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ABSTRACT
Detecting anomalies in multivariate time series data is crucial to ensure the security 
and stability of industrial processes. Yet, it remains challenging due to the absence 
of labeled anomaly data, the complexity of time series data, and the large dataset 
size. We propose KBJNet, an innovative model incorporating Transformer and Dilated 
Temporal Convolutional Network (TCN) techniques to address these obstacles. Our 
model employs a Single TCN-Attention Network, utilizing a single layer of Transformer 
encoder, making it highly efficient for inference. To further enhance its robustness, we 
introduce a novel adaptive attention mechanism that dynamically weights temporal 
context, enabling KBJNet to capture long-range dependencies in time series data 
effectively. The evaluation of KBJNet on eight publicly available datasets revealed that 
KBJNet considerably outperforms the most recent methods, enhancing F1 scores by 
as much as 6%. This result represents a significant contribution to anomaly detection, 
and we anticipate that our approach will have practical implications for developing 
next-generation anomaly detection systems in various industrial applications.
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I. INTRODUCTION
Nowadays, IT activities generate a significant amount of high-dimensional sensor data. 
Although big data analytics and deep learning have made handling massive amounts of data 
possible, identifying irregularities in such data remains challenging due to the vast volume, 
noise, and uneven data distribution that make it difficult to detect anomalies. This phenomenon 
is called the ‘dimensionality curse’ (Thudumu et al. 2020). Moreover, anomalies can arise from 
interactions between multiple causes, which further complicates the detection process. This 
problem domain is particularly crucial in data-driven industries that generate many unstable, 
dispersed, and multimodal time series datasets, such as source management, autonomous 
driving, and the Internet of Things (IoT).

Anomalies reveal unusual characteristics within the systems and entities responsible for 
supplying data. These atypical traits offer valuable insights for real-world applications. 
Detecting data anomalies can uncover outliers, identify environmental conditions requiring 
human attention, or optimize computing resources by preemptively filtering undesired data 
segments. For cloud systems, promptly identifying anomalies following an incident is crucial 
in preventing more significant failures that may impact customers (Darban et al. 2022). The 
research also explained that intrusion detection plays a vital role in computer network systems 
by distinguishing between illegal and malicious behaviors. Another aspect that the research 
covered was the electrocardiography (ECG) signals for assessing heart conditions in medicine. 
Typically, medical practitioners manually evaluate the resulting time series signal to detect 
arrhythmia. Finally, a multivariate industrial time series monitors these processes, incorporating 
data from sensors and control systems within the gas-oil plant heating loop (GHL). An LSTM-
based technique is used to detect defects in this context.

Anomaly detection involves identifying data points, patterns, or traffic that significantly deviate 
from a system’s expected behavior. Outliers that deviate substantially from the rest of the 
distribution are labeled as anomalies (Bulusu et al. 2020). Anomaly detection is essential for 
creating trustworthy computer systems (Wang et al. 2022) in commercial, industrial, healthcare, 
and military applications to ensure crucial processes or decisions are safe (Sarker 2021). 
Anomaly detection based on statistical, rule-based, machine learning, and neural networks 
with unsupervised methods is becoming increasingly important. These methods provide fast 
inference speed, improve quality of service, and efficiently manage high-dimensional time 
series data (Chatterjee & Ahmed 2022).

Various statistical, rule-based, and machine-learning methods have previously been 
developed to find abnormalities in time series data. Rule-based methods compare data to an 
anomaly rule, which can be flawed and require frequent updates, making it time-consuming. 
Statistical methods estimate parameters based on a particular distribution but may fail to 
capture underlying nonlinearities and dynamical linkages. Machine learning approaches 
come in three types: supervised, unsupervised, and weakly supervised learning. Unsupervised 
techniques such as One-Class Support Vector Machine (OC-SVM) (Schölkopf et al. 2001), 
k-Nearest Neighbor (KNN) (Ramaswamy et al. 2000), Support Vector Data Description (SVDD) 
(Tax & Duin 2004), Expectation Maximization (EM) (Pan et al. 2010), Histogram-Based Outlier 
Score (HBOS) (Goldstein & Dengel 2012), Local Outlier Factor (LOF) (Breunig et al. 2000), and 
Local Density Cluster-based Outlier Factor (LDCOF) (Amer & Goldstein 2012) have already been 
employed for identifying anomalies in time series data. However, they may have issues in 
capturing temporal correlation and performance. Statistical methods such as wavelet theory, 
Hilbert transform (Chowdhury et al. 2017), principal component analysis (PCA) (Jin et al. 
2017), and Markov chain models (Zang et al. 2018) has also been used for time series data 
analysis. Recently, machine learning methods such as SVM (Budiarto et al. 2019), Regression 
models (Hu et al. 2020), and clustering (Budiarto et al. 2019) have been created to forecast 
the distribution of time series data. However, memory constraints can limit their ability to 
detect temporal patterns.

Anomaly detection methods using deep learning have attracted interest and become 
popular due to their ability to handle challenging detection problems in various real-world 
applications. Recurrent neural networks (RNNs) can be a good option to solve sequence 
modeling problems. However, traditional RNNs struggle to capture remote relationships 
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due to gradient disappearance in long-sequence modeling problems. Popular RNN (Shih 
et al. 2019) variations, including gated recurrent unit (GRU) (Qu et al. 2018) and long 
short-term memory (LSTM) (Provotar et al. 2019) have already been created to get around 
this restriction. In modeling temporal patterns, RNNs can benefit from the attention 
mechanism. However, the computational intensity and slow speed of recursive models 
such as LSTM hinder their ability to replicate long-term trends accurately. In contrast, 
some time-series anomaly detection tasks, such as detecting anomalies in sensor data or 
financial transactions, may require detecting subtle deviations from normal behavior over 
long periods. The dual-path network has been proposed as an effective method to solve 
this problem (Luo et al. 2020).

Recently, the Transformer model’s encoding of large sequences allows for almost independent 
accuracy and inference time, making it an excellent choice for anomaly detection models that 
mine long-term dependencies and deal with nonlinear dynamics. Nonetheless, the Transformer 
model can only handle sequences with a length of a few hundred (Chen et al. 2020). The 
Transformer model has a significant computational complexity for extended sequences, and 
the training is slow. To address these issues, recent research has proposed combining temporal 
convolution networks (TCN) with transformers to capture temporal dependencies while 
avoiding the pitfalls of recursive models (Yin et al. 2022).

While there have been notable improvements in anomaly detection for time series data, 
conventional statistical approaches and machine learning algorithms have limitations in 
effectively handling nonlinear, high-dimensional, and noisy data. Although LSTM and GRU 
neural networks can capture contextual information, they face challenges due to their slow 
inference speed and inefficiency. On the other hand, transformers demonstrate strengths in 
parallelization and capturing long-range dependencies in input sequences. However, slow 
training and high computational complexity hinder their performance on longer sequences.

Based on the aforementioned considerations, we introduce a novel model called KBJNet, which 
integrates the TCN and transformers architectures using a dual-path network for detecting 
abnormalities in multivariate time series data. The KBJNet model incorporates an adaptable 
multi-head mechanism for attention that comprehensively captures the characteristics of 
each dimension in the data, enabling effective anomaly detection. Our key contributions 
include:

•	 Our study proposes a new model architecture for capturing anomalies involving a 
combination of dilated TCN and transformers. The TCN utilizes dilation convolution 
to establish a perceptual field. To ensure a global perceptual field that covers the 
whole input sequence, the minimum number of convolutional layers is determined 
based on factors such as the input sequence length, convolution kernel size, and 
dilation coefficient. In other words, the range of the dilation convolution is adjusted to 
encompass the entire input sequence.

•	 We embed this combined TCN and transformers into a dual-path network, which 
enhances its efficiency and effectiveness for modeling extremely long sequences and 
high dimensions.

•	 We introduce a dual path network that utilizes a shared TCN Attention mechanism for 
assigning weights to time steps. This approach facilitates recognizing and prioritizing 
crucial information within a multivariate time series.

•	 Our method has undergone comprehensive testing on standard datasets and has 
demonstrated superior performance compared to the current leading techniques in 
benchmark tests.

II. LITERATURE REVIEW
This section presents a comprehensive literature review on anomaly detection, emphasizing 
three crucial areas: statistical and machine learning approaches, neural network and deep 
learning techniques, and the current state-of-the-art. Table I summarizes terminologies used 
in this study.
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TERMINOLOGY DEFINITION

ARIMA Autoregressive Integrated Moving Average

AUC Area under the ROC Curve.

CAV Connected and Autonomous Vehicle

COPOD Copula-Based Outlier Detection

CPOD Core Point-based Outlier Detection

DAGMM Deep Autoencoding Gaussian Mixture Model

DTAAD Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data

ECG Electrocardiography

EVT Extreme Value Theory

FFN Feedforward Neural Network

GAN Generative Adversarial Network

GDN Graph Deviation Networks

GHL Gas-oil Plant Heating Loop

GPD Generalized Pareto Distribution

GRU Gated Recurrent Unit

GTA Graph Learning with Transformer for Anomaly Detection

HBOS Histogram-Based Outlier Score

IoT Internet of Things

KBJNet Kinematic Bi-Joint Temporal Convolutional Network Attention for Anomaly Detection

KDD Knowledge Discovery and Data Mining

KNN k-Nearest Neighbor

LDCOF Local Density Cluster-based Outlier Factor

LOF Local Outlier Factor

LSTM Long Short-Term Memory Networks

LSTM-VAE Long Short-Term Memory Networks and Variational Autoencoder

MAD-GAN Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks

MAML Model-Agnostic and Meta-Learning

MBA MIT-BIH Supraventricular Arrhythmia Database

MSCRED Multi-Scale Convolutional Recurrent Encoder-Decoder

MSDS Material Safety Data Sheet

MSE Mean Squared Error

MSL Mars Science Laboratory

MTAD-GAT Multivariate Time-Series Anomaly Detection via Graph Attention Networks

MTS Multivariate Time Series

NAB Numenta Anomaly Benchmark

NSIBF Neural System Identification and Bayesian Filtering

PCA Principal Component Analysis

POT Peaks Over Threshold

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SMAP Soil Moisture Active Passive

SMD Server Machine Dataset

SoTa State of the Art

SVD Support Vector Data

SVDD Support Vector Data Description

SVM Support Vector Machine

SWaT Secure Water Treatment

TCN Temporal Convolutional Network

TranAD Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data

TWSVM Twin Support Vector Machine

USAD Unsupervised Anomaly Detection

UTRAD Anomaly Detection and Localization with U-Transformer

WADI Water Distribution
Table I Summary of 
terminology used.
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A. STATISTICAL AND MACHINE LEARNING

Several commonly used time series anomaly detection techniques include 3sigma, PCA, KNN, 
copula-based outlier detection (COPOD), LOF, and OC-SVM. The 3sigma method measures 
deviations from historical averages, while PCA calculates eigenvector distance differences 
according to Shyu et al. (2003). KNN determines anomalies based on the mean distance 
of nearest neighbors, as discussed in Kiss et al. (2014). COPOD utilizes statistical probability 
functions, OC-SVM seeks to learn decision boundaries for typical observations, and LOF is an 
unsupervised method based on density, as described by Li et al. (2020).

