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ABSTRACT
There has been a surge in remote sensing machine learning applications that operate 
on data from active or passive sensors as well as multi-sensor combinations (Ma 
et al. (2019)). Despite this surge, however, there has been relatively little study on 
the comparative value of 3D surface information for machine learning classification 
tasks. Adding 3D surface information to RGB imagery can provide crucial geometric 
information for semantic classes such as buildings, and can thus improve out-of-
sample predictive performance. In this paper, we examine in-sample and out-of-
sample classification performance of Fully Convolutional Neural Networks (FCNNs) and 
Support Vector Machines (SVMs) trained with and without 3D normalized digital surface 
model (nDSM) information. We assess classification performance using multispectral 
imagery from the International Society for Photogrammetry and Remote Sensing 
(ISPRS) 2D Semantic Labeling contest and the United States Special Operations 
Command (USSOCOM) Urban 3D Challenge. We find that providing RGB classifiers with 
additional 3D nDSM information results in little increase in in-sample classification 
performance, suggesting that spectral information alone may be sufficient for the 
given classification tasks. However, we observe that providing these RGB classifiers 
with additional nDSM information leads to significant gains in out-of-sample predictive 
performance. Specifically, we observe an average improvement in out-of-sample all-
class accuracy of 14.4% on the ISPRS dataset and an average improvement in out-
of-sample F1 score of 8.6% on the USSOCOM dataset. In addition, the experiments 
establish that nDSM information is critical in machine learning and classification 
settings that face training sample scarcity.
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1. INTRODUCTION
Significant resources are required to establish robust classification performance for remote 
sensing applications which can range from composite distributed land uses, for example urban 
versus rural development, to feature-specific mapping, such as roads, building and vehicles. 
Technical challenges naturally arise from the sheer variety of appearances and viewing angles 
for objects of interest, as well as the lack of annotations or labels relative to the overall volume 
of data.

Machine learning and artificial intelligence have made great strides in recent years due to the 
advent of hardware accelerated computing and the development of symbolic math libraries. 
However, a unified framework for remote sensing classification applications is still beyond 
reach (Ball, Anderson, and Chan, 2017; Zhu et al., 2017). The diversity of data collection 
methods, e.g. space-based or airborne, and sensor modalities, e.g. lidar RGB, and hyperspectral 
imagery, necessitate continuous adaptation of the underlying classification framework based 
on classification task, desired accuracy, computational bandwidth, and available datasets.

A range of machine learning methodologies are available for executing object classification 
from remotely sensed data including convolutional neural networks (CNNs) (Maturana and 
Scherer, 2015; R. Zhao, Pang, and J. Wang, 2018), decision trees (Blaha et al., 2016), and 
Support Vector Machines (SVMs) (Lai and Fox, n.d.; D. Wang, Zhang, and Y. Zhao, 2007). Although 
inherently different, all of those methods have been shown to be effective and successful 
given specific datasets and class labels for training and cross-validation. Interestingly, many 
algorithms originate from outside the remote sensing community, e.g. from biomedical image 
segmentation (Ronneberger, Fischer, and Brox, 2015), and have been modified to ingest 
mission-specific sensor modalities in order to classify different objects of interest.

The feasibility of applying machine learning concepts has been further studied, and showcased 
through various challenges, such as the USSOCOM Urban 3D challenge (H. Goldberg, Brown, and 
S. Wang, 2017; H.R. Goldberg et al., 2018) or the ISPRS 2D and 3D Semantic Labeling contests 
(Gerke et al., 2014). Several submitted algorithms yielded high accuracy, even without using 3D 
surface information (Audebert, Le Saux, and Lefèvre, 2018). However, given the recent success, 
it remains important to formally assess information content of available sensor modalities, 
and to infer generalizability of the resulting classifier if presented with inherently different, 
previously unseen test samples. In other words, given a specific object recognition task, we 
seek to answer the following questions. First, what are the preferred sensor modalities given 
the quantity and quality of training samples? After all, adding sensor modalities usually incurs 
cost and logistical considerations. Second, is the resulting classifier useful when applied outside 
the location or domain in which training data was collected?

This paper expands upon the findings in (Chen, Fu, et al., 2018), in which the authors acknowledge 
that the majority of ongoing work is focused on developing classification strategies with little 
regard to the information value provided by the sensor modality of the input data. In (Chen, 
Fu, et al., 2018), multi-spectral imagery is fused with DSM information in order to study the 
impact on the resulting classification performance. However, DSM information is pre-processed 
to extract specific features based on the 3D structure tensor (Weinmann, n.d.) such as linearity, 
planarity, and sphericity, as well as the Normalized Difference Vegetation Index (NDVI) from 
(Tucker et al., 2001). This paper expands upon the work in (Chen, Fu, et al., 2018) by considering 
multiple datasets and by examining training and test performance separately. Additionally, 
cross-city validation is added to formally assess classification performance when extrapolating 
the classifier from one city to another.

To partially close this gap between formally assessing information content and achieving high 
classification performance, this paper examines the importance of 3D surface information 
when generalizing trained classifiers using two distinct machine learning frameworks, and two 
different publicly available datasets as test cases. In order to derive results that are agnostic to 
the chosen classification methodology, we specifically select one classification scheme of high 
complexity, i.e. a Fully Convolutional Neural Network (FCNN) architecture, and one classification 
scheme of low complexity, i.e. a Support Vector Machine (SVM).

The novelties and technical contributions of this paper are two-fold. First, we examine 
generalizability of classification frameworks when trained and tested on different geographic 
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locations by formally evaluating out-of-sample performance of the classifier when trained with 
and without 3D DSM information. Different geographic locations often imply deviations in the 
underlying urban infrastructure, architecture, and thus the appearance and structure of objects 
of interest such as buildings and roads. Second, we assess the same generalizability when 
facing scarce training data. Therefore, we will formally evaluate out-of-sample performance 
when trained with and without 3D DSM information while the number of training samples is 
gradually reduced.

