frailty and the mortality rate revealed
that the latter could be expressed in terms of variables generally available from any cross-sectional
database. In practical terms, this means that the risk of mortality might readily be assessed from standard
biomedical appraisals collected for other purposes.

Keywords:  CODATA, Biomedical data, Mortality, Macroscopic State variable, Ageing, Frailty,
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1 INTRODUCTION

Scientific data must be clean and reliable. While this is the case in the majority of physical, chemical and
engineering applications, biomedical data rarely possess such qualities. The very nature of biomedical
objects is volatile and irregular, as are the results of biomedical assessments collected in large biomedical
databases. These databases contain the results of tests which fluctuate with the patient’s state, and the long
term trends are difficult to distinguish from the short term fluctuations, taking into account that these
databases rarely contain reliable longitudinal components. The psychological tests used for the assessments
of cognitive status, which are chiefly verbal, are even more volatile depending on who performed an
assessment, and how the assessment was performed (MacKnight, Graham & Rockwood, 1999).  The other
typical problem is the large number of incomplete records, for example, if certain tests are missing for
some individuals, then deleting such records may essentially reduce the power of the ongoing calculations.
Even mortality statistics, probably the most reliable type of biomedical data, are not free from error: while
the date of death is usually known precisely, the date of birth can be biased.  Mortality statistics are,
however, believed to be of a high quality and so have been used for mathematical modeling relating rate of
mortality with age since the classic works of Gompertz (1825) and Makeham (1867), and are presently
used in a number of theoretical models (e.g., Strehler & Mildvan, 1960; Vaupel, Carey, Christensen,
Jahnson, Yashin & Holm et al., 1998; Manton & Yashin, 1999; Gavrilov & Gavrilova, 1991; 2001) as well
as in epidemiology/medicine (e.g., Greiner, Snowdon & Greiner, 1999; Jenssen, Kuo, Stokke & Hovig,
2002).

The possibility of integrating knowledge from several databases is of significant scientific and practical
interest. Different databases are usually created independently, for discrete purposes, and are not linked
with each other. Biomedical (epidemiological) databases generally contain information about large
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numbers of individuals (health related variables: diseases, symptom and signs, physiological and
psychological assessments, socio-economic variables etc.). In contrast, demographic surveys contain large
amounts of data aggregated by age and sex. The databases can be linked through a common (key) variable
such as age and sex. Our goal was to derive a characteristic (macroscopic state variable) from which it
would be possible to suggest nontrivial predictions about the health status (e.g., adverse outcomes like
probability of death). Currently, the most important predictors of mortality are chronological age
(summarized in the well-known Gompertz mortality law (Manton & Yashin, 1999)) and disease states such
as cancer (Edwards, Howe, Ries, Thun, Rosenberg & Yancik et al., 2002), cardiovascular disease and
diabetes (Schram, Kostense, Van Dijk, Dekker, Nijpels & Bouter et al., 2002), or dementia (Wolfson,
Wolfson, Asgharian, Emile, Østbye & Rockwood et al., 2001). The measures of human health accounting
for morbidities and diverse environmental stresses have considerable potential within different decision-
making contexts (Gold, Stevenson & Fryback, 2002; Hofstetter, & Hammitt, 2002). The indicators of
disability-free life expectancy accounting for socio-professional dimensions and age are being developed
(Robine, 2001;  Cambois, Robine & Hayward, 2001). As discussed below, we derived a generalized
variable (fitness/frailty index), which comprises all available health related information about the individual,
including those usually causing more discomfort than disability. Linked with mortality data, the
fitness/frailty index was proven to be a strong correlate with survival. This provides an accessible tool for
appraising individual and population health status from information which is readily available in many
databases.

