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ABSTRACT
The classification of astronomical objects in the Digitized First Byurakan Survey 
(DFBS), comprising low-dispersion spectra for approximately twenty million objects, 
presents challenges regarding performance and computational resources. However, 
considering the distinct spectral characteristics within subgroups, sub-object 
classification becomes crucial for a more detailed understanding of the dataset. The 
article addresses these challenges by proposing a comprehensive cloud-based service 
for classifying objects into spectral classes and subtypes, with a focus on carbon stars, 
white dwarfs / subdwarfs, and Markarian (UV-excess) galaxies, which are the primary 
objects in DFBS. By leveraging the power of cloud computing, it effectively handles the 
computational requirements associated with analyzing the extensive DFBS dataset. 
The service employs advanced machine learning algorithms trained on labeled data 
to classify objects into their respective spectral types and subtypes. The service can be 
accessed and utilized through a user-friendly interface, making it accessible to a wide 
range of users in the astronomical community.
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1 INTRODUCTION
Astronomical research has produced vast datasets that challenge conventional data 
management and analysis techniques in recent decades, necessitating innovative approaches 
due to their sheer volume. Astronomical surveys systematically capture and catalog celestial 
entities and phenomena across the sky, serving as principal sources for new astronomical 
revelations. Nevertheless, their utilization remains limited, with only a handful of observatories 
and a fraction of astronomers depending on them, as pointed observations constitute the norm 
for most telescopes. A pioneering concept known as Virtual Observatories (VO) has emerged to 
address these challenges, offering astronomers enhanced efficiency in accessing, processing, and 
collaborating on astronomical data (Cui and Zhao 2007). VOs encompass interconnected networks 
of telescopes, data centers, and computational systems designed to support astronomers with 
interfaces for seamless data access and utilization of advanced computing resources.

The International Virtual Observatory Alliance (IVOA) was founded in 2002 to foster the 
coordinated and structured advancement of VOs (Quinn et al. 2004; Hanisch et al. 2015). 
IVOA, encompassing VO initiatives from 22 nations and 2 European projects, orchestrates the 
integration of astronomical resources and datasets by establishing technical standards for 
creating VOs and the seamless exchange of information between these platforms. Among 
these efforts, the Armenian Virtual Observatory (ArVO) has participated actively since 2005 
(Mickaelian et al. 2016; Mickaelian et al. 2023).

ArVO is a project of the Byurakan Astrophysical Observatory (BAO) and the Institute for 
Informatics and Automation Problems, created to provide an advanced platform for astronomers 
to access and analyze astronomical data. BAO is famous for its many extragalactic surveys. 
The core of ArVO is the Digitized First Byurakan Survey (DFBS) (Mickaelian et al. 2007), which 
is the largest low-dispersion spectroscopic survey, containing about 40 million spectra for 20 
million astronomical objects. The DFBS was carried out by renowned astrophysicist Beniamin 
Markarian and his colleagues during 1965–1980. It covers 17,000 deg2 of the high galactic 
latitudes of the whole northern sky and part of the southern sky accessible from BAO. Before 
Gaia spectroscopy, it gave the largest number of spectra among all astronomical databases. 
These spectra provide spectral energy distribution (SED) and show several properties, like color, 
broad emission, or absorption lines. The DFBS contains spectra of many objects, such as late-
type stars, quasars, galaxies, or white dwarfs. The length, shape, SED, and available spectral lines 
allow the identification of different types of objects. DFBS contains up to 20 distinguished types 
based on eye inspection and analysis, but their shapes need a proper spectral classification.

Nonetheless, analyzing these immense datasets presents formidable challenges owing to their 
voluminous nature and intricate underlying patterns. Automated extraction and classification 
mechanisms are necessary for studying such many objects. A model for the image-based 
classification of carbon stars, subdwarfs, Markarian galaxies, and other types of objects in the 
DFBS has been proposed by the authors (Astsatryan et al. 2021) to classify the DFBS objects 
based on their shapes and other visual characteristics. Utilizing convolutional neural networks 
combined with image preprocessing steps, the authors directly extracted and classified 
patches from the DFBS plates containing the desired objects. The evaluation showed hundreds 
of thousands of carbon stars, subdwarfs, and UV-excess (Markarian-type) galaxies in the DFBS, 
thus demonstrating the importance of employing a sub-object classification framework for 
further research. However, this approach has limitations. The current framework does not delve 
into sub-object classification, which restrains a more comprehensive understanding of the DFBS 
dataset. Extending the model to encompass sub-object categorization could usher a deeper 
insight into the dataset’s diverse range of celestial bodies. Sub-classification enables researchers 
to identify commonalities and differences within a particular category to find correlations and 
potential relationships between various subgroups of objects. Furthermore, envisioning this 
model as a service would magnify its impact by granting researchers streamlined access to its 
capabilities, fostering collaboration, and expediting scientific advancements.

The paper aims to leverage the potential of cloud-based machine learning (ML) techniques 
to classify sub-objects to overcome the abovementioned limitations, enabling more efficient 
and accurate analysis. It presents a comprehensive end-to-end system designed to detect 
and extract celestial entities from astronomical plates and to categorize them into distinct 
subgroups, as illustrated in Figure 1.
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Within this framework, the service undertakes the classification of various object subtypes. The 
service classifies carbon stars as characterized by their carbon-rich atmospheres and exhibiting 
a distinct reddish hue due to lower temperatures. Simultaneously, the service addresses the 
classification of subdwarfs-metal-poor stars with a fainter and bluer profile than their counterparts, 
indicative of their early formation. In addition, the system tackles the classification of Markarian 
galaxies (Huchra 1977), notable for their distinctive attributes as active galaxies featuring intense 
star formation or active galactic nuclei (AGN), discernible through their strong UV excess.