As acknowledged in (Chen, Weinmann, et al., 2018), the majority of research focuses on 
improving classification tasks, while “only little attention has been paid to the input data 
itself”. Specifically, information content is often overlooked in light of achievable performance 
metrics for object classification and segmentation. In addition, the work in (Chen, Weinmann, 
et al., 2018) explores the utility of handcrafted, geometric features over machine-derived 
ones. The information content of specific feature types is studied in (Gevaert et al., 2016), in 
which the authors distinguish between point-based and segment-based features. Dependent 
on the available sensor modalities, only some feature types may be available in any given 
scenario. Their relative importance for object classification can then be formally assessed using 
an SVM classifier for different scenarios and different combinations of feature types. Although 
classification is tested via cross-validation, training and testing samples are extracted from the 
same geographical location, which may limit the diversity of building footprints the classifier is 
exposed to. This paper follows a similar approach by formally evaluating not only classification 
performance, but also generalizability using two distinct classification frameworks. Therefore, 
we attempt to establish the notion of information content independent of the underling 
classification strategy. In addition, our study focuses on entire sensor modalities instead of 
individual features that are derived from those modalities.

This paper is organized as follows: Section 2 outlines the technical approach. Experimental 
validation is presented in Section 3, while results are split into cross-city validation in Section 
3.1 and validation for varying training sample proportions in Section 3.2. Section 4 concludes 
the study.

2. TECHNICAL APPROACH
This section describes the underlying classification approach and performance assessment. 
Section 2.1 provides an overview of binary and multi-class classification in a semantic 
segmentation setting. Section 2.2 discusses class balancing for imbalanced classification tasks. 
Section 2.3 outlines the two classification architectures used for this study, i.e. a Support Vector 
Machine (SVM) and a Fully Convolutional Neural Network (FCNN). The two publicly available 
datasets, including objects of interest used for training and testing, are described in Section 2.4. 
Section 2.5 summarizes the performance assessment strategies as well as the two different 
validation settings: (1) cross-city validation and (2) reduction of sample proportion for training.

2.1. BINARY AND MULTI-CLASS CLASSIFICATION

This work aims to (i) develop robust binary and multi-class semantic segmentation classifiers 
for remote sensing, and (ii) test the overall generalizability of these classifiers as a function of 
sensor modality. Semantic segmentation can be conceptualized as a classification problem in 
which we predict a class label for each pixel. We consider each of these pixel-level classification 
problems in binary and multi-class classification settings (Janocha and Czarnecki, 2017). One 
common optimization objective for finding optimal parameter sets in binary and multi-class 
classification tasks is two-dimensional cross-entropy, which we utilize in this work for our FCNN 
models. Below, we discuss the objective functions for both of these classification schemes.

2.1.1. Binary Classification

For binary classification, the classifier learns by minimizing a loss function over a set of 
parameters θb

* , in this case pixel-wise Negative Log Likelihood (NLL) with a single class.

(2.1) 
m n

b i j i j i j i j
i j

Y P X Y P X  
  

    
 *
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minarg log( ( ; ) ) (1 ) log(1 ( ; ) )( )
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Where Yi,j ∈ {0, 1} and P(X;θ)i,j ∈ [0, 1] denote the ground truth and predicted labels, respectively, at 
pixel (i, j) for each training image tile, and X denotes the input features (1, 3, or 4-channel image). 
Both X and Y are indexed as 2D arrays with (height, width) given as (m, n). This classification 
methodology is utilized for the USSOCOM Urban3D dataset for building footprint classification.

2.1.2 Multiclass Classification

A multiclass classifier minimizes a similar objective to find parameters θm
* , except rather than 

considering a single class, e.g. a building, this classifier makes pixel-wise predictions over 
multiple classes. This classifier learns by minimizing the following objective, which corresponds 
to pixel-wise Negative Log Likelihood (NLL) over N classes.

(2.2) 

m n N

m i j k i j k
i j k

Y P X 
   

 
 *

, , , ,
1 1 1

arg min log( ( ; ) )( )

Where Yi,j,k ∈ {0, 1} and P(X, θ)i,j,k ∈ [0, 1] denote the ground truth and predicted labels, 
respectively, at pixel (i, j) for class k ∈ {0, 1, …, N} for each training tile X, which is indexed as a 
2D array of shape (m, n) as above.

To make optimal semantic segmentation predictions, we use gradient descent methods (Ruder, 
2016) to iteratively solve for a set of weights θ that minimize the objectives presented above.

2.2. CLASS IMBALANCE CORRECTION VIA CLASS WEIGHTING

In addition to computing element-wise cross-entropy loss for each pixel in the image, we 
weight each pixel using its inverse class frequency, i.e. if class i occurs in a dataset with 
fraction fi ∈ (0, 1], then our weighting corresponds to the inverse of this fraction: 

ii fw  1 . This 
weighting scheme is used to correct for class imbalance in our datasets, and corresponds to 
a weighted Negative Log Likelihood (wNLL) or weighted Cross-Entropy objective (Aurelio et 
al., 2019). Using a weighted cost function allows for learning a classifier that is not biased 
toward the most common class. With the incorporation of these weights, our objectives 
become:

Weighted Binary Classification:

(2.3) 
m n

b w i j i j i j i j i j
i j

w Y Y P X Y P X  
  

    
 *

, , , , , ,
1 1

arg min ( )( log( ( ; ) ) (1 ) log(1 ( ; ) ))( )

Where w(Yi,j) ∈ ℝ+ denotes the weight assigned to pixel (i,j) based off of its ground truth class, 
Yi,j. Note that Yi,j ∈ {0, 1}.

