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ABSTRACT

Graph theoretical concepts have been used to model the molecular polarizabilities of fifty-four organic
derivatives, and the induced dipole moment of a set of fifty-seven organic compounds divided into three
subsets. The starting point of these modeling strategies is the hydrogen-suppressed chemical graph and
pseudograph of a molecule, which works very well for second row atoms. From these types of graphs a
set of graph-theoretical basis indices, the molecular connectivity indices, can be derived and used to
model properties and activities of molecules. With the aid of the molecular connectivity basis indices it
is then possible to build higher-order descriptors. The problem of ‘graph’ encoding the contribution of
the inner-core electrons of heteroatoms can here be solved with the aid of odd complete graphs, Kp-(p-
odd). The use of these graph tools allow to draw an optimal modeling of the molecular polarizabilities
and a satisfactory modeling of the induced dipole moment of a wide set of organic derivatives.

Keywords: Chemical Graphs, Complete Graphs, Graph-Theoretical Indices, Molecular Basis Indices,
Terms, Polarizabilities, Induced dipole moments.

1 INTRODUCTION

The easiest way to keep us from drowning in the rising sea of experimental data is to compress these
data into algorithms, the easier the algorithm, the better. The advantages of this procedure are several,
e.g., it allows the development of  software to enable drug testing in silico. A theory is needed to tell us
how to compress data into algorithms. A very successful theory was introduced in chemistry more than
hundred years ago, the chemical graph theory, which was further refined during the second half of the
twentieth century, giving rise to several theoretical branches spread over different fields of physical and
pharmaceutical chemistry (Balaban, 1985; Kier & Hall, 1986, 1992, and 1999; Hansen & Jurs, 1988;
Trach, Devdariani & Zefirov, 1990; Randić, 1991; Trinajstić, 1992; Randić & Trinajstić, 1994; Basak
& Grunwald, 1995; Temkin, Zeigarnik, & Bonchev, 1996; Gutman, Klavzar & Mohar, 1997; Seybold,
1999; Balaban & Devillers, 1999; Randić,  Mills & Basak, 2000; Pogliani, 2000; Klein, & Brickman,
2000; Galvez, Garcia-Domenech & de Gregorio-Alapont, 2000; Estrada & Uriarte, 2001; Diudea,
2001; King & Rouvray, 2002). One branch of this theory, the molecular connectivity theory, developed
more than half a century ago by Randić, Kier, and Hall (Randić, 1975; Kier & Hall, 1986), states that
for every chemical graph (cg) that has a set of graph theoretical basis indices, {β}, then it also has the
property P, i.e., {cg}({β}→ P), in short-hand notation. This property also encompasses activity, A.
Clearly, such an assertion has a probabilistic character.

In the following sections we will explain  (i) what a chemical graph is, (ii)  what graph-theoretical
indices are, and (iii) how they can be used to model the values of the properties, P. The properties that
will be modeled with the given graph theoretical concepts are the polarizability and the induced dipole
moment of two heterogeneous sets of organic compounds taken from a recent molecular mechanics
study (Ma, Lii & Allinger, 2000).

2 GRAPH THEORETICAL CONCEPTS

The following graph theoretical concepts are needed in molecular connectivity theory for modeling
properties and activities are the following (for a quick reference see Rosen, 1995).

Graph, G = {V, E}: a graph can be defined as set of vertices, V, and a set of edges, E that connect
these vertices. The degree of a vertex of a graph is the number of edges that occur with it.
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Pseudograph: a graph that allows for multiple connections and loops (or self-connections). These
types of graphs allow a faithful encoding of a molecule, as it is possible to encode multiple bonds and
non-bonding electrons with them. The loop at a vertex contributes twice to its degree.

Chemical (or molecular) Graph or Pseudograph: a graph or pseudograph representation of a
chemical compound or molecule. Normally, but not always, in chemical graph theory use is made of
hydrogen-suppressed (or depleted) graphs of pseudographs, i.e., chemical graphs of pseudographs
whose hydrogen atoms, if there are some, have been deleted, leaving only the non-hydrogen atoms, i.e.,
second or higher-row atoms, whose principal quantum number is n ≥ 2. Throughout the present paper
we will be concerned with these types of chemical graphs and pseudographs (Figure 1), even if they are
just cited as graphs.
  