In the sub-object classification, it is essential to differentiate the following spectral types:

•	 Markarian galaxy

•	 Mrk AGN (Markarian Active Galactic Nuclei, 13m–16m brightness)—active galactic 
nuclei within the sample. AGNs are characterized by a supermassive black hole at 
the center of a galaxy, which emits large amounts of radiation along the range of 
electromagnetic wavelengths due to the accretion of matter.

•	 Mrk SB (Markarian Starburst Galaxies, 13m–16m brightness)—starburst galaxies that 
undergo intense bursts of star formation, leading to high levels of stellar activity, 
emission lines, and young stellar populations.

•	 Mrk Abs (Markarian Absorption-Line Galaxies, 13m–16m brightness)—galaxies 
exhibiting prominent spectra absorption lines. Absorption-line galaxies are 
characterized by the vital contribution of stars that mostly have absorption lines, thus 
making up a broadened absorption-line spectrum of galaxies.

•	 Carbon Stars

•	 C-R (Carbon Stars with Enhanced Red Emission, 13m–16m)—exhibit enhanced red 
emission features in their spectra, attributed to the presence of dust grains and 
organic compounds in the circumstellar environment of these stars.

•	 C-N (Carbon Stars with Enhanced Nitrogen, 13m–16m)—exhibit enhanced nitrogen 
absorption features in their spectra. The enhanced nitrogen abundance results from 
nuclear processing and dredge-up of material within these stars.

•	 C-H (Carbon Stars with Hydrogen, 13m–16m)—exhibit the presence of hydrogen in their 
spectra. They are characterized by excessive carbon in their atmospheres, leading to 
distinctive molecular absorption features.

•	 Subdwarf

•	 sdO (Subdwarf O Stars, 13m–16m)—hot, luminous stars with helium-dominated 
atmospheres. They are more massive and hotter than subdwarf B stars. These are 
among the hottest known stars.

Figure 1 Examples of the 
subtypes of objects from the 
three most common object 
groups in the DFBS.
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•	 sdB (Subdwarf B Stars, 13m–16m)—hot, compact stars with atmospheres primarily 
composed of hydrogen and helium. They are typically more massive than white 
dwarfs but less massive than main-sequence stars.

•	 sdA (Subdwarf A Stars, 13m–16m)—cooler and less massive than subdwarf B stars. 
They exhibit spectral features indicative of their hydrogen-dominated atmospheres.

By distinguishing these spectral types, the sub-object classification provides a finer level of 
categorization and enables more precise characterization and analysis of celestial objects 
within the mentioned groups. Besides, the photographic emulsion response is not linear (the 
characteristic curve characterizes it), causing additional difficulties both for the photometry 
and the classification. Thus, objects with different brightness have different shapes, and one 
should develop the classification for each magnitude range individually. For instance, very faint 
C stars are like dots, making distinguishing them in the DFBS fields difficult, as many defects 
and artifacts are also present. They resemble triangles when having 15m–16m, as only the red 
part is observable. For bright objects, one can follow some indefinite continuation of the spectra 
to the blue with any powerful red parts. To create a relevant classification scheme, we have 
grouped the spectra by magnitudes as follows: 13m objects (12.6m–13.5m), 14m (13.6m–14.5m), 
15m (14.6m–15.5m), 16m (15.6m–16.5m), and 17m (16.6m–17.5m). The last group is conditional, 
as the faintest spectra (~17m near the survey limit) cannot be appropriately classified. On the 
other hand, bright objects (<12.5m) are overexposed, and it is impossible to carry out any proper 
classification. So, relevant classification is mainly expected for the objects of 13m, 14m, 15m, and 
16m groups.

The ML classification model contains a robust network to fit the data without underfitting, 
achieve high accuracy scores on relatively small data, and be scalable for inferring enormous 
amounts of data. Additionally, the paper aims to provide a comprehensive cloud-based service 
for the image-based classification of astronomical objects. The paper introduces the following 
key contributions:

•	 A robust convolutional neural network for sub-object classification of objects in DFBS 
is superior to the previous methods based on quantitative evaluation metrics on 
astronomical objects and sub-object classification datasets.

•	 A four-step classic image processing module to effectively identify and extract objects 
from DFBS (Cloud-ML, 2021), augmenting the previous image extraction pipeline and 
eliminating the necessity for resource-intensive object detection networks.

•	 Support for local and cloud-based experiments, accommodating diverse frameworks and 
adapting seamlessly to varying environments and data scales.

•	 A comprehensive cloud-based ML service encompassing training, visualization, testing, 
and fine-tuning components, all within a user-friendly interface tailored to the image-
based classification of astronomical objects.

Despite the lower resolutions of the extracted objects, the proposed lightweight convolutional 
network and image extraction algorithm not only outperform the previous methods on group 
classification in DFBS but also attain satisfactory outcomes across both the training and 
validation sub-object classification datasets.

The rest of the paper is structured as follows. Section II reviews related work. The architecture 
and new concepts are presented in Section III. Section IV provides experimental results based 
on evaluations of different configurations of the testing dataset. Besides, the section describes 
the overall pipeline of the cloud-based infrastructure. Finally, conclusions and future research 
directions are discussed in Section V.

2 RELATED WORK
The field of astronomy is witnessing an unprecedented surge in both the volume and intricacy 
of data. Many projects explore and acquire spectral sky images (Heymans et al. 2012; York 
et al. 2000). The scale of these endeavors has reached a point where manual classification 
is no longer feasible. ML algorithms have garnered significant attention in astrophysics, 
offering solutions to various challenges. However, the efficacy of these methods hinges on 
the availability of substantial datasets. Numerous ML and deep learning (DL) techniques have 
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been proposed for classifying astronomical objects, encompassing classical machine learning 
approaches, Convolutional Neural Networks (CNNs), and object detection networks. While 
many of these networks excel at classifying high-resolution objects and synthetic datasets, 
their performance needs to improve when confronted with low-resolution images and limited 
data volumes, often succumbing to overfitting.