Patcha & Park (2007) introduced an outline of several methods for anomaly detection, 
including hidden Markov chains, PCA, process regression, and isolation forest, while also 
highlighting their limitations. Yaacob et al. (2010) introduced an auto-regressive integrated 
moving average (ARIMA) method, as a representative statistical approach for modeling and 
detecting anomalous behaviors. Bandaragoda et al. (2014) widely used isolation forest, 
which recursively divides the feature space using multiple isolation trees for anomaly 
detection.

In the healthcare sector, Salem et al. (2014) utilized linear regression combined with SVM to 
capture anomaly detection in wireless sensor networks. Shang et al. (2018) introduced SVM 
combined with mean clustering to increase the effectiveness of model training and enhance 
anomaly detection precision. Boniol et al. (2020) presented GraphAn, a graph-based approach 
that converts time series data using interval graph distance. Tran et al. (2020) employed 
clustering and database manipulation history in their outlier detection method, called CPOD. 
Kingsbury & Alvaro (2020) proposed Elle, another outlier detection method that leverages 
clustering and database manipulation history.

In their study, Dhiman et al. (2021) employed adaptive threshold techniques and Twin Support 
Vector Machines (TWSVM) to detect anomalies within two univariate time series data. They 
proposed these methods as effective approaches in their study. On the other hand, Wang 
et al. (2021) focused on enhancing the security of CAV (connected and autonomous vehicle) 
systems. They used an adaptive extended Kalman filter with a pre-trained single-class SVM. 
Their strategy attempted to increase the CAV systems’ overall security.

B. NEURAL NETWORK AND DEEP LEARNING

Several deep learning-based methods have already been proposed to resolve it. For robust 
anomaly detection, LSTM-based neural network architecture is used by neural system 
identification and Bayesian filtering (NSIBF) for Bayesian filtering and system identification. 
EncDec-AD (Malhotra et al. 2016) used LSTM as the base cell for both the encoder and decoder. 
To recreate the error for each input data and produce a representation with low-dimension, deep 
autoencoding Gaussian mixture model (DAGMM) (Zong et al. 2018) uses a deep autoencoder. 
The advantage of this method is it will not exploit temporal information. Meanwhile, MSCRED 
(Zhang et al. 2019) uses a convolutional encoder-decoder and an attention-based Conv-LSTM 
to recreate a multi-scale signature matrix. This will use residual signature matrices to detect 
anomalies, but it may take longer training time and limited performance with insufficient data.

Ergen and Kozat (2020) introduced an algorithm that uses LSTM to transform dynamic 
data length sequences into sequences with static length, then a single-class support vector 
machine-based anomaly detector decision function or a support vector data description 
technique comes next. OmniAnomaly (Su et al. 2019) proposed a recurrent neural network 
incorporating stochasticity to identify irregularities in multivariate time series data. LSTM-
VAE (Park et al. 2018) combined LSTM and variational autoencoder but overlooked the 
interconnection between stochastic variables. Multivariate anomaly detection for time series 
data with generative adversarial networks (MAD-GAN) (Li et al. 2019) adopts generator and 
discriminator base models in the GAN framework that utilizes LSTM-RNN to visualize time series 
distributions’ temporal relations. TCN-AE (Thill et al. 2021) ignores the correlation between time 
series and combines TCN and AE. Multivariate time-series anomaly detection via GAN (MTAD-
GAT) (Zhao et al. 2020) employs GAT (GATs) (Veličković et al. 2018) in both the feature and time 
dimensions to capture temporal and feature correlations. Anomaly Transformer (Xu et al. 2022) 
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proposed a minimax training strategy and used self-attention weights to identify anomalies. 
Graph learning with transformer for anomaly detection (GTA) (Chen et al. 2022) employed 
an architecture based on transformers to learn and capture temporal dependencies. They 
utilized this approach to acquire a graph structure that accurately represents the relationships 
between different elements within the data. Deep transformer networks for anomaly detection 
(TranAD) (Tuli et al. 2022) incorporated adversarial training and self-conditioning techniques in 
a transformer-based model to improve performance.

Huang et al. introduced HitAnomaly, an anomaly detection model based on log analysis. 
HitAnomaly utilizes a hierarchical transformer structure to capture and represent both the 
sequences of log templates and their corresponding parameter values. The classification 
model developed by the researchers was constructed by incorporating an attention 
mechanism. Additionally, they devised separate log sequences and parameter value encoders 
to obtain their respective representations. The study provides evidence that the transformer 
model outperforms LSTM and illustrates the successful modeling of log sequences using 
a hierarchical framework. Using three log datasets, the results demonstrated that Other 
currently used log-based anomaly detection methods have not performed as well as 
HitAnomaly (Huang et al. 2020).

Yu et al. (2023) combines autoregressive (AR) and adaptive ensemble (AE) with the addition of 
the transformer to capture the information of long sequences. Design convolution and dilated 
convolution as local TCN, introduce feedback mechanism, and loss ratio to improve detection 
accuracy and expand association differences.

C. STATE OF THE ART

The deep learning methodology has promising performance in multivariate time series (MTS) 
anomaly detection. Various approaches, including transformer-based models, autoencoder-
based models, and others, have been proposed, each with unique architectures and techniques. 
These models represent substantial progress in MTS anomaly detection and offer enticing 
possibilities for future research endeavors. However, a notable challenge in deep learning 
methodologies is the slow training process and the considerable computational complexity, 
potentially hindering their efficacy, particularly when dealing with longer sequences. We 
summarize the features of the state-of-the-art methods in Table II, highlighting the capabilities 
of our proposed method.

METHOD APPROACH MAIN 
ARCHITECTURE

SUPERVISED/
UNSUPERVISED

ABLE TO HANDLE 
LIMITED DATA

INTERPRETABILITY

DAGMM (Zong et al. 2018) Forecasting AE Unsupervised × ×

HitAnomaly (Huang et al. 2020) Forecasting Transformer Supervised × ×

TCN-AE (Thill et al. 2021) Reconstruction AE Unsupervised × ×

OmniAnomaly (Su et al. 2019) Reconstruction VAE Unsupervised × ×

LSTM-VAE (Park et al. 2018) Reconstruction VAE Semi × ×

GTA (Chen et al. 2022) Reconstruction GNN Semi × ×

MSCRED (Zhang et al. 2019) Reconstruction AE Unsupervised × ✓

MAD-GAN (Li et al. 2019) Reconstruction GAN Unsupervised × ×

USAD (Li et al. 2019) Reconstruction AE Unsupervised × ×

MTAD-GAT (Zhao et al. 2020) Hybrid GNN Supervised × ✓

CAE-M (Zhang et al. 2021) Hybrid AE Unsupervised × ×

GDN (Deng & Hooi 2021) Forecasting GNN Unsupervised × ✓

TranAD (Tuli et al. 2022) Reconstruction Transformer Unsupervised ✓ ✓

DTAAD (Yu et al. 2023) Reconstruction Transformer Unsupervised ✓ ✓

KBJNet Reconstruction Transformer Unsupervised ✓ ✓

Table II Summary of literature 
review multivariate time series.
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III. METHODOLOGY
In this section, we present a comprehensive methodology for addressing the problem formulation 
of anomaly detection using a combination of advanced machine learning techniques. Our 
methodology encompasses various stages, including data preprocessing, the implementation 
of dilated temporal convolutional networks (TCN), transformers, and a novel kinematic bi-joint 
TCN and transformer model. We also describe the training, meta-learning techniques, and 
inference procedures for efficient anomaly detection and diagnosis. Furthermore, we provide a 
summary of the performance measures employed to assess the efficiency of our approach in 
detecting anomalies. By integrating these components, our methodology offers a resilient and 
precise solution for identifying anomalies in real-world applications.

A. PREPROCESS

We examine a set of data points or observations organized in a time-stamped sequence and 
numerous variables. Each datapoint in the set T is gathered at a unique timestamp t, forming 
the datapoints xt of the set T. Each xt belongs to the vector space of real numbers with dimension 
m, for all values of t. In the univariate setting, m = 1. We assume that the joint probability of 
the entire time series x can be factorized into a product of conditional probabilities, where each 
observation at time t is conditionally dependent on the past observations ( ) ( ) ( )

1 2 –1, ,…,i i i
tx x x  in the 

same time series component i.

Given a multivariate time series input as the sum of values 
0,1:

l
i tz  for each time series i and 

dimension l. Each 
0,1:

l
i tz  represents a sequence of values 

0,1 ,2 ,1:, , …,l l l
i i i tz z z  in the l-th dimension 

of the time series data, where 
0,1:

l
i tz  is a vector in m . Each data point ( )i

tx  is a vector in m . To 
increase training stability and strengthen the resilience of KBJNet, we take steps to standardize 
datasets obtained from different sources.

In the data preprocessing stage, we filter out nonessential information from the datasets to 
concentrate only on the crucial data for anomaly detection. We exclude irrelevant details such 
as the source and description of the dataset and other unnecessary information. Instead, 
we emphasize essential elements like the dataset size, anomaly labels, and the time steps. 
Additionally, we standardize the data formats and specifications to ensure consistency 
throughout the dataset.

The data is normalized and transformed into time-series windows for training and testing. The 
normalization of the time-series data is conducted by applying the following equation:

 
–min( )

,
max( )–min( )+

t
t

x
x ¬

¢

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 (1)

X

Input
Multivariate Series
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+
Transformer
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+

+
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Preprocess Kinematic Bi-Joint Network Reconstructed Loss
Figure 1 Kinematic bi-joint 
network architecture for 
anomaly detection.
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B. SLIDING WINDOW

To represent the relationship of a value xt in a specific timestamp t, we investigate a relevant 
window of a certain length K as

 – +1= { , …, }t t K tW x x  (2)

For timestamps less than K, to incorporate replication padding, we extend the window Wt by 
adding a constant vector of length K-t. The input time series   is then converted into a sequence 
of sliding windows 1= { , …, }TW W . The use of sliding windows with replication padding helps 
preserve the data points’ local context, as shown in Figure 2.

Wt and Ot, the anomaly score st is computed.

The input window is labeled anomalous if its anomaly score is greater than the threshold value, 
which is calculated using the anomaly scores of the previous input windows.

C. DILATED TCN

We have developed a novel architecture to enhance feature-sharing efficiency while retaining 
the network’s ability to learn new features. Our approach involves implementing a bi-joint TCN 
design in which all blocks share a common dilated TCN. This approach significantly reduces 
redundancy in the feature extraction process while enabling the network to learn new features 
through its densely connected path.

The dilated convolution operation, concluded in Figure 3, is used in convolutional neural 
networks, known as a jump filter, that expands the receptive field exponentially in each layer. 
For a 1-D sequence input x nÎ  and a convolutional filter { }= 0, …, –1f k Î, the operation F on 
an element s of the sequence is defined as

 
–1

–

=0

( ) = (x )( ) = ( ) x*
k

d s d i

i

s f s f i ⋅⋅å  (3)
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d
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T
1

T
2

T
3 ... T

d

Time
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Figure 2 An illustration or 
depiction of data that involves 
multiple variables and occurs 
over a period of time.

