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ABSTRACT
Spectroscopy experiment techniques are widely used and produce a huge amount 
of data especially in facilities with very high repetition rates. At the European XFEL, 
X-ray pulses can be generated with only 220ns separation in time and a maximum 
of 27000 pulses per second. In experiments at the different scientific instruments, 
spectral changes can indicate the change of the system under investigation and so 
the progress of the experiment. Immediate feedback on the actual state (e.g. time-
resolved status of the sample) would be essential to quickly judge how to proceed 
with the experiment. Hence, we aim to capture two major spectral changes. These 
are the change of intensity distribution (e.g. drop or appearance) of peaks at certain 
locations, and the shift of the peaks in the spectrum. Machine Learning (ML) opens 
up new avenues for data-driven analysis in spectroscopy by offering the possibility 
for quickly recognizing such specific changes and implementing an online feedback 
system which can be used near real-time during data collection. 

On the other hand, ML requires lots of data that are clearly annotated. Hence, it is 
important that experimental data should be managed along the FAIR principles. 
In the case of XFEL experiments, we suggest introducing NeXus glossary and the 
corresponding data format standards for future experiments.

An example is presented to demonstrate how Neural Network-based ML can be used 
for accurately classifying the state of an experiment if properly annotated data is 
provided.
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1 INTRODUCTION AND BACKGROUND
1.1 SPECTROSCOPY TECHNIQUES AT EUROPEAN XFEL

Spectroscopy is central to the natural sciences and engineering as one of the primary methods 
to investigate the real world, study the laws of nature, discover new phenomena, and 
characterize the properties of substances or materials (Ghosh et al. 2019).

However, experiments performed at photon science instruments in large facilities, like 
synchrotrons or XFELs always generate a large volume of data. As an advanced source, 
European XFEL is providing new research opportunities to scientists from different domains 
as diverse as physics, chemistry, geo- and planetary sciences, materials sciences or biology 
(Tschentscher et al. 2017). The unique feature of the European XFEL is the capability of the 
superconducting linac to accelerate trains of many (up to 2,700) electron bunches within one 
600-µs-long RF pulse at 4.5MHz (Decking et al. 2020) with an electron energy of up to 17.5 GeV, 
which means that X-ray pulses can be generated with only 220ns separation in time and a 
maximum of 27000 pulses per second. Combining them with fast 2D detectors, a huge amount 
of data is generated in a short time (Bernstein et al. 2020).

At the European XFEL, currently, six scientific instruments (e.g. SCS (Le Guyader et al. 2020; 
Mercurio et al. 2019), FXE (Zalden et al. 2019; Galler et al. 2019), and HED (Nakatsutsumi et al. 
2014)) are in operation for specific applications using soft or hard X-ray techniques (Tschentscher 
et al. 2017). Among them, the High Energy Density (HED) scientific instrument focuses on the 
investigation of matter at high density, temperature, pressure, electric, and/or magnetic field 
(Nakatsutsumi et al. 2014). It offers a wide range of time-resolved X-ray techniques reaching 
from diffraction and imaging to different spectroscopy techniques for measuring various 
geometric, electronic and magnetic structural properties (Tschentscher et al. 2017).

In HED experiments with high-density materials, changes in pressure will cause changes in 
the measured spectral peaks (making them newly appear, vanish, shift, or split). In order to 
evaluate the state of the experiment, the measured spectra need to be classified so that each 
class is assigned to a different state of the system under investigation. The two major spectral 
changes that we aim to capture in this study are 

•	 the change of intensity distribution (e.g. drop or appearance) of peaks at certain 
locations, or

•	 the shift of those in the spectrum.

The complexity of the experimental setup and the high data rates at the order of 10–15GB 
per second per detector at European XFEL (Kuster et al. 2014) demand an effifficient approach 
of combining experiments with online data analysis as an active feedback system with low 
feedback latency (Fangohr et al. 2017; Brockhauser et al. 2013; Brockhauser et al. 2012; 
Basham et al. 2015).

Under such circumstances, it is crucial to properly use and reuse the previously collected 
big data, and also efficiently analyze, and accurately extract meaningful features during 
experiments. While data analysis algorithms that properly solve the relevant physics equations 
and optimization steps would be hopeless to perform in near real-time, Machine Learning 
based algorithms can provide a solution. 