CNNs have found widespread application in the realm of astronomical image classification. 
These networks operate by routing an image through convolutional layers, activating multiple 
neurons, with the number of active neurons aligning with the predetermined number of 
classes. For instance, Kim and Brunner (2016) employed CNNs for star-galaxy classification. 
Their network encompassed convolutional and pooling layers, culminating in two dense layers. 
The authors used a similar method with data preprocessing to classify Markarian galaxies, 
quasars, compact galaxies, and other objects in the DFBS.

As the data volume expands, the network architecture depth must be correspondingly 
enhanced. Residual connections avoid vanishing gradient problems and other training 
difficulties in deep networks (He et al. 2016). This concept has been leveraged by (Alawi and 
Al-Roainy 2021) to deploy and assess four distinct ResNet architectures to classify stars and 
galaxies. Their findings underscored the positive correlation between increased residual blocks 
and enhanced accuracy, mainly when ample data is available. Ethiraj and Bolla (2021) took a 
different approach by employing transfer learning networks, including Resnet50, DenseNet121, 
and Xception, supplemented with ImageNet weights, for their classification endeavors. Fine-
tuning different layers within these networks demonstrated that DenseNet121 and Xception 
achieved the highest accuracy among the seven transfer learning networks assessed on the 
SDSS-IV dataset (Abolfathi et al. 2018). Nonetheless, it’s essential to exercise caution when 
deploying large CNNs with comparatively smaller training datasets than those employed in 
the models above. Such networks are prone to overfitting due to the limited data, and their 
performance diminishes as regularizations increase, leading to slower learning rates.

Harnessing their aptitude for detecting and categorizing numerous objects, object detection 
neural networks are a unifying solution for addressing extraction and classification challenges 
within a singular framework. For instance, the versatility of modified Faster R-CNN has been 
harnessed to tackle detection and classification tasks (Jia et al. 2020). In a related context, 
Burke et al. (Burke et al. 2019) successfully employed Mask R-CNN to deblend and detect 
sources within multiband astronomical images and classify them. Notably, Mask R-CNN 
represents an advancement over Faster R-CNN, exhibiting favorable performance metrics at 
moderate intersection over union thresholds (He et al. 2017). Designed initially for RGB images, 
adapting Mask R-CNN to detect single-channel images necessitates code-level and training 
optimization-level adjustments. R-CNNs, two-stage detection models, exhibit significant 
drawbacks regarding efficiency and suitability when handling large quantities of images, 
rendering them an unsuitable option for rapid detection in extensive-scale scenarios.

Better solutions for detection in terms of time effectiveness are real-time networks. Thus, 
González et al. (2018) have used YOLO (You Only Look Once), a single-phase detector that 
works faster than the models described above. Currently, there are newer versions of YOLO 
that outperform the latter both in accuracy and speed. YOLO is speedy and learns generalizable 
representations of objects so that when trained on natural images and tested on the artwork, 
the algorithm outperforms other top detection methods. Although one-stage and two-stage 
object detection networks are end-to-end, they bring up some difficulties. First, data annotation 
must be performed, including classifying objects and marking their bounding boxes. Besides, 
detection networks are inferior to classification networks in terms of time complexity.

Authors have dedicated considerable efforts to harnessing ML techniques within the context 
of DFBS, yielding supervised and unsupervised approaches for object classification. Notably, 
these endeavors encompass detecting bounding boxes of objects on astronomical plates and 
classifying prominent astronomical entities, such as Markarian galaxies, Planetary Nebulae, and 
Carbon stars, employing supervised learning methodologies. These studies yielded an average 
accuracy of 87%, substantiating their efficacy. Moreover, the trained networks were extrapolated 
to predict the classification of other objects within the survey. This article stands poised to 
transcend the limitations observed in prior investigations and make substantial contributions to 
the advancement of astronomical data analysis and the pursuit of discoveries within this field.
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3 METHODOLOGY
The astronomical object extraction and image-based classification methodology involves 
several main actions illustrated in Figure 2. The initial stage encompasses a four-step algorithm 
(depicted in Figure 2(a)) diligently orchestrated to extract objects from the DFBS plates. This 
multifaceted process is followed by data cleaning, normalizing, and transformation to establish 
harmonious compatibility with the ensuing ML algorithms. Afterward, the extracted objects 
are augmented and fed into a classification network for training and validation (Figure 2(b)). 
Finally, new and unlabeled objects are predicted using the previously trained network.

3.1 OBJECT EXTRACTION

A single astronomical plate in the DFBS (covering 16 square degrees of the sky) can contain 
about 10,000 to 25,000 objects, depending on how crowdy the field is. On average, the 
spectral types of about 40 can be distinguished. Two novel approaches are presented: a four-

step algorithm to extract the labeled objects and an automated three-step algorithm for all 
the unlabeled objects within a specific filter range. The base of both algorithms is the three-
step data preprocessing mechanism (Astsatryan et al. 2021), which can extract astronomical 
objects from grayscale images.

The three-step algorithm first blurs the plates by applying a Gaussian filter. Then, the grayscale 
plates are thresholded using the adaptive mean thresholding method, which sets the pixels’ 
value to the maximum possible if the values are greater than the calculated threshold in their 
neighborhood and to the minimum otherwise. Therefore, the thresholding algorithm separates 
foreground objects and background noise. The third step involves marking the bounding boxes 
of the objects using Pavlidis’ contour tracing algorithm (Pavlidis 1980). The algorithm takes a 
binary image and a starting point as input and returns the coordinates of the contour obtained 
by recursively tracing all the neighbors of the starting point of the same color. The initial points 
are calculated in the framework using the header file information of the plates, right ascension 
(RA), and declination (Dec) of labeled astronomical objects.

However, thresholding algorithms sometimes fail to distinguish between foreground and 
background. In poorly separated areas, foreground astronomical objects may have background 
fragments, detaching their different regions. In such cases, Pavlidis’ contour tracing algorithm 
detects only the part of the object where the starting point is located.