Figure 3 The convolution has 
specific dilation factors of 1, 2, 
and 4 and a kernel size of 3. The 
input is represented as x, and 
the output is represented as y.
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where d denotes the dilation factor, k is the convolutional filter size, and –s d i⋅  indicates the 
index to the past according to d. In general, the receptive field r of a 1D convolutional network 
with n layers and a kernel size of k is given by = 1+ ( –1)r n k⋅ . To completely cover the input length, 
we set the number of layers n such that = ( –1)/( –1)n l ké ùê ú, where é ù⋅ê ú is rounded up. However, 
this causes the network to become too deep, resulting in a model with many parameters. We 
obtain a minimum number of layers required by the global TCN (Yu et al. 2023).

Our proposed approach involves feeding the decoder output back into the same TCN for 
additional processing, which helps the model improve the input data representation over time. 
This process potentially captures more complex patterns. The feedback loop between the 
decoder facilitates the model’s learning and adjustment to the input data.

D. TRANSFORMER

The Transformer model, widely used in natural language processing and machine vision, is 
based on attention. Attention scoring computes the dot product of dk-dimensional queries and 
keys and the dv-dimensional value, then applies a softmax activation function to the result to 
obtain weights multiplied by the value. This scoring function is efficient and compact. In the 
transformer, inputs undergo a transformation process, creating query, key, and value matrices 
Q, K, and V. To simplify the subsequent neural network model inference operations, the matrix 
V is compressed into a smaller representative embedding space using the softmax distribution 
to generate convex combination weights. The square root of the kd  is used to stabilize the 
model’s gradient, reduce weight fluctuations, and promote more stable training.

 Attention( , , )= softmax ,
T

k

QK
Q K V V

d

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø
 (4)

where Q, K, and V are matrices in model×n d , and dmodel is a learned dimension. Multi-headed 
attention enables the model to focus on diverse information simultaneously, and the result is 
concatenated and transformed using a linear projection to obtain dmodel-dimensional features. 
The model consists of two encoders and one decoder, with position encoding added to the 
output of the model’s first half to obtain the encoders’ input.

Position encoding is performed using sine and cosine functions where pos is the token’s 
position in the sequence, i is the index of the dimension in the encoding, and d_model is the 
dimension of the model. The FFN layers apply two linear layers with leaky ReLU activation 
functions to the input data. The first FFN’s output was then routed through the second linear 
layer to generate the FFN’s final output. In the decoder, the last FFN is then passed through by 
a sigmoid activation function.

E. KINEMATIC BI-JOINT TCN AND TRANSFORMER

The kinematic bi-joint TCN and transformer, as concluded in Figure 1 model processes input 
from a dilated TCN with dimensions (B, L, C), where B is the batch size, and L is the sequence 
length, and C is the number of features. The input is normalized using LayerNorm, which 
calculates the mean (μ) and variance (σ2) along the feature dimension as follows:

 
=1

1
=

L

blc

l

X
L

m å  (5)

 
2 2

=1

1
= ( – )

L

blc

l

X
L

s må
 (6)

The normalized input ˆ
blcX  at position (b, l, c) is obtained by subtracting μ from Xblc and dividing 

by the square root of 2 +s , where  is a small constant added for increasing numerical stability:

 
2

–ˆ =
+

blc
blc

X
X

m

s 
 (7)

The normalized tensor is then adjusted by scaling and shifting using cg  and cb  learnable 
parameters to get the output Yblc of the LayerNorm operation at position (b, l, c):

 ˆ= +c cblc blcY Xg b  (8)
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Both cg  and cb  are learnable parameters updated during training. The sliding window output T

 

is then transferred to a stack of B bi-joint TCN transformer blocks.

Each bi-joint block part of our model comprises one transformer encoder and one decoder. We 
then combine the output of the first part of the model with position encoding to obtain the 
input Ii, which is then passed through two separate encoders:

 1 = - ( + ( , , ))i i i i iI Layer Norm I MultiHead I I I  (9)

 1 = - ( + ( , , ))i i b b bI Layer Norm I MultiHead T T T
  

 (10)

where { }1,2iÎ  for the first and second encoder. The encoder’s output is then connected to 
the feedforward layer using residual connections and sent separately to the two decoders to 
obtain the final predicted outputs:

 3 2 2
1 2= + Leaky )(Re( LU ))(i i iI I FFN FFN I  (11)

 3= ( ( ))i iSigmoid FFN I  (12)

The sigmoid activation function is used to constrain the output range of i  to be between 0 and 
1, which is suitable for the later error reconstruction with the normalized sliding window input.

F. PROCEDURE FOR TRAINING

We use mean squared error (MSE) as the loss criterion to measure the error between the output 
prediction of each decoder and the original input window xt. We calculate the losses of the two 
decoders as L1 and L2, respectively, using the following equations:

 2 2
1 1 2 2

=1 =1

1 1
= ( – ) , = ( – )

n n

i i

i i

L O x L O x
n nå å  (13)

To obtain the total loss , we combine the losses of the two decoders from the first TCN and 
the second TCN by taking a weighted sum with a hyperparameter λ. The goal is to minimize the 
total loss of the hyperparameters W and model parameters Θ:

 * *

,
{ , } = argmin ( ( ( ; ); ))

W
x

W x Wy f
Q

Î

Q Qå


  (14)

where ϕ represents the overall network with total model parameters Θ, W denotes the collection 
of hyperparameters, and ψ represents the overall learning mapping for anomaly detection task.

G. META LEARNING

To improve the training of our KBJNet model with limited data, which exists in Algorithm 1 
line 12, In every training epoch, we update the weights of neural networks θ with a gradient 
descent step using the loss function L and the learning rate α.

Encoders E1 and E2, Decoders D1 and D2

Sliding windows W
Split time series into the dataset D
Hyperparameters W
Iteration N

1: Randomly initialize Θe,Θd

2: n ← 0
3: While n < N
4: for t = 1 to W do
5: Compute O1

6: Compute O2, O2 ← ϕD2

φ (φ (X:,t +O1; ΘE1) ;W)
7: Calculate and combine loss two decoder
8: Calculate gradient
9: Update {Θe,Θd}

10: n ← n+ 1
11: Learn meta weights E1, E2, D1, D2

Algorithm 1 The KBJNet 
Training Algorithm.
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This gives us the updated weights θ¢. Model-agnostic and meta-learning (MAML) (Finn et al. 
2017) is performed at the end of each epoch using the updated weights to update the model 
parameters θ with a meta step-size β. As a result, the model can be trained quickly with limited 
data. The algorithm can be written as:

 – ( ( )), – ( ( ))L f L fq qq q a q q q b q¢ ¢¬  ¬   (15)

H. INFERENCE PROCEDURE, ANOMALY DETECTION, AND DIAGNOSIS

Our approach, as concluded in Algorithm 2, involves performing online inference sequentially 
on a sliding window of input data, generating anomaly scores for each timestamp in each 
dimension. The Peak Over Threshold (Siffer et al. 2017) approach is used to dynamically select 
thresholds for each dimension by applying the Extreme Value Theory (EVT) to the univariate 
time series of anomaly scores obtained during offline training. Instead of manually setting 
thresholds and making assumptions about the distribution, we use the Generalized Pareto 
Distribution (GPD) (Siffer et al. 2017) function following EVT to fit the data and determine the 
appropriate value-at-risk (label) for dynamically setting the threshold, which is consistent with 
OmniAnomaly (Su et al. 2019), TranAD (Tran et al. 2020), and DTAAD (Yu et al. 2023) (Figure 4).

IV. EXPERIMENTS
We did tests to assess the effectiveness of our model, KBJNet. The dataset used in our 
experiments, as well as the performance metrics used, are described. We compared KBJNet with 
the most widely used models and advanced methods currently available as part of our baseline 
performed tests. We determined the hyperparameter values using the following values:

Figure 4 Visualization of 
anomaly prediction.

Algorithm 2 The KBJNet 
Testing Algorithm.

Require:
Encoders E1 and E2, Decoder D1

Sliding window size Ŵ
Split time series into dataset D̂
Hyperparameters W

1: Trained models Θ̂e, Θ̂d

2: Randomly sample one batch from dataset D̂
3: for t = 1 to Ŵ do
4: Compute Ô1 ← ϕD1

φ (φ(X:,t; Θ̂E1);W )
5: Calculate loss si
6: Merge the exceptions D, from yi (si ≥ POT(si))
7: return D;
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•	 Optimizer = Adam

•	 Learning rate = 0.009 and 0.5 step size step-scheduler

•	 Window size = 5

•	 Convolutional kernel size TCN = 3

•	 Transformer encoders = 2

•	 Layers of the encoder’s hidden units = 1

•	 Encoders dropout = 0.2

A. DATASET SOURCES

We use nine datasets in our experiments (eight public data sets). Table III shows the details 
of datasets. As an illustration, the SMAP dataset contains 55 distinct entities, each with 25 
dimensions.

1) Numenta Anomaly Benchmark (NAB) is an actual data stream containing marked 
exceptions from various sources, ranging from social media to temperature sensors to 
server network utilization (Su et al. 2019). We removed incorrectly tagged sequences of 
anomalies from this dataset for our performed tests.

2) HexagonML (UCR) is a multivariate time series dataset used in the KDD 2021 cup (Dau 
et al. 2019). We only used the portion of the dataset obtained from the real world.

3) MIT-BIH Supraventricular Arrhythmia Database (MBA) contains standard test materials for 
arrhythmia detectors (Moody & Mark 2001). This dataset has been used in around 500 
studies of cardiac dynamics.

4) Soil Moisture Active Passive (SMAP) is a 25-dimensional dataset collected by NASA that 
contains telemetry information anomaly data extracted from Anomalous Event Anomaly 
(ISA) reports from spacecraft monitoring systems (Hundman et al. 2018).

5) Mars Science Laboratory (MSL) is a SMAP-like dataset that includes actuator and sensor 
data from the Mars rover itself. We used only three non-trivial sequences (A4, C2, and T1) 
dataset in Hundman et al. (2018).

6) Secure Water Treatment (SWaT) consists of data obtained from 51 sensors in a 
continuously operating water treatment system (Mathur & Tippenhauer 2016). The data 
includes water level, flow rate, and other sensor readings.

7) Server Machine Dataset (SMD) was gathered over five weeks from a major internet 
company (Zhao et al. 2020). SMD was split into two sets of the same size, one used for 
training and the other for testing. Only the four non-trivial sequences from this dataset 
were utilized.

8) Multi-Source Distributed System (MSDS) consists of application logs, metrics, and 
distributed traces from a multi-source distributed system (Zhang et al. 2021).

9) Water Distribution (WADI) refers to an expansion of the SWaT system, which includes over 
two times the sensors and actuators compared to the original SWaT model. Additionally, 
the dataset was obtained over a longer period of time, covering 14 days for normal 
scenarios and two days for attack scenarios system (Ahmed et al. 2017).