1.2 MACHINE LEARNING AND ITS REQUIREMENTS

Machine learning (ML) is a subfield of artificial intelligence centered on algorithms that can 
learn to complete tasks using data (Edelen et al. 2018). It applies broadly to a collection 
of computational algorithms and techniques that train systems from raw data rather than 
a priori models (Edelen et al. 2018), thus useful for research facilities that produce large, 
multidimensional datasets like European XFEL. With recent developments in ML, data-
driven deep learning methods have turned out to be very good at discovering patterns 
and structures in high-dimensional data (LeCun, Bengio & Hinton 2015) during the training 
process. The trained models can then supply computational inexpensive decisions when 
applied on new data. Hence, this technique opens up new ways for data-driven analysis in 
spectroscopy by offering the possibility of recognizing specific features on-the-fly during data 
collection. It enables fast feedback and the implementation of near real-time downstream 
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data analysis, e.g. providing immediate information on the phase of the experiment based 
on the classification of the currently measured spectra. In order to train the model more 
effectively and accurately, ML requires lots of data which can only be supplied on a machine 
readable way if the experimental dataset are stored in a standard and well understandable 
format with clear definitions and annotations. It is important that research outputs should 
align with the FAIR principles, meaning that data, software, models, and other outputs should 
be Findable, Accessible, Interoperable, and Reusable (Wilkinson et al. 2016). The key in finding 
and re-using digital assets is metadata (RDA COVID-19 Working Group, 2020). For data re-use, 
their annotation and assignment to metadata with ontology definitions are very important. 
In the case of synchrotron or XFEL experiments, data collection and management processes 
of the experiment control systems shall be prepared to acquire all necessary metadata in a 
hierarchical data structure following a scientific experiment data model. Such an experimental 
data model shall connect the instrumentation and data acquisition to the physics model 
behind the respective experiment. The NeXus data format and ontology platform (Donath, 
Rissi & Billich 2013; Hester 2016; Könnecke et al. 2015) provides an ideal environment for this. 
Whether the experiment is performed in a synchrotron or an XFEL facility, the corresponding 
ML algorithms could obtain the information always in the same machine readable format, and 
could easily and automatically pick up the data source to be processed during training. This 
requires all experiment-related metadata including those needed for processing, as well as 
those needed for filtering the available datasets to be captured and stored according to the 
ontology definitions and relationships set by the data model of the respective experiment type.

Unfortunately, in the case of XFEL sciences, the scientific data are not well annotated, and 
many key information are not machine-findable or accessible. Specifically, in our use case, 
the HED experimental spectra data we obtained lacked some key information, such as the 
pressure values and were provided with wrong metadata e.g. on the energy of the incident 
beam. Therefore, the selection and the preparation of the training dataset for our ML model 
required lots of manual work.

1.3 SCIENTIFIC EXPERIMENT DATA MODEL

To comply with FAIR principles and facilitate ML training, experimental data shall follow 
experiment data models which connect the experimental data items to the physics model used 
by the design of the experiment and also by the corresponding data processing applications. 
As the physics models and data processing applications can be different from experiment 
to experiment, the corresponding data models need to be defined for each experiment 
type respectively. Similarly to physics models which can be extended and reused during the 
investigation of related physics phenomena, scientific experiment data models shall also be 
modular and shall reuse base definitions.

The NeXus glossary defined using the NeXus Definition Language (NXDL) offers several base 
classes and allows annotating any data items stored in the NeXus format by connecting 
them the glossary definitions. NXDL supports modular extension of these base classes and 
declaration of application definitions. These form complete data models covering all the 
requirements of data processing applications for the respective experiment types. NXDL 
also provides an ontology which is based on the relationships declared between the defined 
glossary terms. Hence, scientists can define a schema for an application data model which 
connects all data fields in a NeXus data file to its machine-readable meaning (Könnecke et al. 
2015). In this way, an experiment model can be expressed in an NXDL application definition 
and all the corresponding data and metadata can be stored in a file following the NeXus data 
format standard.

A good example for an application definition specifying a data model for a given scientific 
domain and so supporting data reuse is NXmx (NeXus for macromolecular crystallography), 
one of several standardized NeXus application definitions (Bernstein et al. 2020). Recording 
data and metadata in such an annotated data exchange format can guarantee automatic and 
proper data interpretation and support data reuse. 
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1.4 SIGNIFICANCE OF THE STUDY

As described above, it is important to optimize the usability and reusability of the scientific data 
collected during XFEL experiments. A near real-time and accurate extraction of meaningful 
features during the experiments is vital for feedback systems, and essential for assessing the 
state of the experiments. The main contributions of this study are two-fold:

Firstly, we show an example how ML-based artificial intelligence (AI) methods can 
provide near real-time feedback on the status of the experiments and trigger a 
conceptual breakthrough towards data-driven spectroscopy (Ghosh et al. 2019). For 
this purpose, this study demonstrates a machine learning based statistical model 
which is applied for spectra classification. The presented solution automatically finds 
the regions (or bins) where the classes differ significantly in our training set (that 
is what we call separability). For this step, a two-layer neural network is applied to 
train our classification model of each bin separately and the obtained separability 
is used to calculate classification weighting factors for each bin respectively. By 
calculating the weighted sum of the ML based predictions obtained for the points of 
a spectrum (corresponding to the diffractogram in a certain experimental state), a 
class label is assigned finally which suggests the actual state of the experiment. We 
also investigated the performance of the model using different number of bins. We 
have found a relationship between the number of bins and the size of the ambiguous 
region in which the prediction of the model is not reliable. As a result an optimal 
number of bins can be determined as a compromise between the computational 
complexity and an expectable classification confidence.
Secondly, we highlight the importance of FAIR data management in XFEL 
experiments, and suggest the implementation of individual NeXus application 
definitions for the different experiment types. Specifically, for future HED spectral 
data, we recommend introducing a specific application definition which allows a 
machine-readable and machine-interpretable registration of important metadata, 
like the pressure and wavelength values alongside the raw detector data.