Figure 1. The chemical graph (a) and pseudograph (b) of the amino acid Glycine. The bent backbone
in (b) indicates that in graph theory angles and geometric distances have no meaning.

Complete Graphs: A graph G is complete (Figure 2) if every pair of its vertices are adjacent. A
complete graph of order p is denoted by Kp, (p-1=r) and is r-regular. A graph is r-regular if it has all
vertices with the same degree r.

 Figure 2. From left to right: the K1, K2, K3, K4 and K5 complete graphs.

To encode the inner-core electrons of heteroatoms, odd complete graphs, Kp-(p-odd) where p = 1, 3, 5,
and 7 will be used. In Figure 3 the pseudograph-odd-complete graph for the CH3Cl molecule is shown.

Figure 3.  The pseudograph-odd-complete graph for the hydrogen-suppressed CH3Cl molecule. The
inner-core electrons of C and Cl are encoded with K1 and K3 complete graphs, respectively.

Adjacency Matrix of a graph: is a square and symmetrical matrix of order n, where n is the number
of vertices (i.e., atoms) of the chemical graph, and whose elements gij are equal to ones if the vertices i
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and j of the graph are adjacent otherwise they are zero. Self-connections are not allowed in the
adjacency matrix of a graph  matrix, i.e., gii = 0. A pseudograph adjacency matrix encodes not only the
features of a graph adjacency matrix but has gii = psii ≠ 0 , where psi,i encodes the pseudograph
characteristics of the adjacency matrix. In this matrix psii equals the sum of the self-connections (or
loops, which are counted twice) and multiple connections of vertex i.  Thus, the hydrogen-suppressed
pseudograph of a triatomic system, which also includes information about the odd complete graphs for
the inner-core electrons (Pogliani, 2002a) yields
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Factor (p⋅r + 1)-1
Kp encodes the odd complete graph characteristics. This factor depends on the Kp of

each vertex. Its contribution renders the A matrix asymmetrical, as it is evident from the following
particular 3x3 matrix for CS2 (K1 for C and K3 for S, atom superscripts denote the row),
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The term 1/1≡ 1 has been written to allow an easier decoding of the formalism. The defined concept of
a vertex degree or valency of atom i, δi, of a chemical graph is thus the number of simple connections
(i.e.,  σ bonds) present in i in a hydrogen-suppressed chemical graph, and is the sum of the gij  elements,
in a row  of the matrix, A. The vertex degree or valency of atom i, δi

v(ps) (valence delta) of a chemical
pseudograph is instead the number of total connections, including self-connections (i.e., σ, π bonds and
non-bonding electrons) present in  i in a hydrogen-suppressed chemical graph. It is the sum of the [gij +
psii] elements of a row of the A matrix. The vertex degree or valency of atom i, δi

v
 of a chemical

pseudograph plus the odd-complete graph for the contribution of the inner-core electrons can, thus, be
directly obtained by the aid of the following algorithm:
 

                                                        δi
v= δi

v(ps)/[p⋅r+ 1]                                                                       (3)

It is practically the sum of all the elements in a row of the full A matrix (see matrix 2). For p = 1, δv=
δv(ps), and in alkanes, δv= δv(ps) = δ.  For the different halogens of the halo-compounds we have p = 1,
3, 5, 7, i.e.,  δv(F) = 7, δv(Cl) = 7/7, δv(Br) = 7/21, δv(I) = 7/43. Parameter p⋅r in Eq. (3) equals Σiδi  for
the complete graph, and is an interesting invariant in graph theory, as the Handshaking theorem of
graph theory states that it equals twice the number of connections, since a connection occurs with two
vertices, thus, it contributes twice to the sum of the degree of the vertices (Rosen, 1995).