Weighted Multi-Class Classification:

(2.4) 
m n N

m w i j i j k i j k
i j k

w c Y P X 
   

 
 *

, , , , , ,
1 1 1

arg min ( ) log( ( ; ) )( )

Where w(ci,j) ∈ ℝ+ denotes the weight assigned to pixel (i,j) based off of its ground truth class ci,j. 
Note that here we use ci,j ∈ {0, 1, …, N} to denote the class, rather than Yi,j,k ∈ {0, 1}.

Our FCNN classifiers, SegNet and SegNet Lite, which are described in detail below, each 
leverage these weighted objectives, and our classification results are reported as balanced/
class frequency adjusted.

2.3 CLASSIFICATION ARCHITECTURES

To fully evaluate the importance of 3D nDSM information independent of the underlying 
classification algorithm, two distinct classification architectures have been selected for 
experimentation. First, we consider a relatively simple, well-known SVM framework. Second, 
we apply an FCNN architecture. These two classifers are outlined in detail below.
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2.3.1 Architecture 1 – Support Vector Machine (SVM)

SVM is a discriminative classifier that aims to separate sets of feature vectors based on the 
assigned labels by finding the maximum margin hyperplane (Cortes and Vapnik, 1995). 
Separation can be accomplished through linear hyperplanes or nonlinear hypersurfaces, which 
are constructed in a feature space through numerical optimization with kernel functions. Figure 1 
illustrates the application of a 5 × 5 neighborhood in the imagery to construct n-dimensional 
feature vectors fi ∈ ℝn, one for each pixel (or data sample) i. For case 1 (one channel), we 
extract features only from the DSM information to obtain a feature vector f1,i ∈ ℝ25. Similarly, 
for case 2 (three channels), we utilize only RGB information to obtain f2,i ∈ ℝ75. For case 3 (four 
channels), we find f3,i ∈ ℝ100 by concatenating f1,i and f2,i, thereby constructing the full feature 
vector fusing DSM and RGB information. Therefore, classification will be carried out in 25, 75 or 
100-dimensional feature spaces.

Based on ground truth information and training data available, labels yi ∈ L can be assigned to 
each feature vector fi. Here, L denotes the set of all labels with cardinality |L| = N, where N is the 
number of unique labels contained in the dataset. Once feature vectors have been constructed 
and labels have been assigned, supervised training via SVM can be accomplished using any 
available machine learning library. For this study, nonlinear hypersurfaces are constructed 
using a Gaussian/Radial Basis Function (RBF) kernel, implemented with MATLAB’s fitcecoc 
module (MathWorks, 2018).

2.3.2 Architecture 2 – Fully Convolutional Neural Network (FCNN) 

Although originally developed for image segmentation tasks, the Segmentation Network, or 
SegNet, architecture presented in (Badrinarayanan, Kendall, and Cipolla, 2017) and depicted 
in Figure 2 has recently gained increased attention for object classification in remote sensing 
applications (Audebert, Le Saux, and Lefèvre, 2018). SegNet is characterized by a Fully 
Convolutional Neural Network (FCNN) architecture with an encoder-decoder structure. Image 
information is initially down-sampled throughout the five encoder blocks (left side of Figure 2) 
using convolution operations, batch normalization, nonlinear activation functions, and pooling. 
These encoding blocks create a latent representation of the input image, characterized by 
spatial features extracted from the convolutional encoding layers. Throughout the five decoding 
blocks (right side of Figure 2), segmentation information is reconstructed from this latent 
representation to the full image resolution using convolution operations, batch normalization, 
nonlinear activation functions, and nonlinear up-sampling blocks. To perform nonlinear up-
sampling, the SegNet decoder leverages pooling indices computed in the encoder layers of the 
network and connected from the encoder to the decoder via skip connections (Badrinarayanan, 
Kendall, and Cipolla, 2017). The input layer can be modified to ingest one channel (DSM only), 
three channel (RGB-only), or four channel (DSM & RGB) data.

Figure 1 Feature extraction 
for SVM classification using a 
5 × 5 neighborhood and a 1 
channel (DSM only), 3 channel 
(RGB-only), or 4 channel (DSM 
& RGB) representation.



Each of the five encoder blocks and five decoder blocks consists of two to three convolutional 
layers. For an input window size of 256 × 256 pixels, it can be shown that the original SegNet 
structure from (Badrinarayanan, Kendall, and Cipolla, 2017) consists of roughly 30 million 
weights. By limiting the number of convolutional layers per block to two and reducing the output 
dimensions (or channels) for each layer by 75 percent, we construct a similar, yet lightweight 
SegNet architecture consisting of only 1.2 million weights, reducing the total number of 
weights by 96%. For experiments carried out in Section 3, we will refer to the original SegNet 
architecture as SegNet (SegNet) and the lightweight SegNet structure with a reduced number 
of weights as SegNet Lite (SegNet Lite). Figure 3 compares our SegNet (red) and SegNet Lite 
(blue) architectures, listing the number of weights per layer and the total number of weights. 
Table 1 provides a consolidated view of these two architectures.

Both of these SegNet neural architecture variants were implemented using PyTorch (Paszke et 
al., 2019), which supports streamlined GPU acceleration. Source code was provided though a git 
repository1 shared by the authors of (Audebert, Le Saux, and Lefèvre, 2018). Some modifications 
were made (i) to ingest composite images combining spectral and DSM information, and (ii) to 
transform the SegNet (SegNet) architecture into the SegNet Lite (SegNet Lite) architecture.

1 https://github.com/nshaud/DeepNetsForEO.

Figure 2 SegNet architecture 
from (Audebert, Le Saux, and 
Lefèvre, 2018; Badrinarayanan, 
Kendall, and Cipolla, 2017) 
utilizing a deep encoder-
decoder structure for image 
segmentation and object 
classification. To perform 
nonlinear up-sampling, the 
SegNet decoder leverages 
pooling indices computed 
in the encoder layers of the 
network and connected 
from the encoder to the 
decoder via skip connections 
(Badrinarayanan, Kendall, and 
Cipolla, 2017).