2 EXPERIMENT DATA
Spectral data was collected during an HED experiment performed at PETRA III Extreme 
Conditions Beamline P02.2 using the LAMBDA GaAs 2M detector system (a multi-megapixel 
hard X-ray detector to measure the scattering intensity for experiments at synchrotrons), 
as described in (Pennicard et al. 2018). A simple sketch of the experiment setup is shown 
in Figure 1. The frame rate of the detector enables measurements up to 2000 frames per 
second, giving the possibility of 0.5 ms period per image. The sample used in this study was 
(Mg0.2Fe0.8)O magnesiowüstite which is a solid solution of the endmembers periclase (MgO) 

Figure 1 Schematic diagram of 
the High Energy Density (HED) 
experiment setup.
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and wüstite (FeO). The sample was compressed from 1 to above 100 GPa over a period of 50 s 
while maintaining reasonable diffraction image quality in consecutive 100ms exposures. The 
measurement was performed at 25.6 keV beam energy (corresponding to the incident beam 
wavelength of 0.4828 Å ffi). Diffraction images (as in Figure 2) were continuously collected every 
100 ms during a trapezoidal ramp profile, tracking the pressure evolution of the sample and 
the Pt (platinum) pressure calibrant. Azimuthal integration and baseline subtraction (Filik et 
al. 2017) are applied to 2D raw diffraction images to obtain 1D integrated spectra. Figure 2 
shows an example of how the spectral peak positions in a spectral curve reflect the intensity 
distribution in the corresponding raw diffraction image as a function of the scattering angle. A 
peak in the diffractogram or spectrum corresponds to a diffiraction ring (Pennicard et al. 2018).

The obtained spectral data collected during the experiment is shown in Figure 3. To show more 
clearly how the diffraction changes while the pressure on the sample is changing, we show 
one for every 20 diffiractograms. Hence, the time interval between adjacent diffiractograms in the 
Figure 3 (a) is 2 s. As it can be clearly seen from this figure, the amplitude of the spectral peaks 
change (increase, decrease, or even vanish) at certain locations, and peaks also shift in their 
2θ-angle position, split, or start to broaden.

The changes correspond to the modification of the crystal lattice (e.g. indicating phase 
changes). During the experiment, we should be able to follow these changes and determine 
the actual state of the system in near real-time. Scientifically, the most relevant question is 
whether the phase transition in the sample has already happened. To determine this using 
Machine Learning, we selected representative measured spectra (and also produced simulated 
spectra) at both the initial and final stages. Based on this input, we have to provide a judgment 
at each point during the experiment with the minimum ambiguity.

Figure 2 Raw X-ray diffraction 
image from a (Mg0.2Fe0.8)
O magnesiowüstite sample 
collected with the LAMBDA 
GaAs 2M detector. This figure 
was measured at PETRA 
III beamline P02.2 using a 
25.6 keV beam. The 2D raw 
diffraction image shows the 
starting condition at 1 GPa 
and with fcc/B1 (Mg0.2Fe0.8)
O sample. After azimuthal 
integration, the corresponding 
1D spectrum is shown in green 
on top of it.



In this experiment, the most important external condition that causes phase transition is the 
change of pressure. One of the Raw data files produced during the HED experiment is shown in 
Figure 4. It recorded data from one module of the three-module detector system and stored 
it in hdf5 format. Note that NeXus base classes were used by the facility to store the data, but 
no application definition was followed which would define where to find certain experiment 
settings as metadata for this experiment type (e.g. pressure, or incident X-ray beam energy). 
The root element, an NXentry group represents one experimental scan or run (Könnecke et 
al. 2015). Some instrument settings can also be retrieved from the base class definitions 
as of NXdetector, for example, detector acquisition mode, calibration data, geometry, and 
translation information, but lots of metadata including the incident beam energy appears only 
as free text key-value pairs under the group NXcollection without any definition and link to a 
physics model. As a consequence, no data processing application can rely on the generated 
file to automatically find these settings and use them. Instead, beamline scientists can help 
with a manual interpretation of the dataset. Even more, it has turned out that the free-text 
key-value pair provided for human interpretation “beam energy – 25000” is misleading, as the 
incident beam energy was actually 25.6keV and not 25000[eV] as suggested by the certainly 
unmaintained and undocumented entry above provided with no units. Note that without 
knowing the beam energy, no conversion between diffraction angle and Q-space is possible 
which blocks the possibility of proper calibration and determination of key information such as 
the pressure corresponding to each diffiractogram. As a result, we cannot automatically select 
the training set for our ML model, but rather picked up spectra for the training manually.