3 THE GRAPH THEORETICAL BASIS INDICES

The chosen subset of graph theoretical basis indices, {β}, and the raw material of QSPR (Quantitative
Structure-Property Relationships) studies is made up of the following medium-sized subset of eight
molecular connectivity indices that are defined within the frame of molecular connectivity theory (Kier
& Hall, 1986)
  
                                                         {β} ={D,0χ,1χ,χt,Dv,0χv,1χv,χv

t}                                                     (4)

These indices are based on the δ and δv connectivity numbers of a hydrogen-suppressed graph and
pseudograph plus Kp-(p-odd) graph (for the inner-core electrons) respectively, and their definitions are
  
                                                             D = Σiδi                                                                                       (5)
                                
                                                                                             0χ = Σi(δi)– 0.5                                                                                                                        (6)

                                                                                            1χ = Σ(δiδj)– 0.5                                                                             (7)
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                                                             χt = (δ1⋅δ2⋅δ3⋅.......⋅δN)– 0.5                                                            (8)

Index χt (and χv
t) is the total molecular connectivity index. The sums in Eqs. (5 and 6), as well as the

product in Eq. (8), are taken over all n vertices (i.e., atoms) of the chemical graph (i.e., molecule). The
sum in Eq. 7 is over all edges (σ bonds in a molecule) of the chemical graph. By replacing δ with δv

(see Eq. 3) in all these Eqs.  the subset of valence χ indices {Dv, 0χv, 1χv, χv
t} is obtained. With the aid

of these basis indices it is then possible to construct, through trial-and-error, higher-order structural
invariants, S, among which are the molecular connectivity terms, X = f(χ), (Pogliani, 2000). These
terms have the  general form of a rational function,

                                             S = [a(β1)m + b(β2)n]q / [c(β3)r + d(β1)p]s                                                     (9)
   
Here β is a basis index, and S = X  if β = χ. Depending on the type of β basis indices other higher-order
indices can be constructed (Pogliani, 2002a; 2002b). The optimization parameters, a -  d, m -  s, can
either be negative, or zero or one. In these last two cases the rational function condenses into a much
simpler form. As can be seen from Eq. (9) the power of each basis index is again optimized, which
means that the original power (- 1/2, see Eqs. (5-8)) loses its restrictive meaning.

4 THE STRUCTURE-PROPERTY RELATION

Two types of Structure-Property relation will here be used: (i) the linear relation, P = c1S + c0U0, and
the multilinear relation, P = ΣciSi, where ci, are the regression coefficients, and c0 the regression
coefficient of the unitary index, U0 ≡ 1. Normally, the linear type relation has: S = X, while the
multilinear relation has: Si = βi, here: {β} = {χ}. The multiple linear relations can normally be written
as a dot product: P = C⋅S, where C = (c1, c2,...., c0), and S = (β1, β2,..,U0). To avoid negative Pcalc values,
with no physical meaning it is advantageous to use the modulus equation, i.e, P = ΣciSi,, where the
bars stand for an absolute value.

The statistical performance of a structural descriptor, S, be it a single descriptor or a combination of
basis indices, is controlled by a quality factor, Q = r / s, and by the Fisher ratio F = fr2/[(1-r2)ν], where r
and s are the correlation coefficient and the standard deviation of the estimates, respectively,  f is the
number of degrees of freedom = N - (ν +1), ν is the number of variables, and N is the number of data.
Parameter Q has no absolute meaning as it is an ‘intra’ statistical parameter able only to compare the
descriptive power of different descriptors for the same property; further, this property should always be
given in the same scale. The F ratio, which has the character of an ‘inter’-statistical parameter, tells us,
even if Q improves, which additional descriptor endangers the statistical quality of the combination.
For every index of a linear combination as well as for U0 the fractional utility, ui = ci/si, where si is
the confidence interval of ci, and the average fractional utility <u>=Σui/(ν+1) is given.  If the modeling
relation is linear, then <u> = (u1+u0)/2. The utility statistics gives indirect information about the role of
the descriptor in the modeling equation, as it allows the detection of descriptors that give rise to
unreliable coefficient values (ci), whenever they have a high deviation interval (si). Recently (Pogliani,
2002b; 2002c), the critical importance of the standard deviation of the estimate s has been underlined,
so that it is advantageous to know directly how much this statistic improves along a series of improved
descriptors. For this reason we introduce here the ratio sR = s0/si, where s0 is the s value of the best
single-index description and si refers to the s values of the improved sequential descriptions. Thus,
halving of si can be read as a doubling in sR, which will allow a direct measure of the progress of s
along a series of sequential descriptions. It should be stressed that, now, (i) all statistical parameters
will grow with improved modeling (ii) every model is under the control of all these statistics, and (iii)
nothing justifies using an improved Q as a sign of improved modeling. The richness in statistical
parameters can also be used to detect possible printing errors, as redundancy is very useful in the
construction of self-correcting codes.  For an interesting discussion about the Q statistics see
Todeschini (2001). To avoid bothering the reader with the dimensional problems of the modeling
equation, every property P should be read as P/P° where P° is the unitary value of the property, so that
this choice allows P to be read as a purely numerical number (Berberan-Santos & Pogliani, 1999).