Figure 2 The workflow chart: 
(a) four-step image processing, 
(b) the proposed CNN 
architecture.
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The proposed approach presents the following improvements to overcome the abovementioned 
problems. First, adaptive Gaussian thresholding has been implemented instead of adaptive 
mean thresholding. Although the Gaussian approach is computationally expensive, it is more 
robust to noise and bright background artifacts than the mean thresholding. As a result, 
thresholded astronomical objects are clearly separated from the background and more 
objects are extracted. Besides, the preprocessing steps for object extraction are implemented 
separately from classification; they are applied to a fixed number of astronomical plates and, 
therefore, do not influence the processing time based on the size of the datasets. Furthermore, 
a constraint on the minimum height and width of the extracted image is introduced. As the 
experiments have shown, objects with a length of no more than 20 pixels are either background 
fragments or objects indistinguishable from the background. Added constraints filter unwanted 
objects automatically and improve overall accuracy. Finally, another preprocessing step as a 
backup method is added if the extracted image is invalid against the constraints. This step cuts 
the region around the starting point from the whole picture and searches for all the contours 
containing the starting point using a standard contour detection algorithm (Arbelaez et al. 
2010). After filtering them, it selects the largest contour meeting the upper and lower size 
constraints.

The first two preprocessing steps are the same for extracting unlabeled objects. The object 
extraction step is implemented for two cases. In the first case, an inference dataset containing 
the name, RA, Dec, and other information of objects is provided. The framework uses the 
default settings by employing the four-step preprocessing algorithm for object extraction 
and feeding them into the classification network. Since different plates can contain the same 
objects and some objects may be extracted multiple times, the most frequently predicted class 
for these objects is returned as the classification output to consolidate the predictions of the 
network. In the second case, contours across all plates are searched, and those that meet the 
abovementioned constraints are extracted. This step can only be utilized for research purposes 
on the DFBS as the names and other identifiers of extracted objects are unknown; therefore, 
their classification can only provide general content information about astronomical plates.

3.2 SUPERVISED LEARNING

The extracted objects are systematically preserved as images, whereas their metadata, such 
as name, actual path, and parent plate affiliations, are stored in DataFrames. Before being 
fed into CNN, these images are accessed via their metadata and subjected to augmentation 
and normalization. Augmentation strategies encompass horizontal flipping, adjustments in 
brightness/contrast, random shifting, zooming, and rotation. This augmentation methodology 
effectively fortifies the model’s robustness and generalization potential. After the transformation 
steps described above, the extracted objects are passed through a CNN for classification (see 
Figure 2(b)). The network takes 160 × 50 pixels size images (corresponding to the size of 
DFBS spectra) as input and returns n neurons as output, where n is the number of spectral 
types to be classified. The overall architecture consists of four blocks of convolutional, batch 
normalization, and pooling layers for feature extraction and dense layers for classification 
at the end. Each block integrates three consecutive convolutional layers, followed by max 
pooling and batch normalization layers. The first two blocks incorporate dropout layers at their 
conclusion, strategically introduced to curtail overfitting. The number of kernels of convolutions 
in consecutive blocks is 32, 64, 128, and 256, respectively, and the drop rates of dropout layers 
are 2/10. The convolutional layers within each block operate with kernel sizes 3 × 3, while all 
max pooling layers adhere to a 2 × 2 kernel size. The penultimate dense layer accommodates 
256 neurons, adept at adapting training data without courting overfitting. Additional dropout 
layers were added after this layer and the fourth convolution block with 1/2 and 3/10 high 
dropout rates to prevent overfitting. All activation functions are set to LeakyReLU, as it avoids the 
‘dying ReLU’ problem, which causes some neurons to always output zero values. Additionally, 
LeakyReLU preserves negative information and gives more flexibility to the network. The widely 
used softmax activation is removed from the last layer as it requires computationally expensive 
normalization to provide a probability distribution. This way, the network outputs logits, and a 
custom softmax function can be called on them for specific cases.

The training process of the proposed network on the sub-objects dataset was not straightforward 
due to the following reasons:
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•	 Data scarcity: Usually, neural networks have an enormous number of parameters, 
and when the training dataset is small, they easily overfit. This prevents networks from 
generalizing and results in relatively lower performances on unseen datasets.

•	 Dataset imbalance: Most spectral classes have relatively small numbers of examples, 
and they often get confused by the network with other subclasses of the same group, 
which are visually similar and have dominant numbers of samples.

•	 The low brightness and low contrast of the objects: Although some spectral groups 
(e.g., Markarian galaxies) are essential for the research, they are faint. Thus, their samples 
are hardly distinguishable from the background, and their shapes are changed and 
distorted.

The network architecture, optimizer, loss function, and other hyperparameters were designed 
based on theoretical and empirically established assumptions to tackle these challenges. 
First, focal loss was employed, focusing on misclassified examples, giving them more weight 
on overall loss. This loss is especially effective on highly imbalanced datasets and has shown 
superiority over the commonly used cross-entropy loss in such cases (Tran et al. 2019). The 
focal loss adds two additional terms to standard cross-entropy. The first term is the focusing 
parameter, denoted by γ, which increases the weights of misclassified examples and down-
weights well-classified ones. The second term, α, is added in practice to adjust the contribution 
of each class to the overall loss. Moreover, the drop rates of corresponding layers were chosen 
to balance the trade-off between overfitting and over-regularization of the model. The latter 
limits the model’s capabilities and performs poorly on all datasets.