2 METHODS

2.1 Databases

Data came from three sources: (i) The Canadian Study of Health and Aging (CSHA) (Canadian Study for
Health and Aging Working Group, 1994), a representative database of elderly Canadians (n=10,267) aged
65 years old and more; (ii) The National Population Health Survey, (Swain, Catlin & Beaudet, 1999), an
investigation of health, health status and the use of health services in Canada (n=81,859) across adult ages;
(iii) Canadian Mortality data (Statistics Canada, 1999) – aggregated mortality data, presented in five-year
intervals. The CSHA data was collected by doctors and nurses while the NPHS survey was administered in
face-to-face interviews, using self reported demographic and health-related information. Variables
measured health or disability and contained reasonably complete data across all age groups. These included
symptoms (e.g. trouble with vision), disabilities (e.g. help in preparing meal) and disease classifications
(e.g. high blood pressure, migraine, glaucoma).  Note that these variables cross a range of severity, from
items associated with an increased risk of death (e.g. cancer, stroke) to those that typically cause more
discomfort than disability (e.g. dexterity, vision problems).

2.2 Deficits

Let m be the number of variables in the database. Let yi be the i-th variable from the database (i = 1,…m);
variables can be continuous or categorical. For the purposes of our analysis we consider only binary
variables or variables which can be transformed to binary. Let us introduce a threshold thi and then
transform each variable in the binary code: xi = 1 if yi < thi and xi = 0 otherwise. Defined in such a way, the
recoded variable will be referred to as deficits and the individual’s record is represented as an m-
dimensional binary vector. This dimension is referred to as the embedding dimensionality (Korn, Pagel &
Faloustos, 2001). In the CSHA database we identified 92 deficits (Mitnitski, Mogilner & Rockwood, 2001)
while in the NPHS database we found 38 binary deficits (Mitnitski, Mogilner, MacKnight & Rockwood,
2002b).
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3 RESULTS AND DISCUSSION

3.1 “Curse of dimensionality” and relationships between the variables

The desire to assess as many characteristics as possible has an obstacle of computational tractability often
referred to as the “curse of dimensionality” (Bellman, 1961). The relationships between deficits make the
situation even worse, as the number of possible relationships increases much faster than the number of
deficits themselves. As we mentioned, the embedding dimensionality is high. However, the intrinsic
dimensionality could be much lower and even fractal (Korn, Pagel & Faloustos, 2001). In this respect the
question of possible relationships between variables is of great interest: the particular patterns of the
relationships between deficits are the characteristics of the disease and can be used in diagnostics. The
relationships between deficits can be analyzed statistically: if the difference between the conditional
probability of the occurrence of deficit X given the other deficit Y is significantly different from the
unconditional probability of the occurrence of deficit X, one can say that X and Y are related (Graham,
Mitnitski, Mogilner, Gauvreau & Rockwood, 1996). All the possible relationships can be represented in a
relation graph (connectivity graph) (Figure 1). Vertices correspond to the deficits and the links to the
statistically significant dependencies between the deficits.
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Figure 1. Connectivity (relation) graph (inter-sign synergy). Nodes (vertices) indicate the deficits
(variables) and edges (links) indicate the statistically significant relationships between deficits, i.e. when
the conditional probability of one deficit given another is statistically different (p<0.05;t-test) from the
unconditional probability of the first deficit.

One can see that every deficit is related to many of the others. This indicates a very general property of the
system:  dependency or interrelationships is an essential characteristic which makes the system functional.
For instance, in the disease groups the relationships become weaker and virtually disappeared in the severe
groups (Graham et al., 1996).  The abundance of the inter-variable connections prompted us to elucidate a
generalized variable (macroscopic state variable) which comprises all the deficits and thus represents the
whole organism rather than a particular system, organ or disease.