 
5 MODELING INDUCED DIPOLE MOMENTS
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5.1 Alcohols, Amines and Ethers

Table 1 shows the experimental induced dipole moment values, the corresponding calculated ones, and
the residual modulus, |∆E| = |µ(E) - µ(C)|. Throughout the present modeling study we will follow the
division in subclasses proposed by a recent molecular mechanics study, with different MM3 algorithms
completed by quantum mechanical parameters (Ma, Lii & Allinger, 2000). At the present level of
sophistication in molecular connectivity (MC) studies, and, also it seems, in the MM3 studies,  it is
practically impossible to model the induced dipole moments for an entire class of heterogeneous
compounds without diminishing the quality of the overall modeling. The studied compounds have a
simple and nearly constant topology. Nevertheless, if the modeling of the entire class of compounds is
attempted the functional groups introduce consistent discontinuities in the quality of the model of this
property. This can be clearly seen with the poor model of the subclass, aldehydes, ketones, acids and
esters, which are made up of four different subclasses.
  
The reader should not forget that for the following subclasses of compounds the odd complete graph
algorithm gives rise to δv = δv(ps), a value that can also be obtained with other algorithms based on
atomic concepts (Kier & Hall, 1986; Pogliani, 2002a). The best descriptor for this particular property in
this set of compounds is the following combination of basis indices (here: s0 = 0.35)

{0χ, Dv, 0χv}: Q = 7.919, F = 110, r = 0.974, s = 0.12, sR = 3.5, n = 22, <u> = 7.1,
u = (5.0, 6.9, 9.2, 7.5), C = 0.84028, 0.10678, -1.17700, 0.99778)

The attentive reader should keep an eye on the 0χv index, as it seems important for this and the next
property. The correlation vector, C, of the last description will be used to derive the calculated µ(C)
values and the corresponding residual modulus, |∆E| = |µ(E) - µ(C)|, for this class of compounds. These
last two sets of values, µ(C) and |∆E|, shown in Table 1, underline the good quality of the modeling of
this property for this class of compounds. The following interesting X term could also be detected,
  

X = [χt
v⋅1χv – 0.009⋅0χ]-0.01: Q = 5.15, F = 140, sR = 1.9, n = 22

5.2 Aldehydes, Ketones, Acids, and Esters

It is practically impossible to achieve a satisfactory description of the dipole moment of this class of
compounds with the molecular connectivity indices alone. The best descriptor, which is a rather poor
descriptor, is the following X term, (here, s0 = 0.56)

                 X = [Dv – 1.4⋅D]0.7(0χ)1.1: Q = 2.03, F = 35, r = 0.804, sR = 1.4, n = 21, <u> = 11
                                                    u = (5.9, 16), C = (- 0.08643, 3.54828)

From the calculated and residual values of Table 1 we note that (i) the modeling is far from being
optimal, but (ii) nevertheless these values are not at all absurd, and a large deviation can only be
detected for formic acid.