Figure 3 Comparison of 

Segnet and Segnet Lite 
architectures by number of 
indices per layer, number of 
input and output channels, 
weights per layer, and total 
weights. Note that the Segnet 
Lite architecture limits the 
number of layers per block to 
two and reduces the output 
channels for each layer by 75 
percent.

NEURAL 
ARCHITECTURE 

TOTAL 
PARAMETERS 

CHANNELS (RELATIVE 
TO SEGNET) 

KERNEL 
SIZE

SegNet 29,422,656 1.0× 3

SegNet Lite 1,176,336 0.25× 3

Table 1 Comparative summary 
between our two Fully 
Convolutional Neural Network 

architectures, SegNet and 

SegNet Lite. These metrics 
are based off of Figure 3.

https://github.com/nshaud/DeepNetsForEO
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2.4. DATASETS AND OBJECTS OF INTEREST

This section describes the two datasets used for performance assessment, including objects 
of interest. Although there exists a wide variety of available datasets for examining remote 
sensing applications, this work focuses on (i) high-resolution satellite imagery provided through 
the USSOCOM Urban 3D Challenge (H. Goldberg, Brown, and S. Wang, 2017; H.R. Goldberg et 
al., 2018) and (ii) aerial imagery released by the International Society for Photogrammetry and 
Remote Sensing (ISPRS) in support of their 2D Semantic Labeling Contest (Gerke et al., 2014). 
In this paper, we refer to these datasets by the originator (e.g. USSOCOM for the Urban 3D 
Challenge and ISPRS for the ISPRS 2D Semantic Labeling Contest). To establish the core results 
of this study, we apply both the SVM and SegNet classifiers to the ISPRS and USSOCOM datasets.

2.4.1. USSOCOM Urban3D Dataset

The USSOCOM dataset contains orthorectified red-green-blue (RGB) imagery of three US cities: 
(i) Jacksonville, FL, (ii) Tampa, FL, and (iii) Richmond, VA with a resolution of 50-centimeters 
ground sample distance (GSD). The data was collected via commercial satellites and additionally 
provides coincident 3D Digital Surface Models (DSM) as well as Digital Terrain Models (DTM). 
These DSMs and DTMs are derived from multi-view, EO satellite imagery at 50-centimeter 
resolution, rather than through lidar (Light Detection and Ranging) sensors. DSM and DTM 
information is used to generate normalized DSM (nDSM) information, i.e. nDSM = DSM – DTM. All 
imagery products were created using the Vricon (now Maxar Technologies) production pipeline 
using 50-centimeter DigitalGlobe satellite imagery. Buildings are the only objects of interest, i.e. 
L = {0, 1} and |L| = 2, with roughly 157,000 annotated building footprints contained in the data. 
These ground truth building footprints are generated through the use of a semi-automated 
feature extraction tool in tandem with the HSIP 133 cities dataset (H. Goldberg, Brown, and S. 
Wang, 2017). Figure 4 shows one of the 144 Jacksonville tiles from the USSOCOM dataset with 
RGB imagery on the left, nDSM information (i.e. the difference between surface and terrain) 
in the center, and annotated ground truth for building footprints on the right (buildings in 
yellow with background in blue). Tiles are 2048 × 2048 pixels and span an area of roughly 
1km2. Figure 5 depicts an nDSM of one of the Jacksonville tiles from the USSOCOM dataset (H. 
Goldberg, Brown, and S. Wang, 2017; H.R. Goldberg et al., 2018) shown from a different point 
of view. More information about the USSOCOM Urban3D dataset can be found in (H. Goldberg, 
Brown, and S. Wang, 2017) and (H.R. Goldberg et al., 2018).

Figure 4 Sample tile from 
USSOCOM Urban 3D Challenge 
dataset for Jacksonville, FL 
showing RGB imagery (left), 
nDSM info (center), and 
annotated ground truth for 
building footprints (right).

Figure 5 Another view of a 
sample nDSM (Jacksonville 
Tile 23) from the USSOCOM 
dataset.
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2.4.2 ISPRS Semantic Labeling Dataset

The ISPRS dataset contains infrared, red, and green (IRRG) bands for two locations: (i) 
Vaihingen, Germany, and (ii) Potsdam, Germany. The GSDs are 9 centimeters and 5 centimeters, 
respectively. DSM and nDSM information is generated via dense image matching using Trimble 
INPHO 5.3 software. In order to avoid areas without data (‘holes’) in the True Orthophoto (TOP) 
and DSM, dataset patches were selected only from the central region of the TOP mosaic, i.e. not 
at the boundaries. Any remaining (very small) holes in the TOP and the DSM were interpolated. 
nDSM imagery is produced using a fully automatic filtering workflow without any manual 
quality control. 32-bit grey levels are used to encode heights for the DSMs and nDSMs in the 
TIFF format (Gerke et al., 2014). Ground truth annotations for objects of interest are provided 
for |L| = 6 classes, i.e. impervious surfaces (i.e. roads), buildings, low vegetation, trees, cars, and 
clutter. Figure 6 presents a sample of the ISPRS dataset with IRRG imagery on the left, nDSM 
information in the center, and ground truth information on the right. Ground truth is color-
coded for roads (white), buildings (blue), low vegetation (cyan), trees (green), cars (yellow) and 
clutter (red).

For nDSM imagery produced in both the ISPRS and USSOCOM datasets, it is unclear if the 
authors leveraged any techniques to mitigate occlusion due to objects such as trees, which can 
have a substantial, seasonally-dependent effect on the ground-truth accuracy of the semantic 
labels (Park and Guldmann, 2019) present in both of these datasets. For the USSOCOM dataset, 
the authors also note that producing DTM imagery products from overhead imagery remains 
an open research question (H. Goldberg, Brown, and S. Wang, 2017).

2.5 VALIDATION SETTINGS

This study provides experimental validation for two scenarios demonstrating the importance of 
3D surface information for remote sensing classification tasks.