As one of the most popular gradient descent optimization algorithms, the authors leveraged 
the Adam optimizer (Bock and Weiß, 2019) for network optimization with a small learning 
rate. It combines an adaptive learning rate with the momentum-based approach to prevent 
overfitting and avoid local minimums by making more extensive updates where needed. The 
momentum-based approach speeds up the training process by adding the previous gradients 
to the current one with some factor and pushing the optimization process in the right direction. 
Besides, the adaptive learning approach assigns larger learning rates to small gradients and 
smaller learning rates to large gradients. This results in avoiding local minimums that cause 
small gradients and avoiding deviations affected by outliers. As a result, the training converges 
faster than with most other optimization algorithms and reaches higher scores (Kingma and 
Ba 2014). Finally, the authors employed the self-transfer learning approach to address the 
challenge of limited data by training the network on datasets featuring fewer classes (Pan and 
Yang 2009). This technique enables the network to leverage knowledge gained from these 
datasets and effectively overcome the issue of insufficient data. In this case, the network was 
pre-trained on the whole training dataset and then fine-tuned only on the subset of target 
subtypes. Performance gains were observed as the network learned the shape and properties 
of astronomical objects from a large amount of data during pre-training and learned only the 
given classification task on a small amount of data.

3.3 CLOUD-BASED SERVICE PLATFORM

Automated service provisioning is essential for big-scale image-processing tasks in astronomy. 
The suggested cloud-based ML service for the image-based classification of celestial bodies 
and beyond is based on Google Colaboratory, a cloud service providing Jupyter Notebook 
environments for educational and research purposes (Carneiro et al. 2018). The choice of 
Google Colaboratory is based on its multiple advantages over other alternatives. It is within 
reach for everyone, is easy to use, and provides comprehensive environments with pre-installed 
packages for running Jupyter notebooks. Moreover, the resources provided by Colab include free 
GPUs and TPUs that are essential when processing immense volumes of astronomical data.

The service comprises Colab notebooks for neural network training, fine-tuning, testing, and 
visualizations. It aims to provide astronomers with an environment to analyze astronomical 
data without knowledge of ML techniques. The flowchart of the proposed service is depicted in 
Figure 3. It consists of six general blocks, some of which differ based on the type of the selected 
processing pipeline.

The notebooks for training and evaluation are stored in the provided GitHub repository. Initially, 
the notebooks clone the code repository into the Colab environment. Next, the environment 
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variables, such as paths, directories, and processing devices, are chosen. Data is assembled 
after completing the environment configuration, and datasets are loaded. To process their data, 
users can adjust hyperparameters, such as input and output sizes, the number of elements in 

training and testing batches, and checkpoints, in case they want to continue their unfinished 
pipelines. Several neural network architectures, such as ResNet and MobileNetV2 (Sandler et al. 
2018), are also integrated into the service and can be employed by simply changing one line 
of code. These networks are already configured with tuned hyperparameters for classification 
tasks of close domains. The model checkpoints, trained on the presented datasets, are available 
for testing and fine-tuning.

Two evaluation types are provided to study the performance of different pipelines: step-by-step 
reports containing various classification metrics and TensorBoard-based monitoring measures. 
The former includes assessment parameters, such as precision, recall, and accuracy, and the 
latter consists of training accuracy and loss plots.

4 EXPERIMENTAL RESULTS
The section provides a comprehensive performance evaluation, including details about the sub-
group and group classification datasets, optimal hyperparameters, and training configurations, 
like the number of epochs, batch size, or learning rate schedule. Then, the quantitative 
results of the proposed framework are presented on both datasets, focusing on classification 
performance evaluation metrics and other quantitative scores. These results provide insights 
into the accuracy of classifying astronomical objects. They are also compared with the previous 
work to demonstrate the superiority of the proposed method on both tasks. The trained model 
was inferenced on two massive datasets from the DFBS by employing the second object 
extraction approach for unlabeled objects discussed in Section 3.1. The results are revealed 
later in this section.

The astronomical objects have been extracted from astronomical plates based on the pipeline 
introduced in the previous work. The one key difference is the four-step preprocessing mechanism 
described in Section 3.2 instead of the preceding three-step approach. The enhanced method 
better outlines astronomical objects and automates the invalid objects filtering process. As a 
result, it extracts up to 30% more objects than the previous method, given the same dataset 
containing objects’ RA and Dec parameters.

The sub-object classification dataset consists of 2,107 training and 405 validation samples. 
These numbers could be higher because some classes only have 40–50 samples. The similarity 
of image characteristics of sub-objects within the same group (e.g., sdB and sdO subdwarfs) 
combined with one class having relatively fewer samples than the other class results in 
confusing the model always to predict the dominant class. Experiments have been conducted 
on three sub-groups taken from the extracted objects to avoid biased framework results caused 
by low numbers of training samples in some of the classes.

The comparison of the frameworks on groups’ classification has been conducted by utilizing 
the publicly available dataset of the previous method in the GitHub repository (Astsatryan et 
al. 2021). The dataset has been divided into training and validation splits with 1,478 and 258 
observations, respectively. The training pipelines have been reproduced for both methods on 

Figure 3 The flowchart of the 
cloud-based service.
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both datasets with minor hyperparameter adjustments to maximize accuracy scores without 
altering the theoretical foundations of the two methods.

4.1 EXPERIMENTAL SETTINGS

Training the developed model on all datasets was performed using the same Adam optimizer 
with a learning rate of 5e–4. Batch sizes for training sets were set to 256, with sizing for validation 
sets at 128. A learning rate scheduler, which reduced the learning rate by 0.9 factor after every 
five epochs, was employed to ensure stable training during higher steps. α and γ parameters 
of the loss function were set to 0.25 and 3, respectively. The augmentation steps described in 
Section II were applied to the data on both datasets during training.

The desirable results, demonstrated in Tables 1 and 2, were achieved in 126 and 131 epochs for 
the introduced framework, while after 128 and 137 epochs of training the former model. The 
tables represent the scores of two models, divided by a forward slash to compare their relative 
performance, where the proposed method is on the right. Figures 4 and 5 display training and 
testing accuracy curves for corresponding datasets. They also demonstrate the effectiveness 
of utilizing the self-transfer learning approach. Notably, accuracy metrics are high during the 
first epochs, and the model converges faster and reaches high accuracies in fewer epochs. 
The epochs for which checkpoints were selected and saved as results were determined by 
considering relevant classification metrics and accuracy plots to prevent picking overfitted 
models. Under the PyTorch framework, the single-node training pipeline and experiments 
were implemented on NVIDIA GeForce RTX 3080 GPU and Intel Core i9-11900 CPU within the 
research cloud infrastructure (Astsatryan et al. 2004).