5.3 Sulfides and Phosphines

 Table 1 also shows the experimental and calculated dipole moment values, as well as the residual
modulus for sulfides and phosphines. Now, due to S and P atoms, with n = 3,  the Kp-(p-odd) algorithm
(Eq. 3) allows the following δv values for S and P in sulfides and phosphines: δv(-SH)=5/7, δv(-S-)=6/7,
δv(-PH2)=3/7, δv(-PH-)=4/7, δv(-P<)=5/7 (s0 = 0.15). The following combination of two basis indices
has the best descriptive quality,

                         {0χ, Dv }: Q = 10.8; F = 28; r = 0.915; sR = 1.9, n =14

An optimal X term shows an interesting improvement over the preceding combination

 X = [(0χv - 0χ)2.4 + 0.06⋅χt
v] / [(1χv)0.5 - 0.10χv]1.2
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Q = 23.72, F = 272, r = 0.979, sR = 3.8, <u> = 45, u = (16, 73), n = 14
C = (- 1.96602, 1.73169)

The calculated and residual values of sulfides and phosphines shown in Table 1 demonstrate the good
quality of the model.
  
Table 1. Experimental (E) and calculated (C) Dipole Moments, µ (D), and residual modulus, ∆µ =
µ(E) - µ(C), for (I) Alcohols, Amines, Ethers, (II) Aldehydes, Ketones, Acids, Esters, and (III)
Sulfides and Phosphines.°

Compound* µ(E) µ(C) ∆µ Compound µ(E) µ(C) ∆µ
Methanol 1.700 1.616 0.084 3Pentanone 2.720 2.725 0.005
Ethanol 1.680 1.591 0.088 CyPentanone 3.250 3.046 0.204
Propanol 1.550 1.567 0.017 CyHexanone 3.250 3.274 0.024
2-Propanol 1.580 1.512 0.068 Formic acid(t) 3.790 2.402 1.388
tert-Butanol 1.670 1.414 0.256 Acetic acid 1.700 2.096 0.396
1,2Etdiol(g) 2.410 2.644 0.234 Propionic acid 1.550 1.910 0.360
1,2Prdiol(g) 2.568 2.565 0.003 2MePr-acid 1.790 1.708 0.082
DiMethylether 1.310 1.292 0.018 2,2diMePr-acid 1.700 1.553 0.147
Et,Me-ether 1.174 1.268 0.094 Me-Formate 1.770 2.168 0.398
DiEt-ether 1.061 1.243 0.182 Et-Formate(t) 1.980 1.978 0.002
Me,Pr-ether(t-t) 1.107 1.243 0.136 Me-Acetate 1.706 1.909 0.204
Di-IsoPr-ether 1.130 1.084 0.046 Et-Acetate 1.780 1.772 0.008
THF 1.750 1.654 0.096 Me-Propionate 1.750 1.772 0.022
THP 1.740 1.629 0.111 Et-Propionate 1.810 1.689 0.121
2MetoxyEtOH 2.360 2.321 0.039 Methane thiol 1.520 1.525 0.005
Methylamine 1.296 1.249 0.047 Ethane thiol (t) 1.580 1.590 0.010
Ethylamine 1.220 1.224 0.004 1-Propan thiol (t) 1.598 1.635 0.037
DiMethylamine 1.010 0.971 0.039 Dimethyl sulfide 1.500 1.473 0.027
n-Propylamine 1.180 1.200 0.020 Ethyl, Me sulfide (t) 1.560 1.517 0.043
Isopropylamine 1.190 1.145 0.045 2-Me-2-Pr thiol 1.660 1.624 0.036
TriMethylamine 0.612 0.801 0.189 Diethyl sulfide (t) 1.520 1.546 0.026
N-Me-aminoEt 0.880 0.946 0.066 Methyl phosphine 1.100 1.120 0.020
Formaldehyde 2.360 2.960 0.600 Ethyl phosphine (t) 1.226 1.194 0.032
Acetaldehyde 2.730 2.820 0.090 Dimethyl phosphine 1.230 1.164 0.066
Propanal 2.520 2.730 0.210 IsoPr phosphine (t) 1.230 1.218 0.011
Butanal 2.740 2.705 0.040 Trimethyl phosphine 1.192 1.266 0.074
2,2MePr-aldehyde 2.660 2.686 0.026 tert-Butyl phosphine 1.170 1.224 0.054
Acetone 2.930 2.687 0.242 Et-diMephosphine (g) 1.310 1.299 0.011
2Butanone 2.775 2.668 0.107
° The different classes are divided by solid lines; * B-diene= Butadiene, Cy = cyclo, Et = Ethyl, Ethane,
g = gauche, Me = Methyl, Pr = Propyl, Propion, Propan, t = trans; t-t = trans-trans, THF =
tetrahydrofuran; THP = tetrahydropyran.