TYPE DIMENSIONS TRAIN VALIDATION ANOMALIES RATE (%)

MSDS 10 (1) 146430 146430 5.37

SMD 38 (4) 708420 708420 4.16

SWaT 51 (1) 496800 449919 11.98

MSL 55 (3) 58317 73729 10.72

SMAP 25 (55) 135183 427617 13.13

MBA 2 (8) 100000 100000 0.14

UCR 1 (4) 1600 5900 1.88

NAB 1 (6) 4033 4033 0.92

WADI 123 (1) 1048571 172801 5.99
Table III Dataset 
characteristics.
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B. RESULT AND ANALYSIS

We comprehensively compared our newly proposed algorithm, KBJNet, and several state-
of-the-art algorithms in the field, such as MSCRED, MAD-GAN, USAD, MTAD-GAT, CAE-M, GDN, 
and DTAAD. To evaluate the performance of these algorithms, we employed a set of relevant 
metrics, including Precision (P), Recall (R), Area Under Curve (AUC), and F1 scores. We partition 
the data into 80% and 20% subsets for training purposes, respectively. This division allows us 
to examine how the models perform when provided with limited training examples and when 
trained on a larger volume of data. By assessing the model’s behavior in these contrasting 
scenarios, we can gain valuable insights into its scalability and generalization capabilities 
and identify potential challenges that may arise in real-world applications with varying data 
availability. This evaluation provides a comprehensive understanding of how our models 
perform with substantial data and a limited dataset, allowing us to make informed decisions 
regarding their suitability for different operational environments.

1) Performance with 20% of the training dataset: Recently developed models, including 
unsupervised anomaly detection (USAD), multivariate time-series anomaly detection via 
graph attention networks (MTAD-GAT), and graph deviation networks (GDN), utilize attention 
mechanisms to concentrate on particular features of the data and capture long-term 
trends by adjusting neural network weights. However, KBJNet, which utilizes self-attention, 
outperforms USAD, MTAD-GAT, and GDN across all datasets as shown Table V. USAD and 
MTAD-GAT have constraints when classifying anomalies that occur over an extended period 
because they only consider a local contextual window. To surpass this restriction, KBJNet 
utilizes self-conditioning on embedding the entire trace along with position encoding, which 
enhances temporal attention, except for DTAAD on the MBA dataset. The utilization of a 
meta-learning strategy with MAML enables KBJNet to swiftly acquire anomaly features within 
sequential data, even with a limited dataset volume (Figure 5). By employing only 20% of the 
available data, the performance of TranAD and DTAAD closely approaches that of KBJNet, 
primarily due to their utilization of a generative adversarial training approach for training the 
encoder-decoder structure. In general, KBJNet demonstrates better performance compared 
to all other methods.

2) Performance with 80% of the training dataset: Table IV provided illustrates a comparison 
between the KBJNet approach and other baseline methods in terms of performance metrics 
related to anomaly detection.

The POT method is used in models such as TranAD, DTAAD, and KBJNet to determine more 
precise threshold values by considering localized peak values in data sequences. Models like 
MSCRED use sequential observations as input and retain temporal information, but they may 
not detect anomalies close to normal trends. KBJNet addresses this issue by amplifying errors 
using a bi-joint network, enabling it to detect even mild anomalies in datasets such as SMD, 
where abnormal data is relatively close to regular data, shown in Figure 10.

MSCRED is effective in storing time information due to its continuous observation and good 
performance on partial datasets, but it struggles to identify anomalies close to normal and 
operates at a lower speed. The KBJNet architecture can effectively capture information from 
various dimensions simultaneously. At the same time, KBJNet can efficiently track input and 
capture long-range dependencies due to Position Encoding and residual connections. As seen 

Figure 5 Results in UCR.
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in Figure 8, TranAD, DTAAD, and KBJNet demonstrate advantages over other models because 
they utilize meta-learning to accelerate model training. Among other models, MSCRED and 
GRU from the MTAD-GAT model make their operation speed quite inefficient as they are not 
executed in parallel. On large-volume datasets, their training time is slower than KBJNet. Apart 
from KBJNet, USAD considers time performance optimization with limited effect. Therefore, 
USAD and MAD-GAN adopt generative adversarial training, making USAD less computationally 
intensive than MAD-GAN. Figures 6 and 7 illustrate the training time and inference time in all 
datasets.

3) Sensitivity to the number of training epoch: The correlation between the performance of the 
anomaly detection model and the number of training epochs is illustrated in Table VI. It reveals 
that the model’s recall rate remains consistently high at 0.9974 across all training epochs. 
This indicates that the model can accurately identify the significance of the true positive cases 
and has a low rate of false negatives, which is important for effectively detecting anomalies 
in non-normal datasets. The AUC score, which evaluates the model’s performance, increases 
from 0.9200 in the first epoch to 0.9985 in the tenth. This indicates that the model’s ability to 
accurately differentiate between anomalies and normal data points improves with increased 
training epochs. The F1-Score shows an increasing trend from 0.9393 in the second epoch to 
0.9972 in the tenth. This suggests that the model achieves a better balance between precision 
and recall as the number of training epochs increases, which is important for an effective 
anomaly detection model.

4) Sensitivity to window size: In this study, we present our findings derived from three 
multivariate datasets: SMD, MSDS, and WADI. This choice is based on the consistently better 

Figure 6 Training time in all 
datasets.

Figure 7 Inference time in all 
datasets.
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performance demonstrated by KBJNet across diverse datasets. Increasing the window size can 
affect the time dependency values in the data. A larger window size will result in increased 
dependency on other data points. This enhancement also impacts the speed of anomaly 
detection. Figure 8 illustrates the detection results for four window sizes across three datasets. 
Better performance is observed with window sizes of 5 and 20 for SMD and 20 for WADI. The 
results suggest that smaller windows are more suitable for datasets with weak dependencies. 
In the case of the SMD dataset, a decrease in performance is evident when the window size 
reduces the model’s generalization ability. Moreover, larger windows increase memory and 
computational requirements, thus slowing down the training process.

5) Sensitivity to MAML: The utilization of MAML enables KBJNet to swiftly discern unusual 
patterns in sequential data, even when dealing with a limited dataset (Table VII). The response 
of KBJNet to different datasets with varying K values in a sensitivity analysis is contingent 
upon the specific dataset under consideration. The effectiveness of MAML varies based on the 
degree of similarity between the meta-tasks and the target task. The findings suggest that 
selecting smaller K values in MAML is more suitable. In the case of the MSL dataset, we observe 
a deterioration in performance as K increases in SMD, impacting both computational efficiency 
and overall performance. Furthermore, larger K values impose greater computational demands 
and result in a slowdown of the training process.

6) Sensitivity to kernel size: In these findings, we maintained the global TCN layer and adjusted 
the filter size by altering the receptive field. Once again, we experimented using SMD, MSDS, 
and WADI datasets. The results are presented in Figure 9. Optimal performance was achieved 
for the SMD and MSDS datasets, with a slight decrease observed for WADI. Therefore, kernel 
size becomes a consideration. However, due to the consistent expansion factor, kernel size 
changes do not significantly impact the final results.

EPOCH PRECISION RECALL AUC F1-SCORE

1 0.9567 0.8440 0.9200 0.8968

2 0.8876 0.9974 0.9922 0.9393

3 0.8831 0.9974 0.9919 0.9368

4 0.8996 0.9974 0.9929 0.9460

5 0.9662 0.9974 0.9969 0.9815

6 0.9985 0.9974 0.9986 0.9979

7 0.9996 0.9974 0.9987 0.9985

8 0.9992 0.9974 0.9986 0.9983

9 0.9985 0.9974 0.9986 0.9979

10 0.9970 0.9974 0.9985 0.9972

Table VI The connection 
epochs and the performance 
on SMD datasets.

Figure 8 Sensitivity to window 
size.

Figure 9 Sensitivity to kernel 
size.
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7) Ablation analysis: Table VIII summarizes the F1 scores and AUC values for KBJNet and its 
ablated versions, each with 80% of the training dataset. First, our proposed KBJNet model has 
proven effective as it achieves the highest performance regarding both AUC and F1 scores on 
most datasets.

We conducted ablation experiments on the KBJNet model to evaluate the impact of each 
component by removing the bi-joint TCN, MAML, and transformer from the KBJNet model. 
From Table VIII, by observing the results, it is evident that eliminating the bi-joint TCN module 
slightly reduces the F1 scores for most datasets. However, its effect on the AUC scores of the 

METHODS 5 10 15 20

NAB 0.9231 0.9057 0.9057 0.9231

UCR 0.9328 0.9328 0.9328 0.9328

MBA 0.9869 0.9871 0.9867 0.9871

SMAP 0.9007 0.8926 0.8926 0.9338

MSL 0.9451 0.8998 0.8998 0.8998

SWaT 0.8087 0.8087 0.8094 0.8087

SMD 0.9983 0.9970 0.9820 0.9983

MSDS 0.9107 0.9107 0.9107 0.9107

WADI 0.1511 0.1104 0.1208 0.1071

Table VII Sensitivity KBJNet to 
MAML 20% datasets according 
to meta step-size.

COMPONENT NAB UCR MBA

AUC F1 AUC F1 AUC F1

KBJNet 0.9996 0.9412 0.9999 0.9999 0.9898 0.9805

(-)Bi-Joint TCN 0.9996 0.9411 0.9986 0.9327 0.9898 0.9787

(-)MAML 0.9996 0.9412 0.9990 0.9527 0.9889 0.9787

(-)Transformer 0.9325 0.9050 0.9980 0.9188 0.9926 0.9858

COMPONENT SMAP MSL SWaT

AUC F1 AUC F1 AUC F1

KBJNet 0.9901 0.9072 0.9916 0.9496 0.8463 0.8109

(-)Bi-Joint TCN 0.9903 0.9083 0.9565 0.7848 0.8462 0.8101

(-)MAML 0.9890 0.8974 0.9573 0.7878 0.8462 0.8101

(-)Transformer 0.9853 0.8682 0.9700 0.8412 0.8459 0.8086

COMPONENT SMD MSDS

AUC F1 AUC F1

KBJNet 0.9987 0.9985 0.9248 0.9573

(-)Bi-Joint TCN 0.9911 0.8732 0.9809 0.8991

(-)MAML 0.9923 0.8790 0.9784 0.8872

(-)Transformer 0.9852 0.8582 0.9789 0.8937

Table VIII F1 scores and AUC 
for KBJNet with 80% of the 
training datasets.

Figure 10 Ground truth and 
predicted for the SMD using 
the KBJNet.
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UCR, MBA, SMAP, and MSL datasets is more pronounced. This indicates that the bi-joint TCN 
module contributes significantly to capturing temporal dependencies and enhancing the 
overall effectiveness of the KBJNet model.

Next, we observe that removing the MAML module has a greater impact on the F1 scores 
than on the AUC values of most datasets, indicating that the MAML module contributes to 
improving the model’s ability to adapt to new tasks and data distributions. Finally, removing 
the transformer module exerts the greatest influence on the AUC values of the NAB and 
MSL datasets. This suggests that the transformer module is essential for capturing global 
contextual information and enhancing the model’s discriminative power. Figure 6 reveals that 
KBJNet requires significantly less time than the baseline methods. These findings indicate the 
lightweight nature of our model and highlight the benefits of incorporating positional encoding.

In summary The Table VIII, our ablation study confirms that the KBJNet model’s component 
contributes to performance as a whole in anomaly detection, with the bi-joint TCN module 
playing the most critical role in capturing temporal dependencies, followed by the MAML 
module for better adaptation to new tasks and the transformer module for capturing global 
contextual information.