4.2 QUANTITATIVE RESULTS

Four representative evaluation metrics assess the performance of the classification network: 

precision, recall, and f1-score for each class and accuracy for the overall classification. Precision 
is the ratio of the correctly predicted positives to all predicted positives for a given class. In 
contrast, recall is the ratio of the correctly predicted positives to all ground-truth positives. The 
f1-score is the harmonic mean of precision and recall, placing more weight on the lower value 

Table 1 Comparison of 
classification reports for two 
frameworks proposed by the 
authors on the sub-objects’ 
dataset. Support denotes the 
number of samples in the 
corresponding class (train + 
test), blue color denotes the 
better score.

SUPPORT PRECISION RECALL F1-SCORE

C-H 626 + 117 0.89 / 0.93 0.91 / 0.97 0.90 / 0.95

Mrk SB 664 + 132 0.94 / 0.95 0.89 / 0.95 0.91 / 0.95

sdB 817 + 156 0.94 / 0.98 0.96 / 0.96 0.95 / 0.97

Accuracy 2107 + 405 0.93 / 0.96

Macro avg 2107 + 405 0.92 / 0.96 0.92 / 0.96 0.92 / 0.96

Weighted avg 2107 + 405 0.93 / 0.96 0.93 / 0.96 0.93 / 0.96

Table 2 Comparison of 
classification reports for two 
frameworks proposed by 
the authors on the group 
classification dataset.

SUPPORT PRECISION RECALL F1-SCORE

C 362 + 63 0.82 / 0.87 0.89 / 0.87 0.85 / 0.87

M 169 + 29 0.70 / 0.74 0.48 / 0.69 0.57 / 0.71

Mrk 333 + 58 0.91 / 0.94 0.88 / 1.00 0.89 / 0.97

PN 13 + 2 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

sd 601 + 106 0.93 / 1.00 0.98 / 0.98 0.95 / 0.99

Accuracy 1478 + 258 0.88 / 0.93

Macro avg 1478 + 258 0.87 / 0.91 0.85 / 0.91 0.86 / 0.91

Weighted avg 1478 + 258 0.87 / 0.93 0.88 / 0.93 0.87 / 0.93
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of two. Finally, accuracy is a general-purpose metric, representing the proportion of correctly 
classified examples in the overall predictions.

The proposed framework for sub-object classification demonstrated its validity in Tables 1 and 2, 
with 96% and 93% accuracy, respectively. F1-scores are proximate for all three classes in Table 
1, although the sdB class has 25% more training samples, proving the robustness of the model. 
Moreover, precision and F1-scores improve for all subtypes by eliminating poorly represented 
classes and addressing model confusion. The results also confirm the method’s applicability 
to the group classification task, where the observed 5% increase in scores can be attributed to 
architecture refinements, loss function, optimizer, training pipeline, and other advancements 
in the recent technique. Furthermore, by expanding the sample sizes for corresponding classes, 
future works can achieve similar accuracies on different groups and sub-groups, such as white 
dwarfs, M-type stars, Mrk Abs, sdA, and C-N.

Additional experiments have been carried out to explore the DFBS objects further. Two 
different inference datasets with sizes of 1 million and 4 million objects have been extracted 
using the unlabeled object extraction three-step algorithm, detailed in Section 3.1. Objects 
from randomly selected astronomical plates have been extracted to collect datasets of 
the mentioned sizes while ensuring the diversity of the objects. This way, objects from 65 
and 266 astronomical plates were aggregated to assemble the small and large inference 
datasets. Tables 3 and 4 show the predicted samples for each sub-group under different 
confidence thresholds. Objects predicted with confidence less than the chosen threshold 
are assigned to column Other. Reportedly, for the selected range of thresholds (0.8–0.95), 

Figure 4 The accuracy of 
training and testing sets for 
the sub-object classification 
dataset.

Figure 5 The accuracy of 
training and testing sets 
for the group classification 
dataset.
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13-13.5% of the objects belong to one of the targeted subclasses. Precision scores for each 
subgroup rise concurrently with threshold values, while recall scores slightly drop. Thereby, 
classification results converge to actual numbers of sub-objects considering the model’s 
accuracy. Drawing from the prior and generalizing for the whole survey, with the utmost 
confidence in the model’s predictions when the highest threshold is selected, 1/20 of 
the twenty million astronomical objects can be considered to belong to one of the three 
studied subgroups. The 1/20 ratio refers to the successful classification of objects into 
one of the nine subgroups during the training phase of the model. This means that, out of 
the total 20 million objects, the classification model accurately assigned objects to their 
respective subgroups for 1/20th of the dataset. Increasing the number of samples for all 
nine subclasses, presented in Section 1, and performing additional experiments will provide 
comprehensive insights into the three main groups of the DFBS.

5 SUMMARY AND CONCLUSION
The paper presents a framework for automated detection and sub-object classification of 
astronomical objects in the DFBS. The framework combines a four-step image-processing 
pipeline with deep neural network architectures to achieve promising astronomical sub-object 
classification task results. The proposed framework is the pioneering work on the image-
based sub-object classification of astronomical objects. The framework’s effectiveness is 
demonstrated by evaluating astronomical subtypes with sufficient examples. The proposed 
framework for sub-object classification demonstrated its validity with more than 96% accuracy. 
Moreover, it illustrated its superiority on the astronomical group classification task in the DFBS 
by outperforming the preceding work by 5% accuracy refinement. Additional experiments on 1 
million and 4 million inference datasets revealed the object numbers of selected subgroups in 
the DFBS. According to the findings, 1/20 of the 20 million astronomical objects belong to the 
subjects of the inner group classification.