6 MODELING THE MOLECULAR POLARIZABILITIES

The experimental mean polarizability <α(E)> = (α1(E)+ α2(E) + α3(E))/3, and total molecular principal
polarizabilities, α1(E), α2(E), and α3(E), of fifty-four and forty organic compounds, respectively, are
collected in Table 2. Whenever αi(E) values are absent, some <α(E)> values are the result of quantum
mechanical calculations. This Table also shows the calculated polarizability values (i) <α(C)>, and the
residual modulus, ∆α = <α (E)> - <α (C)>. Here we will model the <α(E)> values, and we will
check the quality of the best descriptor for this property when it is used to model the single αi(E).
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Throughout this case index 0χv is the best single-index descriptor.

P      (n) {β} Q F R sR <u> u
<α>   (54) {0χv} 1.045 867 0.971 1.3 15 (29, 0.4)
α1      (40) {0χv} 0.576 232 0.927 1.1 8.8 (15,2.4)
α2         (40) {0χv} 0.888 609 0.970 1.1 13 (25, 1.4)
α3         (40) {0χv} 0.996 633 0.971 1.2 14 (25, 2.5)

The dominant character of this index allows us to use the forward combination procedure, or greedy
algorithm (Pogliani, 2000), to derive the best combinations of indices, among which the following
combination of four connectivity indices shows an exceptional modelling quality (here, s0 = 1.15). It is
also worth noting that the following optimal combination for <α(E)> is also a good descriptor of the
single α1(E), α2(E), and α3(E) properties. Thus, this linear combination is, practically, validated by the
nice modeling of the αi(E) polarizabilities.

P      (n) {β1, β2, β3, β4} Q F r SR <u> U
<α>   (54) {0χv , 1χ, Dv, χt

v} 2.086 863 0.993 2.5 6.5 (12, 9.5, 7.7, 2.7, 3.4)
α1      (40) {0χv , 1χ, Dv, χt

v} 0.799 112 0.963 1.5 3.1 (2.3, 5.3, 4.5, 2.4, 1.0)
α2         (40) {0χv , 1χ, Dv, χt

v} 1.414 386 0.989 1.8 5.2 (7.4, 6.5, 5.2, 2.3, 4.7)
α3         (40) {0χv , 1χ, Dv, χt

v} 1.093 191 0.978 1.4 3.0 (8.1, 1.6, 1.6, 0.7, 3.3)

The following simple but interesting term, X = [3⋅0χv + 1χ], could be detected, which has: Q = 1.414, F
= 1587, r = 0.984, sR = 1.6, n = 54, <u> = 21 for <α>. The relatively low utility value of the constant
unitary index, u0, is mainly due to the vanishingly small value of the corresponding regression
parameter c0. Small deviations near zero can have a dramatic effect on the utility value.

The calculated <α(C)> values in Table 2 have been obtained with the correlation vector of the last
combination, β = (0χv ,1χ, Dv, χt

v, U0), i.e, C = (1.50028, 2.47483, -0.13929, 0.23527, -0.55904). The
model is impressive as confirmed by the ∆α = <α(E)> - <α(C)> values. The good quality of the
modeling is confirmed by <αloo> values based on the leave-one-out method and the corresponding
∆loo= <α(E)> - <αloo> values, shown in the same Table 2, as well as by Figure 4. In this figure the
calculated <α(C)> values (Calc. Polarization) are plotted against the corresponding <α(E)> values
(Exp Polarization). The algebraic values of the residuals are also shown around the zero line.

Figure 4.  Plot of the calculated (Calc.) vs. the experimental polarization (Exp Polarization) together
with the algebraic residual values.