Figure 3 (a) Spectral data (one 
for every 20 diffiractograms) 
collected during the 
experiment after baseline 
subtraction, and (b) Contour 
maps of Intensity distribution 
of each diffractogram along 
2θ axis. Note that 4 spectra 
are grayed out which were 
randomly picked as the 
basis for the ML training set 
for representing the two 
experimental states (before 
and after phase transition).

Figure 4 An hdf5 experimental 
raw data file is displayed in 
HDFview software.
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3 EXAMPLE FOR DATA REUSE
Machine learning with its big data demand provides a perfect use case for data reuse. In ML, a 
classification algorithm is usually considered a type of supervised learning, which is used when 
the outputs are restricted to a limited set of categories or values.

In the case of supervised learning, the training process will tweak the parameters of the model 
for correcting the output towards the one defined as a good solution. It infers a function from a 
labeled training dataset (Mohri, Rostamizadeh & Talwalkar 2018). The trained mathematical 
model can then be used as a classifier to predict the class of previously unseen instances. 
Hence, after training the model using spectral data belonging to either the state before or after 
the phase transition, the neural network can classify each newly acquired spectrum during 
data collection and determine the actual state of the system under investigation during the 
experiment.

3.1 MATHEMATICAL MODEL APPLIED FOR MACHINE LEARNING
A. Notation and terminology

In this study, scalar value variables are denoted as normal font letters (i.e. x or X), matrices 
are denoted as bold capitals (i.e. X or W), vectors are denoted as bold lowercase letters (i.e. 
x). Variables with subscripts represent elements in a vector or matrix, for example, we use xi 
and xij to indicate the element in vector x and matrix X respectively. The transpose of a matrix 
or vector is represented by the symbol ()T, and ()(i) is associated with the i-th data item in the 
training set.

B. Supervised learning for classification

Given the inputs, X ∈ ℝn×m representing m trainning samples (or observations) with n data 
points in each can be denoted as

    ( ) ( ) ( )1 2, , , mé ù= ê úë û
X x x x  (1)

The training samples are stacked up in the matrix. Each sample has n data points or features, 
which is often called feature vector. The i-th training example can be denoted as

   
( ) ( ) ( ) ( )

1 2 , , , , 1, ,
T

i i i i
nx x x i mé ù= =ê úë û

x    (2)

The corresponding output or classification response y ∈ ℝ1×m is the class labels or target values 
for X, represented as

   
( ) ( ) ( )1 2, , , my y yé ù= ê úë û

y   (3)

where each element y(i) in the output vector y corresponds to the input vector x(i). And the 
input-output pairs (x(i), y(i)) constitute the training data set, S,

  ( ) ( )( ) ( ) ( )( ) ( ) ( )( ){ }1 1 2 2, , , , , ,m mS y y y= x x x  (4)

The function f to convert from X to y is the model that the ML algorithm needs to learn to 
accurately predict the outcomes. In most cases, the observation data X contains noise and may 
also contain contradictions. Hence, it is usually impossible to find a function that can accurately 
classify all training samples. The goal of ML is to develop a model f that can best match each 
training example (x(i), y(i)), so that f can be used as a predictor for new data or observations x(new). 
Modeling the inaccuracy as noise, the generic data model for ML can be described as

    ( )f= +y X  e (5)

where ε represents discrepancies such as measurement errors or other inconsistencies.

It yields the prediction for new data x(new) as

   ( ) ( ) ( )( ) ˆ new new newy y f» = x  (6)
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During the process of training the model, its parameters (which can be expressed as parameter 
vector θ ∈ ℝn) are adjusted. Therefore, the vector may be estimated by solving a (convex) 
optimization problem (Kulin et al. 2018).

A loss (or cost) function l(∙) is used to evaluate the performance of a neural network by 
calculating the error between the actual value y(i) and the predicted value ŷ(i). It is a very import 
indicator for monitoring the training process. Cross-entropy loss is the most commonly used 
loss function for multi-class classification problems, expressed as

   ( ) ( ) ( )
1

0

ˆlog
C

i i
k k

k

l y y
-

=

=-åq  (7)

where C is the number of classes, ( )ˆ i
ky  and ( )i

ky  are the predicted probability if the i-th data point 
belongs to the class k and the One-Hot Encoded ground truth respectively.