V. CONCLUSION
This research developed the KBJNet, a novel anomaly detection model based on bi-joint TCN, 
which accurately identifies anomalies within multivariate time series data. Leveraging the 
power of the transformer architecture, our model adeptly handles lengthy data sequences.

Through rigorous experimentation across nine benchmark datasets, KBJNet outperforms 
established state-of-the-art methods, yielding substantial enhancements in F1 and F1* scores, 
ranging from 2% to 9%, for complete and compact datasets, respectively. We noticed that our 
algorithm did not surpass all aspects of the other algorithms. However, it is worth highlighting 
that KBJNet exhibited superior performance to most algorithms under consideration. 
Furthermore, KBJNet is versatile and can adapt for deployment across diverse devices, making 
it particularly well-suited for contemporary industrial and embedded systems demanding 
accurate and efficient anomaly detection.

To ensure a more comprehensive assessment of its efficacy, further experimentation with 
datasets from diverse fields will be beneficial. This broader testing approach will enable us to 
determine the model’s applicability and performance in various contexts beyond the industrial 
domain. Optimizing our model’s efficiency remains open to further research, potentially 
enhancing processing speed and resource utilization.
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	I. INTRODUCTION
	I. INTRODUCTION
	Nowadays, IT activities generate a significant amount of high-dimensional sensor data. Although big data analytics and deep learning have made handling massive amounts of data possible, identifying irregularities in such data remains challenging due to the vast volume, noise, and uneven data distribution that make it difficult to detect anomalies. This phenomenon is called the ‘dimensionality curse’ (). Moreover, anomalies can arise from interactions between multiple causes, which further complicates the de
	Thudumu et al. 2020

	Anomalies reveal unusual characteristics within the systems and entities responsible for supplying data. These atypical traits offer valuable insights for real-world applications. Detecting data anomalies can uncover outliers, identify environmental conditions requiring human attention, or optimize computing resources by preemptively filtering undesired data segments. For cloud systems, promptly identifying anomalies following an incident is crucial in preventing more significant failures that may impact cu
	Darban et al. 2022

	Anomaly detection involves identifying data points, patterns, or traffic that significantly deviate from a system’s expected behavior. Outliers that deviate substantially from the rest of the distribution are labeled as anomalies (). Anomaly detection is essential for creating trustworthy computer systems () in commercial, industrial, healthcare, and military applications to ensure crucial processes or decisions are safe (). Anomaly detection based on statistical, rule-based, machine learning, and neural ne
	Bulusu et al. 2020
	Wang et al. 2022
	Sarker 2021
	Chatterjee & Ahmed 2022

	Various statistical, rule-based, and machine-learning methods have previously been developed to find abnormalities in time series data. Rule-based methods compare data to an anomaly rule, which can be flawed and require frequent updates, making it time-consuming. Statistical methods estimate parameters based on a particular distribution but may fail to capture underlying nonlinearities and dynamical linkages. Machine learning approaches come in three types: supervised, unsupervised, and weakly supervised le
	Schölkopf et al. 2001
	Ramaswamy et al. 2000
	Tax & Duin 2004
	Pan et al. 2010
	Goldstein & Dengel 2012
	Breunig et al. 2000
	Amer & Goldstein 2012
	Chowdhury et al. 2017
	Jin et al. 
	2017
	Zang et al. 2018
	Budiarto et al. 2019
	Hu et al. 2020
	Budiarto et al. 2019

	Anomaly detection methods using deep learning have attracted interest and become popular due to their ability to handle challenging detection problems in various real-world applications. Recurrent neural networks (RNNs) can be a good option to solve sequence modeling problems. However, traditional RNNs struggle to capture remote relationships due to gradient disappearance in long-sequence modeling problems. Popular RNN () variations, including gated recurrent unit (GRU) () and long short-term memory (LSTM) 
	Shih 
	et al. 2019
	Qu et al. 2018
	Provotar et al. 2019
	Luo et al. 2020

	Recently, the Transformer model’s encoding of large sequences allows for almost independent accuracy and inference time, making it an excellent choice for anomaly detection models that mine long-term dependencies and deal with nonlinear dynamics. Nonetheless, the Transformer model can only handle sequences with a length of a few hundred (). The Transformer model has a significant computational complexity for extended sequences, and the training is slow. To address these issues, recent research has proposed 
	Chen et al. 2020
	Yin et al. 2022

	While there have been notable improvements in anomaly detection for time series data, conventional statistical approaches and machine learning algorithms have limitations in effectively handling nonlinear, high-dimensional, and noisy data. Although LSTM and GRU neural networks can capture contextual information, they face challenges due to their slow inference speed and inefficiency. On the other hand, transformers demonstrate strengths in parallelization and capturing long-range dependencies in input seque
	Based on the aforementioned considerations, we introduce a novel model called KBJNet, which integrates the TCN and transformers architectures using a dual-path network for detecting abnormalities in multivariate time series data. The KBJNet model incorporates an adaptable multi-head mechanism for attention that comprehensively captures the characteristics of each dimension in the data, enabling effective anomaly detection. Our key contributions include:
	•.
	•.
	•.
	•.

	Our study proposes a new model architecture for capturing anomalies involving a combination of dilated TCN and transformers. The TCN utilizes dilation convolution to establish a perceptual field. To ensure a global perceptual field that covers the whole input sequence, the minimum number of convolutional layers is determined based on factors such as the input sequence length, convolution kernel size, and dilation coefficient. In other words, the range of the dilation convolution is adjusted to encompass the

	•.
	•.
	•.

	We embed this combined TCN and transformers into a dual-path network, which enhances its efficiency and effectiveness for modeling extremely long sequences and high dimensions.

	•.
	•.
	•.

	We introduce a dual path network that utilizes a shared TCN Attention mechanism for assigning weights to time steps. This approach facilitates recognizing and prioritizing crucial information within a multivariate time series.

	•.
	•.
	•.

	Our method has undergone comprehensive testing on standard datasets and has demonstrated superior performance compared to the current leading techniques in benchmark tests.


	II. LITERATURE REVIEW
	This section presents a comprehensive literature review on anomaly detection, emphasizing three crucial areas: statistical and machine learning approaches, neural network and deep learning techniques, and the current state-of-the-art.  summarizes terminologies used in this study.
	Table I

	A. STATISTICAL AND MACHINE LEARNING
	Several commonly used time series anomaly detection techniques include 3sigma, PCA, KNN, copula-based outlier detection (COPOD), LOF, and OC-SVM. The 3sigma method measures deviations from historical averages, while PCA calculates eigenvector distance differences according to Shyu et al. (). KNN determines anomalies based on the mean distance of nearest neighbors, as discussed in Kiss et al. (). COPOD utilizes statistical probability functions, OC-SVM seeks to learn decision boundaries for typical observati
	2003
	2014
	2020

	Patcha & Park () introduced an outline of several methods for anomaly detection, including hidden Markov chains, PCA, process regression, and isolation forest, while also highlighting their limitations. Yaacob et al. () introduced an auto-regressive integrated moving average (ARIMA) method, as a representative statistical approach for modeling and detecting anomalous behaviors. Bandaragoda et al. () widely used isolation forest, which recursively divides the feature space using multiple isolation trees for 
	2007
	2010
	2014

	In the healthcare sector, Salem et al. () utilized linear regression combined with SVM to capture anomaly detection in wireless sensor networks. Shang et al. () introduced SVM combined with mean clustering to increase the effectiveness of model training and enhance anomaly detection precision. Boniol et al. () presented GraphAn, a graph-based approach that converts time series data using interval graph distance. Tran et al. () employed clustering and database manipulation history in their outlier detection 
	2014
	2018
	2020
	2020
	2020

	In their study, Dhiman et al. () employed adaptive threshold techniques and Twin Support Vector Machines (TWSVM) to detect anomalies within two univariate time series data. They proposed these methods as effective approaches in their study. On the other hand, Wang et al. () focused on enhancing the security of CAV (connected and autonomous vehicle) systems. They used an adaptive extended Kalman filter with a pre-trained single-class SVM. Their strategy attempted to increase the CAV systems’ overall security
	2021
	2021

	B. NEURAL NETWORK AND DEEP LEARNING
	Several deep learning-based methods have already been proposed to resolve it. For robust anomaly detection, LSTM-based neural network architecture is used by neural system identification and Bayesian filtering (NSIBF) for Bayesian filtering and system identification. EncDec-AD () used LSTM as the base cell for both the encoder and decoder. To recreate the error for each input data and produce a representation with low-dimension, deep autoencoding Gaussian mixture model (DAGMM) () uses a deep autoencoder. Th
	Malhotra et al. 2016
	Zong et al. 2018
	Zhang et al. 2019

	Ergen and Kozat () introduced an algorithm that uses LSTM to transform dynamic data length sequences into sequences with static length, then a single-class support vector machine-based anomaly detector decision function or a support vector data description technique comes next. OmniAnomaly () proposed a recurrent neural network incorporating stochasticity to identify irregularities in multivariate time series data. LSTM-VAE () combined LSTM and variational autoencoder but overlooked the interconnection betw
	2020
	Su et al. 2019
	Park et al. 2018
	Li et al. 2019
	Thill et al. 2021
	Zhao et al. 2020
	Veličković et al. 2018
	Xu et al. 2022
	Chen et al. 2022
	Tuli et al. 2022

	Huang et al. introduced HitAnomaly, an anomaly detection model based on log analysis. HitAnomaly utilizes a hierarchical transformer structure to capture and represent both the sequences of log templates and their corresponding parameter values. The classification model developed by the researchers was constructed by incorporating an attention mechanism. Additionally, they devised separate log sequences and parameter value encoders to obtain their respective representations. The study provides evidence that
	Huang et al. 2020

	Yu et al. () combines autoregressive (AR) and adaptive ensemble (AE) with the addition of the transformer to capture the information of long sequences. Design convolution and dilated convolution as local TCN, introduce feedback mechanism, and loss ratio to improve detection accuracy and expand association differences.
	2023

	C. STATE OF THE ART
	The deep learning methodology has promising performance in multivariate time series (MTS) anomaly detection. Various approaches, including transformer-based models, autoencoder-based models, and others, have been proposed, each with unique architectures and techniques. These models represent substantial progress in MTS anomaly detection and offer enticing possibilities for future research endeavors. However, a notable challenge in deep learning methodologies is the slow training process and the considerable
	Table II

	III. METHODOLOGY
	In this section, we present a comprehensive methodology for addressing the problem formulation of anomaly detection using a combination of advanced machine learning techniques. Our methodology encompasses various stages, including data preprocessing, the implementation of dilated temporal convolutional networks (TCN), transformers, and a novel kinematic bi-joint TCN and transformer model. We also describe the training, meta-learning techniques, and inference procedures for efficient anomaly detection and di
	A. PREPROCESS
	We examine a set of data points or observations organized in a time-stamped sequence and numerous variables. Each datapoint in the set T is gathered at a unique timestamp t, forming the datapoints x of the set T. Each x belongs to the vector space of real numbers with dimension m, for all values of t. In the univariate setting, m = 1. We assume that the joint probability of the entire time series  can be factorized into a product of conditional probabilities, where each observation at time t is conditionall
	t
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	Given a multivariate time series input as the sum of values  for each time series i and dimension l. Each  represents a sequence of values  in the l-th dimension of the time series data, where  is a vector in . Each data point  is a vector in . To increase training stability and strengthen the resilience of KBJNet, we take steps to standardize datasets obtained from different sources.
	0,1:litz
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	In the data preprocessing stage, we filter out nonessential information from the datasets to concentrate only on the crucial data for anomaly detection. We exclude irrelevant details such as the source and description of the dataset and other unnecessary information. Instead, we emphasize essential elements like the dataset size, anomaly labels, and the time steps. Additionally, we standardize the data formats and specifications to ensure consistency throughout the dataset.
	The data is normalized and transformed into time-series windows for training and testing. The normalization of the time-series data is conducted by applying the following equation:
	  (1)
	–min(),max()–min()+ttxx¬¢