First, we seek to establish performance metrics for cross-city validation when using 
classifiers that were trained with and without nDSM information. Previous work in this 
domain concluded that in-sample performance drops only slightly when depriving the 
classifier (Segnet in (Audebert, Le Saux, and Lefèvre, 2018)) of nDSM information. However, 
the impact of nDSM information on out-of-sample performance, i.e. cross-city performance, 
has not been studied and formally assessed yet, and is one of the major contributions of 
this work.

In addition to cross-city validation, we study the impact of nDSM information when training 
the classifier using scarce data. Therefore, we will reduce the number of training samples while 
assessing overall out-of-sample performance of the resulting classifier when trained both with 
and without nDSM information.

Table 2 summarizes the cross-city training and testing methodologies for the USSOCOM dataset, 
while Table 3 summarizes the cross-city training and testing methodologies for the ISPRS 
dataset. As noted, we establish the core results of this study by evaluating the importance of 
DSM information for classification. For this, we use both the SVM and SegNet classifiers for both 
the USSOCOM and ISPRS datasets.

Figure 6 Sample tile from 
the ISPRS dataset for 
Vaihingen, Germany showing 
IRRG imagery (left), nDSM 
information (center), and 
color-coded ground truth for 
six object classes of interest 
(right).



*It is important to note that the ISPRS – Potsdam data (5 centimeters GSD) will be down-
sampled by a ratio of 9:5 to achieve a GSD of 9 centimeters, which is used for training using the 
ISPRS – Vaihingen data.

In addition to what is summarized in Tables 2 and 3, these training and evaluation procedures 
also allow for formal comparisons between the SVM and SegNet classifiers on both the 
USSOCOM and ISPRS datasets.

3. EXPERIMENTAL VALIDATION
This section summarizes the experimental validation including performance assessment 
results. The section is divided with Section 3.1 addressing cross-city validation and Section 3.2 
describing the impact of reducing available training samples. Classification performance with 
and without DSM information is the main focus of this study.

3.1 CROSS-CITY VALIDATION

Our first experimental study applies SVM and SegNet classifiers to the ISPRS dataset. Specifically, 
both networks were trained using three cases: (i) IRRG information only, (ii) nDSM information 
only, and (iii) nDSM & IRRG information combined. Training was conducted using 12 out of 16 
tiles from the ISPRS Vaihingen dataset. Training times were approximately 20 hours for the 
SegNet and 3 hours and 20 minutes for SegNet Lite.

In our second experimental study, we apply SVM and SegNet classifiers to the USSOCOM dataset. 
For SVM, we first train the SVM classifier from Section 2.3.1 on the USSOCOM dataset using all of 
the available 144 Jacksonville tiles. Training samples were down-selected randomly by a factor 
of 1,000 in order to circumvent memory limitations, reduce the number of resulting support 
vectors, and to allow for adequate training and inference times. SVM training then yields three 
classifiers, one for training with RGB & nDSM information, one for training with RGB information 
only, and one for training with nDSM information only. For SegNet, we follow a similar training 
procedure: we train the SegNet classifier from Section 2.3.2 on all 144 available Tampa tiles. 
Down-selection is not performed for the SegNet classifier, i.e. the classifier is trained on all  
pixels present in all training tiles. SegNet training similarly yields three classifiers, one for training 
with RGB & nDSM information, one for training with RGB information only, and one for training 
with nDSM information only.

Results from these two aforementioned experimental studies are discussed below.

3.1.1 ISPRS Dataset Results

The results outlined in Tables 4 and 5 replicate the findings from (Audebert, Le Saux, and 
Lefèvre, 2018). These tables summarize resulting classification accuracy for the SegNet 
and SegNet Lite architectures, respectively. Individual rows are associated with different 

CLASSIFIER ARCHITECTURE

TYPE OF DATASET SVM SEGNET

Training Jacksonville, FL Tampa, FL Tampa, FL

In-Sample Testing Jacksonville, FL – –

Out-of-Sample Testing Tampa, FL Richmond, VA Jacksonville, FL

 CLASSIFIER ARCHITECTURE

TYPE OF DATASET SVM SEGNET LITE SEGNET

Training Vaihingen tiles 1–12 Vaihingen tiles 1–12 Vaihingen tiles 1–12

In-Sample Testing Vaihingen tiles 13–16 Vaihingen tiles 13–16 Vaihingen tiles 13–16

Out-of-Sample Testing Potsdam* Potsdam* Potsdam* 

Table 2 USSOCOM training and 
testing (in-sample and out-of-
sample) procedures for SVM 
and SegNet. For evaluating 
the SegNet classifier on 
the USSOCOM dataset, we 
only test out-of-sample 
performance.

Table 3 ISPRS training and 
testing (in-sample and out-
of-sample) procedures for our 
classification architectures: 
SVM, SegNet Lite, and SegNet.
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objects of interest, while columns cite the corresponding in-sample (Vaihingen) and out-
of-sample (Potsdam) class-balanced accuracies for the three training cases. Note that 
random guessing would yield a total accuracy of 1 : 6 ≈ 0.1667 for a six class classification 
problem. Our results indicate that for SegNet, in-sample classification performance is not 
impacted significantly when depriving the classifier of nDSM information. In fact, accuracy 
drops less than 0.5% for either SegNet classifier between the nDSM & IRRG case and the 
IRRG-only case. For SVM, we observe a more significant drop in in-sample accuracy of 
9% between the nDSM & IRRG case and the IRRG-only case. However, unlike in-sample 
performance, total accuracy drops for out-of-sample validation by 25%, from 65% to 40% 
for the SegNet, by 5%, from 50% to 45% for SegNet Lite, and 13%, from 54% to 41% for 
SVM, when excluding nDSM information from training. Performance losses are noticeable 
across all objects of interest. Although the nDSM-only classifier performs worst in-sample, 
for SegNet, it outperforms the IIRG-only classifier by 8% out-of-sample, and for SegNet Lite, 
it outperforms the IRRG-only classfier by 5% out-of-sample. For comparison, Table 6 lists 
the performance metrics when using the SVM classifier for the ISPRS datasets. As expected, 
overall performance drops significantly.