Averaging the loss over the whole training set S yields to the training loss J as

  

( )
( ) ( )

( ) ( )( )

( ) ( )
( ) ( )

,

1

,
0

1
, ,

1
l g ˆo

i i

i i

i i

y S

C
i i

k k
y S

k

J l y
m

y y
m

æ ö÷ç Î÷ç ÷÷çè ø

-

æ ö÷ç Î÷ç ÷÷çè ø =

=

=-

å

å å

x

x

x qq

 (8)

The goal of training the neural network is to minimize the value of this loss function. Therefore, 
the process of model training is transformed into the process of solving the minimum value of 
the training loss J(θ), which is described as

    ( )argmin
n

J
Îq

q  (9)

After this calculation process, the best mathematical parameters of the function f on the 
training set S will be obtained, and then the output y for any given input x can be predicted by 
the formula ˆ Ty = xq .

C. Deep learning

The performance of most of the traditional ML algorithms depends on how accurately the 
features are identified and extracted (Suganya & Charles 2019). Deep learning is a branch of ML 
algorithms (Deng & Yu 2014) which offers an efficient method for learning features via applying 
multiple layers of neural networks which extract different features at each layer. The initial 
data is provided to the network in its visible input layer, while the different abstract features 
are generated in the subsequent hidden layers. Hence, a hierarchical feature extraction derives 
here finally an abstract representation.

1) Fully connected neural networks

With the advantage of being “structure agnostic”, fully connected networks (as shown 
in Figure 5) are capable of learning any function which boosts them to become a universal 
learning architecture, and are regarded as the workhorses of deep learning.

Figure 5 A multilayer deep 
fully connected network.
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A fully connected neural network consists of a series of fully connected layers (Ramsundar 
& Zadeh 2018), which is a mathematic function that describes its input-output relationship. 
Consider the case of one training example x(i) for any layer l the relationship between its input 
and output can be described as 

   [ ]( ) [ ] [ ]( ) [ ]( ) [ ]1 , 1,l i l ll i l
j j ja b j ns -= ⋅ + =w a   (10)

where [ ]( )l i
ja  represents the output of the j-th neuron [ ] [ ]( ) [ ]11,

ll l i n
ju R

-- Îa  represents the input vector 
from the previous layer l-1, [ ]l

jw  is the weight vector associated with inputs of neuron [ ] [ ],l l
j ju b  

is the bias associated with neuron [ ]l
ju , n[l] is the number of neurons in layer l, and σ(∙) is an 

activation function as explained below.

Consider a standard L-layer fully-connected neural network with all the training examples 
X we can denote the input layer as [ ] [ ]0 0 ) (n m´ÎA A = X , the outputs of the hidden layer l as 

[ ] [ ]
 ,  1, 1

ll n m l L´Î = ¼ -A  , the very last, so called output layer as [ ] [ ]LL n m´ÎA  . At each layer, 
weights are introduced as [ ] [ ] [ ]1

, 1,
l ll n n l L

-´Î = ¼W  , together with bias vectors [ ] [ ]
 ,  1,

ll n l LÎ = ¼b   
which yield to the generic calculation model in the network:

  [ ]
[ ] [ ] [ ]( ) [ ]( )
[ ] [ ] [ ]( ) [ ]( )

1

1

, 1, 1
A

,

l l l l

l

l l l l

h h l L

g g l L

-

-

ìï + = = ¼ -ïïï=íïï + = =ïïî

W A b

W A b

Z

Z
 (11)

where h(∙) and g(∙) are some nonlinear activation functions. The commonly used activation 
functions for hidden layers are ReLU (Nair & Hinton 2010), sigmoid function (Han & Claudio 
1995), and hyperbolic tangent (Namin et al. 2009). In our study, we use ReLU, which can greatly 
accelerate the learning speed of the classification model. For the output layer, g(∙) always 
represents the softmax function (Bishop 2006), which provides the probability distribution of 
each outcome or label over C classes ( )ˆ i

ky , defined by the formula

   
( )

( )

( )

z

1 z

0

1ˆ , 0, ,

i
k

i
j

i
k

C

j

e
y k C

e
-

=

= = -

å


 (12)

where ( )z i
k  (also called logits) represents the score of the i-th data point belonging to class k as 

obtained in the output layer. Note that in our classification model the number of neurons in the 
last layer (layer L) is equal to the number of classes (n[L] = C). The predicted class Ĉ(i) (label) for 
the i-th data point is obtained as

  

( ) ( )

( )

( )

( )

z

1 z

0

z 1

ˆ argm

r

ˆax

argmax

a gmax , 0, ,

i
k

i
j

i
k

ii
k

k

Ck

j

k

C y

e

e

e k C

-

=

=

=

= = -

å


 (13)

Unfortunately, parameter vector θ in deep fully connected neural network models (composed 
of W[l] and b[l] for layer l) makes the computational complexity grow exponentially with the 
number of layers, and at the same time slows down the training process and increases the 
chance of overfitting, so the number of such layers is limited in practice.