	B. SLIDING WINDOW
	To represent the relationship of a value x in a specific timestamp t, we investigate a relevant window of a certain length K as
	t

	  (2)
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	For timestamps less than K, to incorporate replication padding, we extend the window W by adding a constant vector of length K-t. The input time series  is then converted into a sequence of sliding windows . The use of sliding windows with replication padding helps preserve the data points’ local context, as shown in .
	t
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	Figure 2

	W and O, the anomaly score s is computed.
	t
	t
	t

	The input window is labeled anomalous if its anomaly score is greater than the threshold value, which is calculated using the anomaly scores of the previous input windows.
	C. DILATED TCN
	We have developed a novel architecture to enhance feature-sharing efficiency while retaining the network’s ability to learn new features. Our approach involves implementing a bi-joint TCN design in which all blocks share a common dilated TCN. This approach significantly reduces redundancy in the feature extraction process while enabling the network to learn new features through its densely connected path.
	The dilated convolution operation, concluded in , is used in convolutional neural networks, known as a jump filter, that expands the receptive field exponentially in each layer. For a 1-D sequence input  and a convolutional filter , the operation F on an element s of the sequence is defined as
	Figure 3
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	where d denotes the dilation factor, k is the convolutional filter size, and  indicates the index to the past according to d. In general, the receptive field r of a 1D convolutional network with n layers and a kernel size of k is given by . To completely cover the input length, we set the number of layers n such that , where  is rounded up. However, this causes the network to become too deep, resulting in a model with many parameters. We obtain a minimum number of layers required by the global TCN ().
	–sdi⋅
	=1+(–1)rnk⋅
	=(–1)/(–1)nlkéùêú
	éù⋅êú
	Yu et al. 2023

	Our proposed approach involves feeding the decoder output back into the same TCN for additional processing, which helps the model improve the input data representation over time. This process potentially captures more complex patterns. The feedback loop between the decoder facilitates the model’s learning and adjustment to the input data.
	D. TRANSFORMER
	The Transformer model, widely used in natural language processing and machine vision, is based on attention. Attention scoring computes the dot product of d-dimensional queries and keys and the d-dimensional value, then applies a softmax activation function to the result to obtain weights multiplied by the value. This scoring function is efficient and compact. In the transformer, inputs undergo a transformation process, creating query, key, and value matrices Q, K, and V. To simplify the subsequent neural n
	k
	v
	kd

	  (4)
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	where Q, K, and V are matrices in , and d is a learned dimension. Multi-headed attention enables the model to focus on diverse information simultaneously, and the result is concatenated and transformed using a linear projection to obtain d-dimensional features. The model consists of two encoders and one decoder, with position encoding added to the output of the model’s first half to obtain the encoders’ input.
	model×nd
	model
	model

	Position encoding is performed using sine and cosine functions where pos is the token’s position in the sequence, i is the index of the dimension in the encoding, and d_model is the dimension of the model. The FFN layers apply two linear layers with leaky ReLU activation functions to the input data. The first FFN’s output was then routed through the second linear layer to generate the FFN’s final output. In the decoder, the last FFN is then passed through by a sigmoid activation function.
	E. KINEMATIC BI-JOINT TCN AND TRANSFORMER
	The kinematic bi-joint TCN and transformer, as concluded in  model processes input from a dilated TCN with dimensions (B, L, C), where B is the batch size, and L is the sequence length, and C is the number of features. The input is normalized using LayerNorm, which calculates the mean (μ) and variance (σ) along the feature dimension as follows:
	Figure 1
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	  (5)
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	The normalized input  at position (b, l, c) is obtained by subtracting μ from X and dividing by the square root of , where  is a small constant added for increasing numerical stability:
	ˆblcX
	blc
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	The normalized tensor is then adjusted by scaling and shifting using  and  learnable parameters to get the output Y of the LayerNorm operation at position (b, l, c):
	cg
	cb
	blc

	  (8)
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	Both  and  are learnable parameters updated during training. The sliding window output  is then transferred to a stack of B bi-joint TCN transformer blocks.
	cg
	cb
	T

	Each bi-joint block part of our model comprises one transformer encoder and one decoder. We then combine the output of the first part of the model with position encoding to obtain the input I, which is then passed through two separate encoders:
	i

	  (9)
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	  (10)
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	where  for the first and second encoder. The encoder’s output is then connected to the feedforward layer using residual connections and sent separately to the two decoders to obtain the final predicted outputs:
	{}1,2iÎ

	  (11)
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	The sigmoid activation function is used to constrain the output range of  to be between 0 and 1, which is suitable for the later error reconstruction with the normalized sliding window input.
	i

	F. PROCEDURE FOR TRAINING
	We use mean squared error (MSE) as the loss criterion to measure the error between the output prediction of each decoder and the original input window x. We calculate the losses of the two decoders as L and L, respectively, using the following equations:
	t
	1
	2

	  (13)
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	To obtain the total loss , we combine the losses of the two decoders from the first TCN and the second TCN by taking a weighted sum with a hyperparameter λ. The goal is to minimize the total loss of the hyperparameters W and model parameters Θ:
	

	  (14)
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	where ϕ represents the overall network with total model parameters Θ, W denotes the collection of hyperparameters, and ψ represents the overall learning mapping for anomaly detection task.
	G. META LEARNING
	To improve the training of our KBJNet model with limited data, which exists in  line 12, In every training epoch, we update the weights of neural networks θ with a gradient descent step using the loss function L and the learning rate α.
	Algorithm 1

	This gives us the updated weights θ¢. Model-agnostic and meta-learning (MAML) () is performed at the end of each epoch using the updated weights to update the model parameters θ with a meta step-size β. As a result, the model can be trained quickly with limited data. The algorithm can be written as:
	Finn et al. 
	2017

	  (15)
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	H. INFERENCE PROCEDURE, ANOMALY DETECTION, AND DIAGNOSIS
	Our approach, as concluded in , involves performing online inference sequentially on a sliding window of input data, generating anomaly scores for each timestamp in each dimension. The Peak Over Threshold () approach is used to dynamically select thresholds for each dimension by applying the Extreme Value Theory (EVT) to the univariate time series of anomaly scores obtained during offline training. Instead of manually setting thresholds and making assumptions about the distribution, we use the Generalized P
	Algorithm 2
	Siffer et al. 2017
	Siffer et al. 2017
	Su et al. 2019
	Tran et al. 2020
	Yu et al. 2023
	Figure 4

	IV. EXPERIMENTS
	We did tests to assess the effectiveness of our model, KBJNet. The dataset used in our experiments, as well as the performance metrics used, are described. We compared KBJNet with the most widely used models and advanced methods currently available as part of our baseline performed tests. We determined the hyperparameter values using the following values:
	•.
	•.
	•.
	•.

	Optimizer = Adam

	•.
	•.
	•.

	Learning rate = 0.009 and 0.5 step size step-scheduler

	•.
	•.
	•.

	Window size = 5

	•.
	•.
	•.

	Convolutional kernel size TCN = 3

	•.
	•.
	•.

	Transformer encoders = 2

	•.
	•.
	•.

	Layers of the encoder’s hidden units = 1

	•.
	•.
	•.

	Encoders dropout = 0.2


	A. DATASET SOURCES
	We use nine datasets in our experiments (eight public data sets).  shows the details of datasets. As an illustration, the SMAP dataset contains 55 distinct entities, each with 25 dimensions.
	Table III

	1) Numenta Anomaly Benchmark (NAB) is an actual data stream containing marked exceptions from various sources, ranging from social media to temperature sensors to server network utilization (). We removed incorrectly tagged sequences of anomalies from this dataset for our performed tests.
	Su et al. 2019

	2) HexagonML (UCR) is a multivariate time series dataset used in the KDD 2021 cup (). We only used the portion of the dataset obtained from the real world.
	Dau 
	et al. 2019

	3) MIT-BIH Supraventricular Arrhythmia Database (MBA) contains standard test materials for arrhythmia detectors (). This dataset has been used in around 500 studies of cardiac dynamics.
	Moody & Mark 2001

	4) Soil Moisture Active Passive (SMAP) is a 25-dimensional dataset collected by NASA that contains telemetry information anomaly data extracted from Anomalous Event Anomaly (ISA) reports from spacecraft monitoring systems ().
	Hundman et al. 2018

	5) Mars Science Laboratory (MSL) is a SMAP-like dataset that includes actuator and sensor data from the Mars rover itself. We used only three non-trivial sequences (A4, C2, and T1) dataset in Hundman et al. ().
	2018

	6) Secure Water Treatment (SWaT) consists of data obtained from 51 sensors in a continuously operating water treatment system (). The data includes water level, flow rate, and other sensor readings.
	Mathur & Tippenhauer 2016

	7) Server Machine Dataset (SMD) was gathered over five weeks from a major internet company (). SMD was split into two sets of the same size, one used for training and the other for testing. Only the four non-trivial sequences from this dataset were utilized.
	Zhao et al. 2020

	8) Multi-Source Distributed System (MSDS) consists of application logs, metrics, and distributed traces from a multi-source distributed system ().
	Zhang et al. 2021

	9) Water Distribution (WADI) refers to an expansion of the SWaT system, which includes over two times the sensors and actuators compared to the original SWaT model. Additionally, the dataset was obtained over a longer period of time, covering 14 days for normal scenarios and two days for attack scenarios system ().
	Ahmed et al. 2017

	B. RESULT AND ANALYSIS
	We comprehensively compared our newly proposed algorithm, KBJNet, and several state-of-the-art algorithms in the field, such as MSCRED, MAD-GAN, USAD, MTAD-GAT, CAE-M, GDN, and DTAAD. To evaluate the performance of these algorithms, we employed a set of relevant metrics, including Precision (P), Recall (R), Area Under Curve (AUC), and F1 scores. We partition the data into 80% and 20% subsets for training purposes, respectively. This division allows us to examine how the models perform when provided with lim
	1) Performance with 20% of the training dataset: Recently developed models, including unsupervised anomaly detection (USAD), multivariate time-series anomaly detection via graph attention networks (MTAD-GAT), and graph deviation networks (GDN), utilize attention mechanisms to concentrate on particular features of the data and capture long-term trends by adjusting neural network weights. However, KBJNet, which utilizes self-attention, outperforms USAD, MTAD-GAT, and GDN across all datasets as shown . USAD an
	Table V
	Figure 5

	2) Performance with 80% of the training dataset:  provided illustrates a comparison between the KBJNet approach and other baseline methods in terms of performance metrics related to anomaly detection.
	Table IV