Figure 7 shows qualitative results for the SegNet architecture when generating predictions 
using the three training cases. Ground truth is annotated using color-coding for roads (white), 
buildings (blue), low vegetation (cyan), trees (green), cars (yellow) and clutter (red). Again, 
without nDSM information, misclassifications occur between buildings, low vegetation, 
trees and roads. Figure 8 presents the corresponding qualitative results for the SegNet Lite 
architecture.

OBJECTS OF 
INTEREST 

SEGNET (ISPRS)

VAIHINGEN POTSDAM (9 CM)

NDSM IRRG NDSM & 
IRRG

NDSM IRRG NDSM & 
IRRG

Impervious surfaces 0.8727 0.9520 0.9531 0.7127 0.7502 0.8374

Buildings 0.9549 0.9738 0.9722 0.6828 0.4571 0.7886

Low vegetation 0.8486 0.9299 0.9243 0.7320 0.7829 0.8589

Trees 0.9159 0.9488 0.9473 0.8846 0.8568 0.8643

Cars 0.9922 0.9969 0.9959 0.9865 0.9879 0.9912

Clutter 0.9995 0.9993 0.9996 0.9518 0.9598 0.9522

Total 0.7919 0.9003 0.8962 0.4752 0.3974 0.6463

Table 4 SegNet – Classification 
performance by object type 
(accuracy only) for ISPRS 
in-sample (Vaihingen) and 
out-of-sample (Potsdam) 
validation using three training 
cases.

OBJECTS OF 
INTEREST

SEGNET LITE (ISPRS)

VAIHINGEN POTSDAM (9 CM)

NDSM IRRG NDSM & 
IRRG 

NDSM IRRG NDSM & 
IRRG 

Impervious surfaces 0.8706 0.9519 0.9559 0.7123 0.7950 0.7827

Buildings 0.9539 0.9726 0.9735 0.8559 0.5554 0.6016

Low vegetation 0.8417 0.9322 0.9276 0.6077 0.7651 0.8182

Trees 0.9162 0.9490 0.9486 0.8687 0.8384 0.8669

Cars 0.9922 0.9969 0.9959 0.9864 0.9887 0.9871

Clutter 0.9992 0.9992 0.9996 0.9522 0.9551 0.9495

Total 0.7869 0.9009 0.9006 0.4916 0.4488 0.5030

Table 5 SegNet Lite – 
Classification performance 
by object (accuracy only) for 
ISPRS in-sample (Vaihingen) 
and out-of-sample (Potsdam) 
validation using three training 
cases.

https://doi.org/10.5334/dsj-2021-020
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3.1.2 USSOCOM Dataset Results

Figures 9 and 10 summarize the resulting performance for our SegNet and SVM models using 
quantitative binary classification metrics such as accuracy, precision, recall, F1-score, and false-
negative and false-positive rates. Classifiers are color-coded as follows: nDSM & RGB in blue, 
RGB-only in green, and nDSM-only in yellow.

For SVM (Figure 10), the left three bars show in-sample performance, i.e. testing was performed 
on the same 144 tiles that the classifiers were trained on, while the right three bars represent 
out-of-sample performance, i.e. testing was performed using 144 unseen Tampa tiles. For 
SegNet (Figure 9), the left three bars show out-of-sample performance for procedure 1 (testing 

OBJECTS OF 
INTEREST

5 × 5 SVM CLASSIFIER (ISPRS)

VAIHINGEN POTSDAM (9 CM)

NDSM IRRG NDSM & 
IRRG

NDSM IRRG NDSM & 
IRRG 

Impervious surfaces 0.7812 0.8733 0.9320 0.6847 0.7665 0.8352

Buildings 0.7931 0.8914 0.9567 0.7550 0.5257 0.6913

Low vegetation 0.8309 0.8715 0.8978 0.7246 0.7768 0.8147

Trees 0.7537 0.9101 0.9317 0.7464 0.8325 0.8214

Cars 0.9688 0.9915 0.9928 0.8530 0.9862 0.9832

Clutter 0.9922 0.9997 0.9997 0.9412 0.9436 0.9429

Total 0.5600 0.7687 0.8553 0.3266 0.4157 0.5444

Table 6 SVM – Classification 
performance by object 
(accuracy only) for in-sample 
(Vaihingen) and out-of-sample 
(Potsdam) validation using 
three training cases.

Figure 7 Qualitative out-
of-sample classification 
performance for SegNet 
classifier applied to ISPRS 
Potsdam data. From left to 
right, the top row shows IRRG 
imagery, nDSM information, 
color-coded ground truth 
annotations. From left to 
right, bottom row display 
predictions when trained with 
(i) IRRG info only, (ii) nDSM info 
only, and (iii) combined IIRG & 
nDSM info.

Figure 8 Qualitative out-
of-sample classification 
performance for SegNet Lite 
classifier for the same tile 
as used in Figure 7 from the 
ISPRS Potsdam data, display 
predictions when trained with 
(i) IRRG info only, (ii) nDSM info 
only, and (iii) combined IIRG & 
nDSM info.
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Figure 9 Cross-city building 
classification performance for 
the USSOCOM dataset using 
SegNet classifiers. Classifiers 
are color-coded: nDSM & RGB 
in blue, RGB-only in green, 
and nDSM-only in yellow. 
Note that JAX corresponds to 
out-of-sample testing with 
tiles from Jacksonville, and 
RIC corresponds to out-of-
sample testing with tiles from 
Richmond.