Additionally, this work contributes to the astronomical scientific community by providing 
a general cloud-based service for image-based astronomical object classification. The 
service offers users a cloud-based infrastructure for different ML experiments on provided 
and proprietary astronomical data. Training, fine-tuning, evaluation, and inference pipelines 
are implemented within the service, allowing for integration and execution of the entire ML 
workflow. Additionally, it enables users to monitor their pipelines using TensorBoard-based 
visualizations and other performance metrics.

Future work aims to increase the number of sub-object classes by including poorly represented 
classes into the model and leveraging distributed computing approaches for large-scale 
inference on the overall First Byurakan Survey database. The authors intend to annotate 
additional sub-object datasets to address these issues and provide researchers with a more 
comprehensive toolset for applying to a broader range of astronomical surveys.

THRESHOLD C-H Mrk SB sdB OTHER

0.95 10557 10237 15084 964123

0.9 23823 19044 21691 935443

0.85 38633 29163 28265 903940

0.8 56026 40609 35231 868135

Table 3 The model’s inference 
results on one million 
astronomical objects.

THRESHOLD C-H Mrk SB sdB OTHER

0.95 37355 48695 57278 3856673

0.9 85379 89872 82183 3742567

0.85 139925 134719 106725 3618632

0.8 204382 184918 133209 3477492

Table 4 The model’s inference 
results on four million 
astronomical objects.



13Astsatryan et al.  
Data Science Journal  
DOI: 10.5334/dsj-2024-
006

FUNDING INFORMATION
The paper is supported by the European Union’s Horizon 2020 research infrastructures program 
under grant agreement No 857645, project NI4OS Europe (National Initiatives for Open 
Science in Europe), and by the Republic of Armenia Ministry of Education and Science (RA MES) 
Committee of Higher Education and Science, in the frames of the Advanced Research Projects 
21AG-1C053 (2021–2026) and 21AG-1B052.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Hrachya Astsatryan  orcid.org/0000-0001-8872-6620 
Institute for Informatics and Automation Problems (IIAP), P. Sevak 1, 0014 Yerevan, Armenia

Stepan Babayan 
Institute for Informatics and Automation Problems (IIAP), P. Sevak 1, 0014 Yerevan, Armenia; National 
Polytechnic University of Armenia (NPUA), 105, Teryan str., 0009 Yerevan, Armenia

Areg Mickaelian 
Byurakan Astrophysical Observatory (BAO), 0213 Byurakan, Aragatzotn province, Armenia

Gor Mikayelyan 
Byurakan Astrophysical Observatory (BAO), 0213 Byurakan, Aragatzotn province, Armenia

Martin Astsatryan 
Rutgers University-New Brunswick, New Brunswick, NJ 08901-8554, USA

REFERENCES
Abolfathi, B, et al. 2018. The fourteenth data release of the Sloan digital sky survey: First spectroscopic 

data from the extended baryon oscillation spectroscopic survey and from the second phase of the 

Apache Point Observatory Galactic Evolution Experiment. The Astrophysical Journal Supplement 

Series, 235(2): 42. DOI: https://doi.org/10.3847/1538-4365/aa9e8a

Alawi, AEB and Al-Roainy, AA. 2021. Deep residual networks model for star-galaxy classification. In: 2021 

International Congress of Advanced Technology and Engineering (ICOTEN), pp. 1–4. IEEE.

Arbelaez, P, et al. 2010. Contour detection and hierarchical image segmentation. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 33(5): 898–916. DOI: https://doi.org/10.1109/

TPAMI.2010.161

Astsatryan, H, et al. 2021. Astronomical objects classification based on the Digitized First Byurakan 

Survey low-dispersion spectra. Astronomy and Computing, 34: 100442. DOI: https://doi.org/10.1016/j.

ascom.2020.100442

Astsatryan, H, Shoukourian, Y and Sahakyan, V. 2004. The ArmCluster Project: brief introduction. 

In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and 

Applications. PDPTA‘04, 1291–1295.

Bock, S and Weiß, M. 2019. A proof of local convergence for the Adam optimizer. In: 2019 International 

Joint Conference on Neural Networks (IJCNN). pp. 1–8. IEEE. DOI: https://doi.org/10.1109/

IJCNN.2019.8852239

Burke, CJ, et al. 2019. Deblending and classifying astronomical sources with Mask R-CNN deep 

learning. Monthly Notices of the Royal Astronomical Society, 490(3): 3952–3965. DOI: https://doi.

org/10.1093/mnras/stz2845

Carneiro, T, et al. 2018. Performance analysis of Google Colaboratory as a tool for accelerating 

deep learning applications. IEEE Access, 6: 61677–61685. DOI: https://doi.org/10.1109/

ACCESS.2018.2874767

Cloud-ML. 2021. Computational astrophysics library. Available at https://github.com/ArmHPC/

Computational-Astrophysics.

Cui, CZ and Zhao, YH. 2007. Worldwide R&D of virtual observatory. Proceedings of the International 

Astronomical Union, 3(S248): 563–564. DOI: https://doi.org/10.1017/S1743921308020152

Ethiraj, S and Bolla, BK. 2021. Classification of astronomical bodies by efficient layer fine-tuning of deep 

neural networks. In 2021 5th Conference on Information and Communication Technology (CICT). pp. 