	The POT method is used in models such as TranAD, DTAAD, and KBJNet to determine more precise threshold values by considering localized peak values in data sequences. Models like MSCRED use sequential observations as input and retain temporal information, but they may not detect anomalies close to normal trends. KBJNet addresses this issue by amplifying errors using a bi-joint network, enabling it to detect even mild anomalies in datasets such as SMD, where abnormal data is relatively close to regular data, 
	Figure 10

	MSCRED is effective in storing time information due to its continuous observation and good performance on partial datasets, but it struggles to identify anomalies close to normal and operates at a lower speed. The KBJNet architecture can effectively capture information from various dimensions simultaneously. At the same time, KBJNet can efficiently track input and capture long-range dependencies due to Position Encoding and residual connections. As seen in , TranAD, DTAAD, and KBJNet demonstrate advantages 
	Figure 8
	Figures 6
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	3) Sensitivity to the number of training epoch: The correlation between the performance of the anomaly detection model and the number of training epochs is illustrated in . It reveals that the model’s recall rate remains consistently high at 0.9974 across all training epochs. This indicates that the model can accurately identify the significance of the true positive cases and has a low rate of false negatives, which is important for effectively detecting anomalies in non-normal datasets. The AUC score, whic
	Table VI

	4) Sensitivity to window size: In this study, we present our findings derived from three multivariate datasets: SMD, MSDS, and WADI. This choice is based on the consistently better performance demonstrated by KBJNet across diverse datasets. Increasing the window size can affect the time dependency values in the data. A larger window size will result in increased dependency on other data points. This enhancement also impacts the speed of anomaly detection.  illustrates the detection results for four window s
	Figure 8

	5) Sensitivity to MAML: The utilization of MAML enables KBJNet to swiftly discern unusual patterns in sequential data, even when dealing with a limited dataset (). The response of KBJNet to different datasets with varying K values in a sensitivity analysis is contingent upon the specific dataset under consideration. The effectiveness of MAML varies based on the degree of similarity between the meta-tasks and the target task. The findings suggest that selecting smaller K values in MAML is more suitable. In t
	Table VII

	6) Sensitivity to kernel size: In these findings, we maintained the global TCN layer and adjusted the filter size by altering the receptive field. Once again, we experimented using SMD, MSDS, and WADI datasets. The results are presented in . Optimal performance was achieved for the SMD and MSDS datasets, with a slight decrease observed for WADI. Therefore, kernel size becomes a consideration. However, due to the consistent expansion factor, kernel size changes do not significantly impact the final results.
	Figure 9

	7) Ablation analysis:  summarizes the F1 scores and AUC values for KBJNet and its ablated versions, each with 80% of the training dataset. First, our proposed KBJNet model has proven effective as it achieves the highest performance regarding both AUC and F1 scores on most datasets.
	Table VIII

	We conducted ablation experiments on the KBJNet model to evaluate the impact of each component by removing the bi-joint TCN, MAML, and transformer from the KBJNet model. From , by observing the results, it is evident that eliminating the bi-joint TCN module slightly reduces the F1 scores for most datasets. However, its effect on the AUC scores of the UCR, MBA, SMAP, and MSL datasets is more pronounced. This indicates that the bi-joint TCN module contributes significantly to capturing temporal dependencies a
	Table VIII

	Next, we observe that removing the MAML module has a greater impact on the F1 scores than on the AUC values of most datasets, indicating that the MAML module contributes to improving the model’s ability to adapt to new tasks and data distributions. Finally, removing the transformer module exerts the greatest influence on the AUC values of the NAB and MSL datasets. This suggests that the transformer module is essential for capturing global contextual information and enhancing the model’s discriminative power
	Figure 6

	In summary The , our ablation study confirms that the KBJNet model’s component contributes to performance as a whole in anomaly detection, with the bi-joint TCN module playing the most critical role in capturing temporal dependencies, followed by the MAML module for better adaptation to new tasks and the transformer module for capturing global contextual information.
	Table VIII

	V. CONCLUSION
	This research developed the KBJNet, a novel anomaly detection model based on bi-joint TCN, which accurately identifies anomalies within multivariate time series data. Leveraging the power of the transformer architecture, our model adeptly handles lengthy data sequences.
	Through rigorous experimentation across nine benchmark datasets, KBJNet outperforms established state-of-the-art methods, yielding substantial enhancements in F1 and F1* scores, ranging from 2% to 9%, for complete and compact datasets, respectively. We noticed that our algorithm did not surpass all aspects of the other algorithms. However, it is worth highlighting that KBJNet exhibited superior performance to most algorithms under consideration. Furthermore, KBJNet is versatile and can adapt for deployment 
	To ensure a more comprehensive assessment of its efficacy, further experimentation with datasets from diverse fields will be beneficial. This broader testing approach will enable us to determine the model’s applicability and performance in various contexts beyond the industrial domain. Optimizing our model’s efficiency remains open to further research, potentially enhancing processing speed and resource utilization.
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	METHOD
	METHOD
	METHOD
	METHOD
	METHOD
	METHOD

	APPROACH
	APPROACH

	MAIN ARCHITECTURE
	MAIN ARCHITECTURE

	SUPERVISED/UNSUPERVISED
	SUPERVISED/UNSUPERVISED

	ABLE TO HANDLE LIMITED DATA
	ABLE TO HANDLE LIMITED DATA

	INTERPRETABILITY
	INTERPRETABILITY


	DAGMM ()
	DAGMM ()
	DAGMM ()
	Zong et al. 2018


	Forecasting
	Forecasting

	AE
	AE

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	HitAnomaly ()
	HitAnomaly ()
	HitAnomaly ()
	Huang et al. 2020


	Forecasting
	Forecasting

	Transformer
	Transformer

	Supervised
	Supervised

	×
	×

	×
	×


	TCN-AE ()
	TCN-AE ()
	TCN-AE ()
	Thill et al. 2021


	Reconstruction
	Reconstruction

	AE
	AE

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	OmniAnomaly ()
	OmniAnomaly ()
	OmniAnomaly ()
	Su et al. 2019


	Reconstruction
	Reconstruction

	VAE
	VAE

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	LSTM-VAE ()
	LSTM-VAE ()
	LSTM-VAE ()
	Park et al. 2018


	Reconstruction
	Reconstruction

	VAE
	VAE

	Semi
	Semi

	×
	×

	×
	×


	GTA ()
	GTA ()
	GTA ()
	Chen et al. 2022


	Reconstruction
	Reconstruction

	GNN
	GNN

	Semi
	Semi

	×
	×

	×
	×


	MSCRED ()
	MSCRED ()
	MSCRED ()
	Zhang et al. 2019


	Reconstruction
	Reconstruction

	AE
	AE

	Unsupervised
	Unsupervised

	×
	×

	✓
	✓


	MAD-GAN ()
	MAD-GAN ()
	MAD-GAN ()
	Li et al. 2019


	Reconstruction
	Reconstruction

	GAN
	GAN

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	USAD ()
	USAD ()
	USAD ()
	Li et al. 2019


	Reconstruction
	Reconstruction

	AE
	AE

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	MTAD-GAT ()
	MTAD-GAT ()
	MTAD-GAT ()
	Zhao et al. 2020


	Hybrid
	Hybrid

	GNN
	GNN

	Supervised
	Supervised

	×
	×

	✓
	✓


	CAE-M ()
	CAE-M ()
	CAE-M ()
	Zhang et al. 2021


	Hybrid
	Hybrid

	AE
	AE

	Unsupervised
	Unsupervised

	×
	×

	×
	×


	GDN ()
	GDN ()
	GDN ()
	Deng & Hooi 2021


	Forecasting
	Forecasting

	GNN
	GNN

	Unsupervised
	Unsupervised

	×
	×

	✓
	✓


	TranAD ()
	TranAD ()
	TranAD ()
	Tuli et al. 2022


	Reconstruction
	Reconstruction

	Transformer
	Transformer

	Unsupervised
	Unsupervised

	✓
	✓

	✓
	✓


	DTAAD ()
	DTAAD ()
	DTAAD ()
	Yu et al. 2023


	Reconstruction
	Reconstruction

	Transformer
	Transformer

	Unsupervised
	Unsupervised

	✓
	✓

	✓
	✓


	KBJNet
	KBJNet
	KBJNet

	Reconstruction
	Reconstruction

	Transformer
	Transformer

	Unsupervised
	Unsupervised

	✓
	✓

	✓
	✓
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	DIMENSIONS
	DIMENSIONS

	TRAIN
	TRAIN

	VALIDATION
	VALIDATION

	ANOMALIES RATE (%)
	ANOMALIES RATE (%)


	MSDS
	MSDS
	MSDS

	10 (1)
	10 (1)

	146430
	146430

	146430
	146430

	5.37
	5.37


	SMD
	SMD
	SMD

	38 (4)
	38 (4)

	708420
	708420

	708420
	708420

	4.16
	4.16


	SWaT
	SWaT
	SWaT

	51 (1)
	51 (1)

	496800
	496800

	449919
	449919

	11.98
	11.98


	MSL
	MSL
	MSL

	55 (3)
	55 (3)

	58317
	58317

	73729
	73729

	10.72
	10.72


	SMAP
	SMAP
	SMAP

	25 (55)
	25 (55)

	135183
	135183

	427617
	427617

	13.13
	13.13


	MBA
	MBA
	MBA

	2 (8)
	2 (8)

	100000
	100000

	100000
	100000

	0.14
	0.14


	UCR
	UCR
	UCR

	1 (4)
	1 (4)

	1600
	1600

	5900
	5900

	1.88
	1.88


	NAB
	NAB
	NAB

	1 (6)
	1 (6)

	4033
	4033

	4033
	4033

	0.92
	0.92


	WADI
	WADI
	WADI

	123 (1)
	123 (1)