Figure 10 In-sample and 
out-of-sample building 
classification performance for 
the USSOCOM dataset using 
SVM classifiers. Classifiers are 
color-coded: nDSM & RGB in 
blue, RGB-only in green, and 
nDSM-only in yellow.
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on 144 tiles over Jacksonville), while the right three bars represent out-of-sample performance 
for procedure 2 (testing on 144 tiles over Richmond).

Figure 10 indicates that in-sample performance (left most three bars in all six subplots) decreases 
only slightly when using RGB (green) or nDSM (yellow) information only, as compared to the 
combined nDSM & RGB classifier (blue). Note the RGB classifier slightly outperforms the (nDSM) 
classifier in in-sample performance. However, Figures 9 and 10 indicate that performance 
differs significantly when testing the trained classifiers on a previously unseen test dataset, 
here USSOCOM Jacksonville or Richmond tiles (SegNet) and USSOCOM Tampa tiles (SVM). In 
addition to the overall performance discrepancies between the three classifiers for both SegNet 
and SVM, it becomes evident that accuracy drops only 10% when using only nDSM data as 
compared to 15% when using only RGB information (SVM; see upper left plot in Figure 10). For the 
SegNet classifiers, we observe that classifiers trained with RGB & nDSM information exhibit an 
average 0.6% higher out-of-sample accuracy than classifiers trained on RGB information alone. 
These results support the hypothesis that the nDSM information facilitates greater classifier 
generalizability, as compared to RGB information alone for building classification tasks.

Figure 11 presents the qualitative out-of-sample performance for all three SVM classifiers. 
From left to right, the upper row shows the training data RGB imagery, nDSM information, and 
ground truth, i.e. annotated building footprints, for Tampa tile #014. From left to right, the 
lower row shows predicted building footprints when training on (i) RGB information only, (ii) 
nDSM information only, and (iii) combined RGB & nDSM information. It is clear that the RGB & 
nDSM classifier on the lower right provides the best correlation with the actual ground truth 
(upper right). However, specific misclassifications occur for the other two cases. For example, 
when using nDSM information only, taller non-building objects such as trees are associated 
with a higher misclassification rate. In contrast, when using RGB information only, objects 
such as roads are often misclassified as buildings. However, when combining RGB and nDSM 
information, the number of misclassifications (both Type I and Type II) is significantly reduced.

Table 7 captures our results from applying SegNet to the USSOCOM dataset with the training 
procedures specified in Table 2. Similarly, Table 8 captures our results from applying our SVM 
classifier to the same dataset.

3.2. VALIDATION USING SMALL SAMPLE PROPORTION

In this section, the importance of 3D surface information is further tested using classification 
scenarios with scarce training samples. Sufficient data with adequate representation and 
viewing angles for all objects of interest may not always be assumed, particularly for remote 

Figure 11 Qualitative out-
of-sample classification 
performance for SVM 
classifiers applied to USSOCOM 
data. From left to right, 
the upper row shows RGB 
imagery, nDSM (DSM-DTM) 
information, and ground 
truth, i.e. annotated building 
footprints, for Tampa tile #014. 
From left to right, the lower 
row shows predicted building 
footprints when training on 
(i) nDSM information only, 
(ii) RGB imagery only, and 
(iii) combined RGB & nDSM 
information.



sensing applications. Therefore, we train and test the two classification architectures from 
Section 2.3, while successively decreasing the number of training samples.

SVM classification in Section 3.1 was carried out using all 144 Jacksonville tiles from the ISPRS 
dataset. The 600 million training samples, i.e. annotated pixels, were randomly down-selected 
by a factor of 1,000 to 600,000 training samples, which corresponds to a sample proportion 
for training of 0.1%. For the following analysis, we further decrease the sample proportion to 
0.01%, 0.001% and 0.0001%, thereby reducing the total number of training samples to 60,000, 
6,000, and 600, respectively.

Table 9 presents the resulting average training times for all three SVM classifiers, highlighting 
the orders of magnitude between the different test cases. Clearly, the underlying numerical 
optimization can be completed significantly faster if fewer training samples need to be 
classified.

Figure 12 displays the resulting in-sample and out-of-sample classification performance for the 
three SVM classifiers: RGB-only (red), nDSM-only (blue), and RGB & nDSM (black) as a function 
of sample proportion for training. Here, performance is measured in accuracy (left plot), F1-
score (center plot) and error rate (right plot). All metrics assume class balancing. In-sample 
performance is plotted as dotted lines, while out-of-sample performance is plotted as solid 
lines. As training and test samples are selected randomly, five trials were conducted for each 
test case studied. In Figure 12, vertical bars are added to indicate the standard deviation for the 
particular performance metric over those five trials.

CLASSIFICATION 
METRICS 

SEGNET (US SOCOM)

TRAIN TAM 
TEST JAX

TRAIN TAM
TEST RIC

NDSM RGB NDSM & 
RGB

NDSM RGB NDSM & 
RGB

Accuracy 0.9164 0.9298 0.9367 0.8690 0.9339 0.9386

Precision 0.9245 0.9412 0.9451 0.9425 0.9416 0.9512

Recall 0.9105 0.9245 0.9341 0.8122  0.9307 0.9298

F1 Score 0.9175 0.9328 0.9396 0.8725 0.9361 0.9404

False Negative Rate 0.0895 0.0755 0.0659 0.1878 0.0693 0.0702

False Positive Rate 0.0829 0.0643 0.0604 0.0610 0.0626 0.0518

Table 7 SegNet – Balanced 
building classification 
performance metrics for cross-
city (out-of-sample) validation 
following procedures 1 and 2 
in table 2. In procedure 1 (left 
three columns), SegNet was 
trained on tiles from Tampa, 
Florida, and tested on tiles 
from Jacksonville, Florida. 
In procedure 2 (right three 
columns), SegNet was trained 
on tiles from Tampa, Florida, 
and tested on tiles from 
Richmond, Virginia.