2) Gradient descent optimization algorithm

Gradient descent is one of the most popular algorithms to perform optimization and by far the 
most common way to optimize neural networks (Ruder 2016). Learning rate is a parameter 
of the training process, which determines the step size to reach the local minimum of the 
objective function J (equation (8)). Choosing its proper value can be difficult. A learning rate 
that is too small will lead to very slow convergence, while a learning rate that is too large can 
hinder convergence and cause the loss function to fluctuate around the minimum or even 
diverge (Ruder 2016).
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To overcome this, the Adaptive Moment Estimation method (Adam) (Kingma & Ba 2014) 
computes adaptive learning rates for each parameter and also adds bias correction and 
momentum to RMSprop, the Root Mean Square Propagation algorithm, a similar but simpler 
algorithm (Hinton, Srivastava & Swersky 2012). While Adam, RMSprop and also Adadelta (Zeiler 
2012), an extension of Adagrad (Duchi 2011), are very similar algorithms, Kingma et al. (2014) 
show that Adam carries the benefits of all, and it can actually slightly outperform towards the 
end of optimization as gradients become sparser (Ruder 2016). 

Using Adam as the optimizer, the learning rate doesn’t need to be manually adjusted at 
different stages, but only a default value has to be provided.

3.2 SPECTRA CLASSIFICATION

In this work, we give an example of using experimental data to determine if our multi-crystal 
powder system has already passed a phase transition during a pressure ramping experiment 
protocol or not. 

Since pressure was not recorded directly with the raw dataset, a training set containing 
elements from both phases could not be automatically identified, but rather the representative 
curves had to be selected manually. For this purpose, four representative spectral curves (2 from 
both classes) are included in the training set (as shown in Figure 3). To learn the characteristic 
differences between the 2 classes, Neural Network-based ML is used. To increase the robustness 
of the neural network model and its tolerance to small Gaussian measurement errors, 10 
simulated spectral curves for each original spectrum were also included in the training set by 
adding some random noise, which is small enough to enable finding the characteristic features 
in the spectra. The random noise is generated using the Mersenne Twister (Matsumoto & 
Nishimura 1998) as the core generator. The spectral data used for the training can be seen in 
Figure 7.

As described below, with the introduction of a new metric separability learnt from the final 
accuracy of the trained neural network model in each bin, we assign believability weighting 
factors to the bins to describe how much the classification prediction of the ML model in the 
given bin can be trusted. A weighted average of the individual predictions from all bins yields 
the final classification prediction for any new spectra. 

A. Neural Network Structure

We choose neural networks due to their ability to learn complex mappings between input and 
target spaces which makes them perfect for our task. Neural network models have gained 
increased popularity recently, since they can express complex function mappings using inputs 
with very little or no feature engineering (Ghosh et al. 2019). In this study, we explored a two-
layered neural network architecture with 150 hidden units. Each layer accepts the output of 
the previous layer as its input, and returns a transformation function as its output (Ghosh 
et al. 2019). We transform our problem of finding and distinguishing features in a set of 1D 
curves where the input is provided by the sequence of the spectral intensity values, into a 
2D segmentation problem where we input every point in the spectra with their 2 coordinates 
(scattering angle, and azimuthally integrated intensity as in Figure 2). Hence, our input layer 
has 2 input neurons (corresponding to the coordinates of the given points in the 2D space) and 
the hidden layer has 150 hidden neurons (as an abstract feature map) followed by a non-linear 
ReLU function. Their outputs are fed into the second layer (which is the output layer) with 2 
output neurons (corresponding to the number of classes being measured before or after the 
phase transition), followed by a softmax activation function, as in Figure 6. The ReLU activation 
units are selected here to speed up the model learning and prevent gradient vanishing/
exploding (Yang et al. 2019).

Such a neural network described above can be applied for the general 2D space segmentation 
problem as discussed in (Singh 2001). Here, we investigate the application of the same NN 
architecture for the special case of real experimental spectra classification.
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B. Model Training and believability weighting factors

As Figure 7 shows, the spectra in the two training classes partially overlap. Hence, classification 
(or segmentation) at the overlapping parts is difficult, meaningless, and of low confidence. 
The more our spectra overlap, the lower the overall accuracy, independently how precisely our 
model performs the segmentation at locations with well-separable features. Because of this, 
we divide the spectrum into several intervals, called bins, so we can learn the local separability 
of the spectra in each bin separately, which is provided by the classification accuracy at the 
end of the training. The principle of selecting the number of bins is to ensure that at least one 
spectral bin has a high separability indicated by the classification accuracy. Figure 7 shows the 
binning for the case of dividing the spectrum into 18 bins.

After splitting the spectra, two-layered neural networks with the identical structure described 
above is used to perform classification training in each bin separately. The obtained classification 
accuracy as a separability indicator is used for automatically calculating a believability weighting 
factor for each bin (equation (15)).