3.2 Fitness/frailty index (f-index) and its age trajectories

One way to construct a generalized variable (f) which accounts for all the deficits is an average of the
deficits with the weight wi (i = 1,…m):
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How to define these weights is not clear and as a first approximation we consider all the deficits with equal
weights:
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Defined in such a way, this index represents the proportion of deficits present in the individual and is called
the fitness-frailty index (Mitnitski et al., 2001; Mitnitski, Graham, Mogilner & Rockwood, 2002a; Mitnitski,
et al., 2002b).  Two properties of the f-index are of particular interest. First, it was demonstrated that this
variable shows the exponential kinetics with age in each of the considered databases despite the differing
characteristics of the variables. Moreover, recent analyses have shown that a fitness/frailty index can be
closely related to five year mortality even when the variables that make up the index are chosen at random
(Mitnitski et al., 2001). Of course, there are certain constraints on the list of variables from which the
random selection can be made, but they are chiefly technical, in the sense that the variables should be age-
related (the probability of a deficit being present should increase with increasing age), and the extent to
which data are missing. The f-index showed a simple exponential relation with age (Figure 2), indicating
that the process of accumulation of deficits (damage) occurs according to an avalanche-like mechanism of
random accumulation of damage (Gavrilov & Gavrilova, 1991; 2001).

 f(t) = G +F exp(β t) (3)
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Figure 2.  Accumulation of the proportion of deficits (frailty trajectories) with chronological age for men
(triangles) and women (circles). Experimental data are the proportion of deficits average across the same
age group. Age group is represented by the mid-point, e.g. age group from 50 to 55 years is represented by
the point at 52 years.  Solid lines represent fitting curves according to the two component model, Equation
(3) (Mitnitski et al., 2002b).

Second, it was found that the distribution of the frailty index can be represented by a gamma density
(Mitnitski et al., 2001) and for the disease groups the distribution becomes Gaussian (Figure 3).
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Exponential kinetics of the frailty index and transition of its distribution from gamma to normal indicating
redundancy exhaustion suggest a very general mechanism of how an organism deals with stresses.
Moreover, as we will demonstrate, a simple relationship between the f-index and the mortality hazard exists
and makes it possible to express mortality risk in terms of f-index.
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Figure 3.  Transition of the statistical distribution from gamma (normal aging) to Gaussian (Alzheimer’s
disease).

3.3 Compensation law of fitness/frailty and biological constants

The so-called “mortality cross-over” is a well-described phenomenon that has attracted considerable
attention.  It refers to the observation that mortality curves tend to converge at advanced ages. This has
been observed for a number of species including humans (Strehler & Mildvan, 1960; Wing, Manton,
Stallard, Hames & Tryoler, 1985). Mohtashemi & Levins (2002) offered an explanation of this
phenomenon based on the selection mechanism. Remarkably, but comparatively un-noticed, until perhaps
more recently, it has been shown that the phenomena can be explained from the standpoint of the reliability
model of mortality (Gavrilov & Gavrilova, 1991; 2001). Of great interest, from our standpoint, is that we
have found analogous relationships for the accumulation of deficits. While male and female populations at
the same age generally have different numbers of deficits, these differences diminish with increasing age
and, in fact, crossover occurs at the age of 94 years (Figure 4) (Mitnitski et al., 2002b). Again, this result
was obtained from very different data: mortality from demographic data and fitness/frailty from the
biomedical datasets. This age called “species specific age in human” 95 ± 2 years (Gavrilov & Gavrilova,
2001) is an example of biological constant (Gavrilov & Gavrilova, 1991). The other biological constant is
mortality (hazard) rate at this age, 0.5 1/year (Gavrilov & Gavrilova, 2001), indicating that average person
at age 95 years old may evenly survive or die during the next year. The third biological constant is the
fitness/frailty index corresponding to that hazard, 0.2 ± .001 (Mitnitski et al. 2002b) indicating that the
damage of 20% makes the organism critically vulnerable with even chances to survive or to die. It is worth
mentioning that the precise estimates of these constants will be obtained when the different population data
are considered.
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Figure 4. Compensation law of frailty (Mitnitski et al., 2002b).  Logarithm of age dependent component of
frailty for men (triangles) and women (circles).  The least square lines have a cross point corresponding to
the 0.18 of the frailty index at age of 95 years, the same age parameter for the compensation law of
mortality (Gavrilov & Gavrilova, 1991; 2001).