1–6. IEEE. DOI: https://doi.org/10.1109/CICT53865.2020.9672430

González, RE, Munoz, RP and Hernández, CA. 2018. Galaxy detection and identification using deep 

learning and data augmentation. Astronomy and computing, 25: 103–109. DOI: https://doi.

org/10.1016/j.ascom.2018.09.004

https://orcid.org/0000-0001-8872-6620
https://orcid.org/0000-0001-8872-6620
https://doi.org/10.3847/1538-4365/aa9e8a
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.1016/j.ascom.2020.100442
https://doi.org/10.1016/j.ascom.2020.100442
https://doi.org/10.1109/IJCNN.2019.8852239
https://doi.org/10.1109/IJCNN.2019.8852239
https://doi.org/10.1093/mnras/stz2845
https://doi.org/10.1093/mnras/stz2845
https://doi.org/10.1109/ACCESS.2018.2874767
https://doi.org/10.1109/ACCESS.2018.2874767
https://github.com/ArmHPC/Computational-Astrophysics
https://github.com/ArmHPC/Computational-Astrophysics
https://doi.org/10.1017/S1743921308020152
https://doi.org/10.1109/CICT53865.2020.9672430
https://doi.org/10.1016/j.ascom.2018.09.004
https://doi.org/10.1016/j.ascom.2018.09.004


14Astsatryan et al.  
Data Science Journal  
DOI: 10.5334/dsj-2024-
006

TO CITE THIS ARTICLE:
Astsatryan, H, Babayan, S, 
Mickaelian, A, Mikayelyan, 
G and Astsatryan, M. 2024. 
Cloud-Based Machine Learning 
Service for Astronomical 
Sub-Object Classification: Case 
Study On the First Byurakan 
Survey Spectra. Data Science 
Journal, 23: 6, pp. 1–14. DOI: 
https://doi.org/10.5334/dsj-
2024-006

Submitted: 04 October 2023     
Accepted: 04 January 2024     
Published: 30 January 2024

COPYRIGHT:
© 2024 The Author(s). This is an 
open-access article distributed 
under the terms of the Creative 
Commons Attribution 4.0 
International License (CC-BY 
4.0), which permits unrestricted 
use, distribution, and 
reproduction in any medium, 
provided the original author 
and source are credited. See 
http://creativecommons.org/
licenses/by/4.0/.

Data Science Journal is a peer-
reviewed open access journal 
published by Ubiquity Press.

Hanisch, RJ, et al. 2015. The virtual astronomical observatory: re-engineering access to astronomical 

data. Astronomy and Computing, 11: 190–209. DOI: https://doi.org/10.1016/j.ascom.2015.03.007

He, K, et al. 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. pp. 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90

He, K, et al. 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 

2961–2969. DOI: https://doi.org/10.1109/ICCV.2017.322

Heymans, C, et al. 2012. CFHTLenS: the Canada–France–Hawaii telescope lensing survey. Monthly 

Notices of the Royal Astronomical Society, 427(1): 146–166. DOI: https://doi.org/10.1111/j.1365-

2966.2012.21952.x

Huchra, JP. 1977. The nature of Markarian galaxies. Astrophysical Journal Supplement Series, 35: 171–195. 

DOI: https://doi.org/10.1086/190474

Jia, P, Liu, Q and Sun, Y. 2020. Detection and classification of astronomical targets with deep neural 

networks in wide-field small aperture telescopes. The Astronomical Journal, 159(5): 212. DOI: https://

doi.org/10.3847/1538-3881/ab800a

Kim, EJ and Brunner, RJ. 2016. Star-galaxy classification using deep convolutional neural 

networks. Monthly Notices of the Royal Astronomical Society, stw2672. DOI: https://doi.org/10.1093/

mnras/stw2672

Kingma, DP and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Mickaelian, AM, et al. 2007. The digitized first Byurakan survey–DFBS. Astronomy & Astrophysics, 464(3): 

1177–1180. DOI: https://doi.org/10.1051/0004-6361:20066241

Mickaelian, AM, et al. 2016. Ten years of the Armenian Virtual Observatory. Astronomical Surveys and Big 

Data, 505: 16.

Mickaelian, AM, et al. 2023. Armenian virtual observatory: status and activities. Astronomy and 

Computing, 42: 100689. DOI: https://doi.org/10.1016/j.ascom.2023.100689

Pan, SJ and Yang, Q. 2009. A survey on transfer learning. IEEE Transactions on knowledge and data 

engineering, 22(10): 1345–1359. DOI: https://doi.org/10.1109/TKDE.2009.191

Pavlidis, T. 1980. Algorithms for shape analysis of contours and waveforms. IEEE Transactions on pattern 

analysis and machine intelligence, 4: 301–312. DOI: https://doi.org/10.1109/TPAMI.1980.4767029

Quinn, PJ, et al. 2004. The International Virtual Observatory Alliance: recent technical developments and 

the road ahead. In: Quinn, PJ and Bridger, A (eds.), Optimizing Scientific Return for Astronomy Through 

Information Technologies 5493. Glasgow: SPIE. pp. 137–145. DOI: https://doi.org/10.1117/12.551247

Sandler, M, et al. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE 

conference on computer vision and pattern recognition. pp. 4510–4520. DOI: https://doi.org/10.1109/

CVPR.2018.00474

Tran, GS, et al. 2019. Improving accuracy of lung nodule classification using deep learning with focal 

loss. Journal of healthcare engineering, 2019: 57–65. DOI: https://doi.org/10.1155/2019/5156416

York, DG, et al. 2000. The Sloan digital sky survey: Technical summary. The Astronomical Journal, 120(3): 

1579. DOI: https://doi.org/10.1086/301513

https://doi.org/10.5334/dsj-2024-006
https://doi.org/10.5334/dsj-2024-006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ascom.2015.03.007
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://doi.org/10.1111/j.1365-2966.2012.21952.x
https://doi.org/10.1086/190474
https://doi.org/10.3847/1538-3881/ab800a
https://doi.org/10.3847/1538-3881/ab800a
https://doi.org/10.1093/mnras/stw2672
https://doi.org/10.1093/mnras/stw2672
https://doi.org/10.1051/0004-6361:20066241
https://doi.org/10.1016/j.ascom.2023.100689
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TPAMI.1980.4767029
https://doi.org/10.1117/12.551247
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1155/2019/5156416
https://doi.org/10.1086/301513