The neural network is trained by backpropagation using gradient descent, with the Adam 
update scheme as described above. We use the cross-entropy as the loss function, ReLU and 
Softmax function as the activation function for our classification task in each bin. The statistical 
model is obtained by minimizing the loss function on the training data set by checking if a point 

Figure 6 Two-layered neural 
network structure used for 
spectra classification.

Figure 7 The initial 
classification model for each 
bin obtained by the respective 
trained two-layered network 
models.
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is properly classified. 700 epochs are used for iteration, in which the point-wise probabilities 
( )ˆ i
ky  and then the class id Ĉ(i) ∈ {0, 1, …, C – 1} is predicted for each point by applying equation 

(12) and (13). The final classification (or space segmentation) model in each bin is shown in 
Figure 7 by the two background colors. As the figure inlet also highlights, the segmentation is 
determined by the point distribution of the spectra in each bin, and certain data will inevitably 
be misclassified.

In this process, the training accuracy of classifying each point in each bin is obtained. The 
corresponding statistics are shown in Figure 8. The optimized accuracy as a quality index 
for our neural network model is used as a measure for separability in each bin. High-quality 
classification is obtained in bins with high separability, whereas the point-wise classification in 
bins with low separability is misleading.

In this work, we use Ab, {b = 1, … B} to represent the training classification accuracy and so the 
spectral separability in bin b where B represents the number of bins. The values of Ab an vary 
between 0 and 1. Since 50% classification accuracy corresponds to maximum ambiguity, we 
consider that an accuracy below 55% corresponds to a confidence weighting factor of 0, and 
an accuracy of 100% corresponds to 1. To increase the impact of the training accuracy, a square 
operator is also introduced. Based on this, a believability weighting factor wb is calculated as

  ( )2max 0,1 .4337 0.4337b bw A= -  (15)

The result shows (see Figure 8) that the more obvious the feature difference in bins, the higher 
the classification accuracy (separability), thus larger weighting factors. At the same time, it can 
also be seen that the weighting factors corresponding to non-separable regions with accuracy 
less than 55% are 0.

The final classification label for each spectral curve is calculated by the weighted sum of the 
point-wise classification results assigned by our neural networks in each bin:

  
{ }

( )

0, , 1 1 1

argmax ˆ
BNB

i
curve kb

k C b i

L w C
Î - = =

= å å


 (16)

where ( )ˆ i
kC  equals to 1 if the i-th feature or observation Ĉ(i) is labeled as k otherwise it equals to 

0. N
B BN =  represents the number of data points in each bin, where N represents the number of 

data points in each spectral curve. Based on the classification prediction Lcurve for any measured 
spectrum, an immediate information on the phase of the system, and so on state of the 
experiment can be provided.

Figure 8 The distribution of 
point-wise training accuracy 
(separability), and the 
believability weighting factor 
for each bin.
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C. Performance metrics

Next to classifying the spectra into 2 phases, our aim also includes finding a transition point 
during an experiment. It is difficult and inaccurate to manually determine such a boundary. 
Instead, we are interested in the robustness of the ML-based classification and want to 
minimize any ambiguity zone during the experiment when the classification prediction jumps 
inconsistently between the two phases. Hence, our performance metric of the classification 
model shall show how small such a zone of ambiguity is. From the physics point of view, a 
proper interpretation would require the phases and the ambiguity zone to be linked to specific 
pressure ranges. Unfortunately, the available data is not complete and does not contain such 
information, so an objective measure for the classification quality is not available. This also 
highlights the importance of storing all relevant metadata and following FAIR principles in data 
management.

Instead, we define the classification confidence as described here. Let Nf represent the number 
of spectral curves in ambiguous region, Nt represents the total number of all test spectral 
curves, then the classification confidence can be defined as 

    1 f
conf

t

N
P

N
= -  (17)

If there is a clear division between the two types of spectra, it is considered to be 100% 
confident. In the particular case, if a phase change has not been found and all spectra are 
assigned to the same class without any boundary between the phases, it is considered that all 
spectra are in the ambiguous region and the classification confidence is 0.

3.3 CLASSIFICATION RESULTS

The full dataset used for the evaluation of the neural network learning model consists of 
349 spectral curves, each of which has N = 4023 data points. Part of the dataset (one for 20 
diffiractograms) is shown in Figure 3 as described above.

According to the performance metric equation (17), a curve-wise classification confidence 
for the dataset can be calculated. Applying 18 bins, the ambiguous zone is small and the 
final curve-wise classification confidence is 98.854%. For different number of bins applied, 
Figure 9 shows the respective ambiguous zones, and Figure 10 plots the calculated values of 
classification confidence. Figure 9 shows the ambiguous zones around the phase change by 
displaying the spectra with colors according to the classification prediction results and applying 
a continuous movement of the intensity baselines for better visibility.