3.4 Mortality hazard as a function of the fitness/frailty

In finding the relationship between the average mortality rate and the index, (Mitnitski et al., 2002b) we
also established that the index showed a power law relationship with the mortality rate.

µ = C f γ (4)

where C and  γ are sex specific parameters (Mitnitski et al., 2002b and extended in Mitnitski, Mogilner,
McKnight & Rockwood, 2002c). In Figure 5, the mortality rate is shown as a function of the fitness-frailty
index in men and women, “explaining” about 99% of variance. 
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Figure 5.    Power law relationships between the rate of mortality and the proportion of deficits (frailty
index) for men (triangles) and women (circles).  Each point represent the individuals averaged at the 5-
years-old intervals, and two age groups. Arrows point to the 50-54 and 75-59 years-old men and women.
Solid lines represent the least squares regressions.

This formula (Eq. 4) presents a tool for calculating the risk of mortality for a known value of the frailty
index, something with great potential utility in health care and in other areas. The parameters were distinct
between men and women corresponding to the fact that women on average accumulate more deficits than
men at the same age, although their risk of death is lower. Thus we were not only able to confirm that the f
index readily summarized individual differences in health status, that it did so across a wide range of ages
(15-79 years) and that it worked with self-report data (NPHS), and we were also able to gain important
insights into the aging rate.

3.5 Reliable information from unreliable data

As discussed above we derived a fitness/frailty index, which comprises all available health-related
information about an individual in a database, including those usually causing more discomfort than
disability. Being an average of many variables (deficits) obtained from various tests and examinations, each
of which performed with a different degree of precision, the fitness/frailty index represents, so to say, a
macroscopic state variable which indicates the general health status of the individuals. This macroscopic
state variable remains relatively robust if some of its components are missing or inaccurate, as the large
number of variables buffers any effect of missing or inaccurate data. A greater number of variables
included in the fitness/frailty index adds to its robustness. This is a direct consequence of the large number
of relationships between the deficits; roughly speaking, each deficit represents all others and this reflects
not only the reliability of how an organism is functioning but also the reliability of how its status can be
appraised; corresponding in a very general way with the ideas to obtaining reliable answers from a machine
with unreliable components (von Neumann, 1956; von Neuman & Burks, 1966).

4 CONCLUSION

The information from different data sources was integrated from the view of the organism as a complex
biomedical system with multiple connections which has a fingerprint in the occurrences of available
characteristics recorded in the data sources. Complex and stochastic relationships between variables and
their evolution with age can be summarized in an index variable (f), and that, within certain limits, it is the
amount of impairment that is important, and not the type of impairment, to mean that f can be understood as
the degree of adaptive response of the human organism to stress. Stress can come from within the system,
or outside it, can be predictable or unavoidable, and can include a range of biological, social and
environmental factors.  Relative fitness/frailty reflects the biological and social redundancy in the adaptive
response; the more the means of coping, the greater the level of fitness.

From a practical standpoint, one doesn’t need to know all the variables. Any sample of them might be
essential because they can all testify in an indirect way about the ability of the organism to bear stresses of
different natures (environmental, social, behavioral etc.).  However, taking into account as many
characteristics as possible (not neglecting any of them) can be used in the assessment and monitoring of the
health status of individuals and groups and contribute to the improvement of health care.

At this point we did not address the question of what is the intrinsic dimensionality of the datasets we
analyzed. Nevertheless, we believe that we found an important way of representing data in one dimension
by projecting the dataset on the dimension of the fitness/frailty index

In short, this relationship, if it can be replicated in other datasets, has many non-trivial consequences that
need to be explored, both from a theoretical and from a practical standpoint.
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