	1048571
	1048571

	172801
	172801

	5.99
	5.99
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	METHOD
	METHOD
	METHOD
	METHOD
	METHOD
	METHOD

	NAB
	NAB

	UCR
	UCR

	MBA
	MBA

	SMAP
	SMAP

	SWaT
	SWaT


	P
	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1


	MSCRED
	MSCRED
	MSCRED

	0.8521
	0.8521

	0.6700
	0.6700

	0.8400
	0.8400

	0.7501
	0.7501

	0.5440
	0.5440

	0.9717
	0.9717

	0.9919
	0.9919

	0.6975
	0.6975

	0.9271
	0.9271

	1.0000
	1.0000

	0.9798
	0.9798

	0.9622
	0.9622

	0.8174
	0.8174

	0.9215
	0.9215

	0.9820
	0.9820

	0.8663
	0.8663

	0.9991
	0.9991

	0.6769
	0.6769

	0.8432
	0.8432

	0.8071
	0.8071


	MAD-GAN
	MAD-GAN
	MAD-GAN

	0.8665
	0.8665

	0.7011
	0.7011

	0.8477
	0.8477

	0.7751
	0.7751

	0.8537
	0.8537

	0.9890
	0.9890

	0.9983
	0.9983

	0.9164
	0.9164

	0.9395
	0.9395

	1.0000
	1.0000

	0.9835
	0.9835

	0.9688
	0.9688

	0.8156
	0.8156

	0.9215
	0.9215

	0.9890
	0.9890

	0.8653
	0.8653

	0.9592
	0.9592

	0.6956
	0.6956

	0.8462
	0.8462

	0.8064
	0.8064


	USAD
	USAD
	USAD

	0.8421
	0.8421

	0.6667
	0.6667

	0.8332
	0.8332

	0.7443
	0.7443

	0.8953
	0.8953

	1.0000
	1.0000

	0.9990
	0.9990

	0.8953
	0.8953

	0.8954
	0.8954

	0.9990
	0.9990

	0.9702
	0.9702

	0.9444
	0.9444

	0.7481
	0.7481

	0.9628
	0.9628

	0.9890
	0.9890

	0.8419
	0.8419

	0.9977
	0.9977

	0.6879
	0.6879

	0.8460
	0.8460

	0.8143
	0.8143


	MTAD-GAT
	MTAD-GAT
	MTAD-GAT

	0.8422
	0.8422

	0.7273
	0.7273

	0.8222
	0.8222

	0.7803
	0.7803

	0.7813
	0.7813

	0.9973
	0.9973

	0.9979
	0.9979

	0.8762
	0.8762

	0.9019
	0.9019

	1.0000
	1.0000

	0.9720
	0.9720

	0.9483
	0.9483

	0.7992
	0.7992

	0.9992
	0.9992

	0.9846
	0.9846

	0.8882
	0.8882

	0.9719
	0.9719

	0.6958
	0.6958

	0.8465
	0.8465

	0.8110
	0.8110


	CAE-M
	CAE-M
	CAE-M

	0.7919
	0.7919

	0.8020
	0.8020

	0.8020
	0.8020

	0.7969
	0.7969

	0.6982
	0.6982

	1.0000
	1.0000

	0.9958
	0.9958

	0.8223
	0.8223

	0.8443
	0.8443

	0.9998
	0.9998

	0.9662
	0.9662

	0.9155
	0.9155

	0.8194
	0.8194

	0.9568
	0.9568

	0.9902
	0.9902

	0.8828
	0.8828

	0.9698
	0.9698

	0.6958
	0.6958

	0.8465
	0.8465

	0.8102
	0.8102


	GDN
	GDN
	GDN

	0.8130
	0.8130

	0.7873
	0.7873

	0.8543
	0.8543

	0.7999
	0.7999

	0.6895
	0.6895

	0.9989
	0.9989

	0.9960
	0.9960

	0.8159
	0.8159

	0.8833
	0.8833

	0.9893
	0.9893

	0.9529
	0.9529

	0.9333
	0.9333

	0.7481
	0.7481

	0.9892
	0.9892

	0.9865
	0.9865

	0.8519
	0.8519

	0.9698
	0.9698

	0.6958
	0.6958

	0.8463
	0.8463

	0.8102
	0.8102


	TranAD
	TranAD
	TranAD

	0.8889
	0.8889

	0.9892
	0.9892

	0.9541
	0.9541

	0.9364
	0.9364

	0.9407
	0.9407

	1.0000
	1.0000

	0.9994
	0.9994

	0.9694
	0.9694

	0.9576
	0.9576

	1.0000
	1.0000

	0.9886
	0.9886

	0.9783
	0.9783

	0.8104
	0.8104

	0.9998
	0.9998

	0.9887
	0.9887

	0.8953
	0.8953

	0.9977
	0.9977

	0.6879
	0.6879

	0.8438
	0.8438

	0.8143
	0.8143


	DTAAD
	DTAAD
	DTAAD

	0.8889
	0.8889

	0.9999
	0.9999

	0.9996
	0.9996

	0.9412
	0.9412

	0.8880
	0.8880

	1.0000
	1.0000

	0.9988
	0.9988

	0.9407
	0.9407

	0.9608
	0.9608

	1.0000
	1.0000

	0.9896
	0.9896

	0.9800
	0.9800

	0.8220
	0.8220

	0.9999
	0.9999

	0.9911
	0.9911

	0.9023
	0.9023

	0.9697
	0.9697

	0.6957
	0.6957

	0.8462
	0.8462

	0.8101
	0.8101


	KBJNet
	KBJNet
	KBJNet

	0.8889
	0.8889

	0.9999
	0.9999

	0.9996
	0.9996

	0.9412
	0.9412

	0.9999
	0.9999

	1.0000
	1.0000

	0.9999
	0.9999

	0.9999
	0.9999

	0.9805
	0.9805

	1.0000
	1.0000

	0.9898
	0.9898

	0.9805
	0.9805

	0.8302
	0.8302

	0.9999
	0.9999

	0.9901
	0.9901

	0.9072
	0.9072

	0.9718
	0.9718

	0.6957
	0.6957

	0.8463
	0.8463

	0.8109
	0.8109


	METHOD
	METHOD
	METHOD

	SMD
	SMD

	MSL
	MSL

	MSDS
	MSDS

	WADI
	WADI


	P
	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1

	P
	P

	R
	R

	AUC
	AUC

	F1
	F1


	MSCRED
	MSCRED
	MSCRED

	0.7275
	0.7275

	0.9973
	0.9973

	0.9920
	0.9920

	0.8413
	0.8413

	0.8911
	0.8911

	0.9861
	0.9861

	0.9806
	0.9806

	0.9362
	0.9362

	0.9998
	0.9998

	0.7982
	0.7982

	0.8942
	0.8942

	0.8878
	0.8878

	0.2512
	0.2512

	0.7318
	0.7318

	0.8411
	0.8411

	0.3740
	0.3740


	MAD-GAN
	MAD-GAN
	MAD-GAN

	0.9990
	0.9990

	0.8439
	0.8439

	0.9932
	0.9932

	0.9149
	0.9149

	0.8515
	0.8515

	0.9929
	0.9929

	0.9861
	0.9861

	0.9168
	0.9168

	0.9981
	0.9981

	0.6106
	0.6106

	0.8053
	0.8053

	0.7578
	0.7578

	0.2232
	0.2232

	0.9123
	0.9123

	0.8025
	0.8025

	0.3587
	0.3587


	USAD
	USAD
	USAD

	0.9061
	0.9061

	0.9975
	0.9975

	0.9934
	0.9934

	0.9496
	0.9496

	0.7949
	0.7949

	0.9912
	0.9912

	0.9795
	0.9795

	0.8822
	0.8822

	0.9913
	0.9913

	0.7960
	0.7960

	0.8980
	0.8980

	0.8829
	0.8829

	0.1874
	0.1874

	0.8297
	0.8297

	0.8724
	0.8724

	0.3057
	0.3057


	MTAD-GAT
	MTAD-GAT
	MTAD-GAT

	0.8211
	0.8211

	0.9216
	0.9216

	0.9922
	0.9922

	0.8684
	0.8684

	0.7918
	0.7918

	0.9825
	0.9825

	0.9890
	0.9890

	0.8769
	0.8769

	0.9920
	0.9920

	0.7965
	0.7965

	0.8983
	0.8983

	0.8835
	0.8835

	0.2819
	0.2819

	0.8013
	0.8013

	0.8822
	0.8822

	0.4170
	0.4170


	CAE-M
	CAE-M
	CAE-M

	0.9081
	0.9081

	0.9670
	0.9670

	0.9782
	0.9782

	0.9368
	0.9368

	0.7752
	0.7752

	1.0000
	1.0000

	0.9904
	0.9904

	0.8734
	0.8734

	0.9909
	0.9909

	0.8440
	0.8440

	0.9014
	0.9014

	0.9115
	0.9115

	0.2783
	0.2783

	0.7917
	0.7917

	0.8727
	0.8727

	0.4118
	0.4118


	GDN
	GDN
	GDN

	0.7171
	0.7171

	0.9975
	0.9975

	0.9925
	0.9925

	0.8343
	0.8343

	0.9309
	0.9309

	0.9893
	0.9893

	0.9815
	0.9815

	0.9592
	0.9592

	0.9990
	0.9990

	0.8027
	0.8027

	0.9106
	0.9106

	0.8900
	0.8900

	0.2913
	0.2913

	0.7932
	0.7932

	0.8778
	0.8778

	0.4261
	0.4261


	TranAD
	TranAD
	TranAD

	0.9051
	0.9051

	0.9973
	0.9973

	0.9933
	0.9933

	0.9490
	0.9490

	0.9037
	0.9037

	0.9999
	0.9999

	0.9915
	0.9915

	0.9493
	0.9493

	0.9998
	0.9998

	0.8625
	0.8625

	0.9012
	0.9012

	0.8904
	0.8904

	0.3959
	0.3959

	0.8295
	0.8295

	0.8998
	0.8998

	0.5360
	0.5360


	DTAAD
	DTAAD
	DTAAD

	0.8463
	0.8463

	0.9974
	0.9974

	0.9892
	0.9892

	0.9147
	0.9147

	0.9038
	0.9038

	0.9999
	0.9999

	0.9918
	0.9918

	0.9495
	0.9495

	0.9999
	0.9999

	0.8026
	0.8026

	0.9013
	0.9013

	0.8905
	0.8905

	0.9017
	0.9017

	0.3910
	0.3910

	0.6950
	0.6950

	0.5455
	0.5455


	KBJNet
	KBJNet
	KBJNet

	0.9985
	0.9985

	0.9974
	0.9974

	0.9987
	0.9987

	0.9985
	0.9985

	0.9038
	0.9038

	0.9999
	0.9999

	0.9916
	0.9916

	0.9496
	0.9496

	0.9592
	0.9592

	0.9554
	0.9554

	0.9248
	0.9248

	0.9573
	0.9573

	0.8465
	0.8465

	0.8296
	0.8296

	0.9130
	0.9130

	0.8379
	0.8379
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	METHOD
	METHOD
	METHOD
	METHOD
	METHOD
	METHOD

	NAB
	NAB

	UCR
	UCR

	MBA
	MBA

	SMAP
	SMAP

	MSL
	MSL

	SWaT
	SWaT

	SMD
	SMD

	MSDS
	MSDS

	WADI
	WADI


	AUC*
	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*

	AUC*
	AUC*

	F1*
	F1*


	MSCRED
	MSCRED
	MSCRED

	0.8298
	0.8298

	0.7012
	0.7012

	0.9636
	0.9636

	0.4928
	0.4928

	0.9498
	0.9498

	0.9107
	0.9107

	0.9810
	0.9810

	0.8049
	0.8049

	0.9796
	0.9796

	0.8231
	0.8231

	0.8384
	0.8384

	0.7921
	0.7921

	0.9767
	0.9767

	0.8003
	0.8003

	0.7715
	0.7715

	0.8282
	0.8282

	0.6028
	0.6028

	0.0412
	0.0412


	MAD-GAN
	MAD-GAN
	MAD-GAN

	0.8193
	0.8193

	0.7108
	0.7108

	0.9958
	0.9958

	0.8215
	0.8215

	0.9549
	0.9549

	0.9191
	0.9191

	0.9876
	0.9876

	0.8467
	0.8467

	0.9648
	0.9648

	0.8189
	0.8189

	0.8455
	0.8455

	0.8011
	0.8011

	0.8634
	0.8634

	0.9317
	0.9317

	0.5001
	0.5001

	0.7389
	0.7389

	0.5382
	0.5382

	0.0936
	0.0936


	USAD
	USAD
	USAD

	0.7268
	0.7268

	0.6782
	0.6782

	0.9968
	0.9968

	0.8539
	0.8539

	0.9698
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