Figure 9 Final classification 
result of test spectral curves 
near the boundary (using 1, 
5, 11, 18, 24, 29 bins). The 
spectrum is pulled evenly by 
moving the Intensity baseline 
for better display.
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It can be clearly seen that the more bins applied, the higher the classification accuracy, 
thus smaller the ambiguous zone. This is achieved by weighting the individual classification 
predictions calculated at the different bins, and so making the bins containing well-separable 
spectral features dominant and weakening the impact of misclassifications in the bins with low 
spectral separability and corresponding low believability weighting factor. The key in achieving a 
high classification confidence is finding bins with high separability index. Therefore, the optimal 
number of bins should be determined by increasing the number of bins until it is ensured that 
bins with high separability have been found.

The relationship between the classification confidence and the number of bins applied is shown 
in Figure 10. The overall trend is that as the number of bins increases, the ambiguous region 
becomes smaller and smaller. The presence of bins with high separability and corresponding 
high believability weighting factors immediately shows that the characteristic features of the 
different classes have been captured and high overall performance is expectable.

4 CONCLUSION
In this study, we presented an example of classifying experimental spectra using Neural 
Network based ML. We highlight the shortcoming of missing metadata and propose a 
solution for overcoming this by applying NeXus glossary and data format standard in XFEL 
sciences. Data reuse has been presented with a focus on classifying the measurement spectra 
into two classes either being before a phase transition or being after it. The classification is 
based on spectral features specific to an experimental phase. Hence, changes in spectral 
peaks (increasing, decreasing, vanishing, shifting) had to be found. Since the spectra of the 2 
classes are overlapping in some regions, their separability is low there. We have presented that 
binning the data, and down-weight the classification predictions from those bins where the 
classification accuracy is low results in a reliable final classification. In each bin, a two-layer 
neural network was trained for the classification and also for determining the separability of 
the classes within the bin. Hence, a weighted sum of the predicted class labels of each data 
point from a whole spectrum leads us to the final classification of the curve. This can minimize 
or even eliminate the effects of misclassifications of the data points in overlapping regions.

The result shows that our spectral classification model is robust to random noise and can 
identify peak intensity changes or peak shifts. The classifier can provide us with an immediate 
feedback on the spectral class and so on the actual phase of the experiment.

Figure 10 Relationship 
between final classification 
accuracy and number of bins.
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5 PERSPECTIVES AND RECOMMENDATIONS
Although we obtained nice result on ML based spectral classification, the process of selecting/
creating the training set is still limited, because the data is not properly annotated and some 
key metadata (such as incident beam energy, or the pressure value for each spectral curve) 
is missing. To improve the situation and ensure that data aligns with FAIR principle, a specific 
experiment data model shall be built to connect the instrumentation and data acquisition 
entries to physics models, so ML can be set up much easier and more efficiently because 
all required metadata is registered for proper interpretation without the need for personal 
consultation. Since the diffractograms in our study are measured in a course of pressure 
ramping, an appropriate NeXus application definition should have been made to define all 
relevant metadata entries that need to be recorded. Experiments recording data and metadata 
according to such experiment data model would then help data interpretation, especially 
machine readability, and reuse.

In our ML algorithm, the weighting factors are calculated based on the training accuracy 
in each bin. As a next step, the Neural Network can be extended to form an end-to-end ML 
structure which can automatically learn these weighting factors and output directly the final 
classification label.

Another development possibility is to handle the spectral data as a set of one-dimensional 
time series and instead of a space-segmentation approach presented here, the classification 
problem could check for intra-spectrum characteristics, too. In this setting, we can apply 
different supervised deep learning neural network architectures for the spectra classification, 
such as the convolutional neural network (CNN), Residual Networks (ResNets) (He et al. 2016), 
LSTM-based architecture (Hochreiter et al. 1997), attention-based architectures(Vaswani et al. 
2017). At the same time, unsupervised learning such as clustering is also very suitable for such 
classification tasks.

ABBREVIATIONS
AI—Artificial Intelligence

CNN—Convolutional Neural Network

DL—Deep Learning

FAIR—Findable, Accessible, Interoperable, Reusable

FXE—Femtosecond X-ray. Experiments

HED—High Energy Density

hdf5—Hierarchical Data Format (https://www.hdfgroup.org/solutions/hdf5/)

HDFView—hdf5 viewer software (https://www.hdfgroup.org/downloads/hdfview/)

LAMBDA—Large Area Medipix-Based Detector Array

LSTM—Long-Short Term Memory

MID—Materials Imaging and Dynamics

ML—Machine Learning

NeXus—Neutron, x-ray, and muon science data format.

NN—Neural Network

NXDL—NeXus Definition Language

NXmx—NeXus for macromolecular crystallography

P02.2—Extreme Conditions Beamline at the synchrotron PETRA III

PETRA III—Synchrotron facility at DESY in Hamburg, Germany

ReLU—Rectified Linear Unit

SCS—Spectroscopy and Coherent Scattering

XFEL—X-ray Free Electron Laser

https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/downloads/hdfview/
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