CLASSIFICATION 
METRICS 

5 × 5 SVM CLASSIFIER (USSOCOM)

IN-SAMPLE TESTING OUT-OF-SAMPLE TESTING

NDSM RGB NDSM & 
RGB

NDSM RGB NDSM & 
RGB

Accuracy 0.8763 0.8978 0.9178 0.8763 0.7212 0.8931

Precision 0.8438 0.8850 0.9214 0.8438 0.7467 0.9003

Recall 0.9047 0.8996 0.9023 0.8000 0.7126 0.8963

F1 Score 0.8732 0.8922 0.9117 0.8200 0.7292 0.8983

False Negative Rate 0.0953 0.1004 0.0977 0.2000 0.2874 0.1037

False Positive Rate 0.1488 0.1039 0.0684 0.2000 0.2693 0.1105

SAMPLE PROPORTION FOR 
TRAINING 

0.0001% 0.001% 0.01% 0.1%

SVM Training Times (sec) 0.1 1.5 180 24,000 

Table 8 SVM – Balanced 
building classification 
performance metrics for 
in-sample and out-of-sample 
testing on the USSOCOM 
dataset.

Table 9 Average training times 
(in seconds) for SVM classifiers 
when using smaller sample 
proportions for training on 
USSOCOM data.



As discussed in the previous section, the RGB & nDSM classifier provides the best in-sample 
performance at 93% accuracy when using 0.1% of all training data. In-sample performance 
for the RGB-only and nDSM-only classifiers is 85% and 83%, respectively. In-sample accuracy 
(dotted lines) increases for all three classifiers as the sample proportion for training decreases. 
This is due to the fact that fewer training samples have to be classified. However, out-of-
sample performance for all classifiers decreases with decreasing sample proportion for training, 
indicating that the resulting classifiers lose their generalizability when trained on smaller training 
sets due to overfitting. For out-of-sample performance, the nDSM-only classifier outperforms 
the RGB-only classifier, which further affirms the findings from Section 3.1. Interestingly, nDSM-
only even outperforms the RGB & nDSM in the 0.0001% case. This result may relate to the 
curse of dimensionality (Keogh and Mueen, 2017), as the nDSM classifier operates in a reduced 
feature space of 25 dimensions (see Section 2.3.1), while the combined RGB & nDSM classifier 
operates in 100 dimensions. In general, if training data is scarce, a reduced feature space can 
improve generalizability by avoiding overfitting.

In addition to the SVM classifiers, we conduct the same validation analysis for small sample 
proportion for training the two SegNet architectures from Section 2.3.2. Figure 13 displays the 
results when training the SegNet and SegNet Lite classifiers with 15%, 25%, 50% and 100% of the 
data. The method used for obtaining a subset of the data is to select a random point from each 
image and take a width and height equal to the desired fraction of the full image as the cropping 
region, which is then used for training. As before, training was carried out using 12 ISPRS Vaihingen 
tiles. Testing was then performed for three cases: (i) in-sample/in-city (using the 12 Vaihingen 
tiles that were used for training), (ii) out-of-sample/in-city (using the remaining 4 Vaihingen tiles 
not used from training), and (iii) out-of-sample/out-of-city (using all ISPRS Potsdam tiles). Out-
of-sample/cross-city accuracy across the SegNet and Segnet Lite models with and without nDSM 
generally indicate a mild positive correlation between portion of data and accuracy, suggesting 
that 50% of the data for a given city might be sufficient for the full city classification.

In-sample/in-city accuracy across the SegNet and Segnet Lite models with and without nDSM 
exhibits a negative correlation between portion of dataset and accuracy. As with the SVM 
classifier, this can be attributed to the network having less samples to classify, and therefore 
being able to overfit to the scarce training set. Lastly, the non-nDSM trained SegNet model 
has a negative correlation between accuracy and training proportion in regards to cross-city 

Figure 12 Impact of sample 
proportion on in-sample 
(dotted lines) and out-of-
sample (solid lines) SVM 
classification performance on 
the USSOCOM Jacksonville, FL 
dataset. The study compares 
three input data scenarios, (a) 
RGB & nDSM (black), (b) RGB-
only (red), and (c) nDSM-only 
(blue). From left to right, the 
individual plots show accuracy, 
F1-score, and error rate as a 
function of sample proportion.

Figure 13 Impact of sample 
proportion on classification 
performance using SegNet 
(left) and SegNet Lite (right) 
on ISPRS data.
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testing. This correlation may indicate that, in addition to the cross-validation results of RGB and 
nDSM, RGB information alone can lead to overfitting and therefore hinder generalizability of a 
classification model to other cities.

4. CONCLUSION
This paper evaluated the importance of 3D surface information for remote sensing using several 
classification tasks. Two distinct classifiers, i.e. SVM and FCNN architectures, were introduced 
and assessed for performance when trained with and without nDSM information. Two publicly 
available datasets, i.e. the USSOCOM Urban 3D challenge (H. Goldberg, Brown, and S. Wang, 2017; 
H.R. Goldberg et al., 2018) and the ISPRS 2D Semantic Labeling contests (Gerke et al., 2014), 
were utilized for training and rigorous in-sample and out-of-sample performance assessment. 
In all cases, the study demonstrated that high in-sample classification performance can be 
maintained even when depriving the classifier of nDSM information. However, out-of-sample 
performance, i.e. when testing the classifier on previously unseen data from a different city, 
drops significantly for both SVM and FCNN classifiers trained without nDSM information. We 
conclude that nDSM information is vital for accurately generalizing classification methods to 
datasets not included in training.

An additional study revealed that nDSM information is also critical when training a classifier 
with relatively few training samples. Again, in-sample performance remains high with and 
without nDSM information, but generalizability decreases substantially when nDSM information 
is excluded from training.

Together, these validation experiments demonstrate the importance of including nDSM 
information to ensure generalizable out-of-sample predictive performance for remote sensing 
classification tasks.
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