Table 2. Experimental <α(E)>, αi(E) (i = 1-3), computed <α(C)> molecular polarizabilities, and the
corresponding residual modulus ∆α of fifty four organic compounds in units of Å3. <αloo> is the
predicted value based on the leave-one-out method and ∆loo  is the corresponding residual.*
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Compound <α(E)> <α(C)> ∆α <αloo> ∆loo α1(E) α2(E) α3(E)
Ethane 4.48 4.87 0.39 4.89 0.41 5.49 3.98 3.98
Propane 6.38 6.61 0.23 6.62 0.24 7.66 5.74 5.74
Neopentane 10.20 10.14 0.06 10.14 0.06 10.20 10.20 10.20
Cyclopropane 5.50 5.58 0.08 5.42 0.08 5.74 5.74 5.04
Cyclopentane 9.15 9.58 0.43 10.73 1.58 9.68 9.17 8.40
Cyclohexane 11.00 11.59 0.59 11.65 0.65 11.81 11.81 9.28
Ethylene 4.12 3.60 0.52 3.57 0.55 4.82 3.71 3.25
Propene 6.26 5.63 0.63 5.61 0.55
2MePropene 8.29 7.51 0.78 7.48 0.81
Trans-2-Butene 8.49 7.88 0.61 7.86 0.63
Cyclohexene 10.70 10.93 0.23 10.95 0.25
Butadiene 7.87 6.68 1.19 6.64 1.23 11.93 6.14 5.54
Benzene 9.92 9.56 0.36 9.53 0.39 11.20 11.20 7.36
Toluene 12.30 11.64 0.66 11.59 0.71
HexaMeBenzene 22.63 22.29 0.34 22.06 0.57 22.63 22.63 22.63
Acetylene 3.50 2.89 0.61 2.85 0.65 4.79 2.85 2.85
Propyne 4.68 5.01 0.33 5.02 0.34 6.14 3.94 3.94
C(C≡CH)4 12.19 12.70 0.51 12.83 0.64 12.19 12.19 12.19
Allene 5.00 4.76 0.24 4.75 0.25 8.97 4.43 4.43
Methanol 3.32 3.36 0.04 3.36 0.04 4.09 3.23 2.65
Ethanol 5.11 5.13 0.02 5.13 0.02 5.76 4.98 4.50
2-Propanol 6.97 6.93 0.04 6.93 0.04
Cyclohexanol 11.56 12.19 0.63 12.24 0.68
Dimethylether 5.24 5.54 0.30 5.54 0.30 6.38 4.94 4.39
p-Dioxane 8.60 9.56 0.96 9.62 1.01 9.40 9.40 7.00
Methylamine 3.59 3.86 0.27 3.87 0.28 3.94 3.40 3.38
Formaldehyde 2.45 2.54 0.09 2.55 0.10 2.76 1.70 1.83
Acetaldehyde 4.59 4.58 0.01 4.58 0.01
Acetone 6.39 6.73 0.34 6.74 0.35 7.37 7.37 4.42
F-Methane 2.62 2.96 0.34 2.98 0.36 3.18 2.34 2.34
TriF-Methane 2.81 2.92 0.15 3.00 0.19 2.87 2.87 2.69
TetraF-Methane 2.92 2.95 0.03 2.99 0.07 2.92 2.92 2.92
Cl-Methane 4.55 4.87 0.32 4.89 0.34 5.68 3.99 3.98
DiCl-Methane 6.82 6.61 0.21 6.60 0.22 8.81 6.30 5.36
TriCl-Methane 8.53 8.39 0.14 8.39 0.14 9.42 9.42 6.74
TetraCl-Methane 10.51 10.15 0.36 10.23 0.28 10.51 10.51 10.51
Br-Methane 5.61 6.25 0.64 6.28 0.67 6.91 4.96 4.96
DiBr-Methane 8.68 9.36 0.68 9.40 0.72
TriBr-Methane 11.84 12.59 0.75 12.72 0.88 13.00 13.00 9.53
I-Methane 7.59 7.59 0.00 7.59 0.00 9.02 6.87 6.87
DiI-Methane 12.90 12.22 0.68 12.11 0.79
TriI-Methane 18.04 17.48 0.56 16.88 1.16 18.69 18.69 16.74
CH2=CCl2 7.83 7.51 0.32 7.50 0.33 8.96 8.79 5.75
Cis-CHCl=CHCl 7.78 7.88 0.10 7.80 0.10 9.46 7.80 6.08
DiSilane 11.10 11.58 0.48 11.82 0.72
Formamide 4.08 3.65 0.43 3.62 0.46
Acetamide 5.67 5.53 0.14 5.53 0.14
Acetonitrile 4.48 4.52 0.04 4.52 0.04 5.74 3.85 3.85
Propionitrile 6.24 6.53 0.29 6.53 0.29
Tert-BuCyanide 9.59 10.25 0.66 10.31 0.72 10.71 9.03 9.03
BenzylCyanide 11.97 11.78 0.19 11.74 0.23 16.16 11.60 8.15
TriCl-Acetonitrile 10.42 10.25 0.17 10.23 0.19 10.70 10.29 10.29
Pyridine 9.92 9.31 0.61 9.25 0.67 10.72 10.43 6.45
Thiophene 9.00 8.95 0.05 8.95 0.05 10.15 10.14 6.70
* <α(E)> = Σiαi(E)/3, α1, α2, and α3 are the principal molecular polarizabilities. Some  <α(E)> values
were computed with quantum methods (Ma, Lii  & Allinger, 2000).
To avoid unreliable linear combinations due to collinearity among the basis indices, while maintaining
their modeling power, it is advantageous to orthogonalize the corresponding basis indices. Or rather to
obtain the orthogonal correlation coefficients of the correlation vector C(Ω). For example, for <α(C)>
there is no need to derive single Ωi values as these correlation coefficients can be obtained with the aid
of the coefficient of the sequential regressions (Randić, 1991; Pogliani, 2000). Thus, the orthogonal
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correlation vector for S(Ω) = (1Ω, 2Ω, 3Ω, 4Ω, U0) ← S = (0χv ,1χ, Dv, χt
v, U0),  is: C(Ω) = (2.36719,

0.83838, -0.12524, 0.23527, 0.11242).

7 CONCLUSION
  
Graph-theoretical tools based on concepts defined within the framework of the molecular connectivity
theory are able to optimally model the mean polarizability of fifty-four organic compounds <α(E)>,
including forty values of the polarizability components, α1(E), α2(E), and α3(E). These last values have
been 'externally' modeled with the best descriptor for <α(E)>. For the induced dipole moments the
influence of the functional groups play a critical role in determining the quality of the modeling, as
already suggested by a molecular mechanics study (Ma, Lii & Allinger, 2000). Following a suggestion
from the cited MM study, four different subclasses were chosen for the modeling study. The resulting
modeling is rather encouraging for the subclass of alcohols, amines, ethers, and, even more so for the
subclass of sulfides, and phosphines, which include molecules with only two different functional
groups. The modeling is unsatisfactory for the subclass {aldehydes, ketones, acids, esters}, which is
made up of compounds with four different functional groups. The introduction of other types of
connectivity indices, like semiempirical terms  (Pogliani, 2000) might also help to improve the model.
Actually, one of the main difficulties in molecular connectivity modeling, and in other modeling
studies also, is mimicking the role played by the quantitatively unknown intermolecular interactions
that in many cases shape the overall short- or long-lived supramolecular structures (Pogliani, 2002b;
2002c). Dipole moments play a bigger role than polarizability in shaping the overall topology of the
supramolecular species, and this could be the main reason for the poor modeling of this property,
especially for those subclasses of compounds made up of molecules with a large variety of functional
groups.

A pivotal tool of the present modeling study is surely the introduction and use of odd complete graphs
to encode the inner-core electrons of heteroatoms. This is in line with recent studies that have
underlined the importance of these types of graphs in solving the problem of the inner-core electrons in
chemical graph theory (Pogliani, 2002a), and especially in molecular connectivity theory. Other studies
do not exclude the possibility of using sequential complete graphs, where p = 1, 2, 3, 4, ... (Pogliani,
2003a; 2003b)
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