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The increase in GPS-enabled devices and proliferation of location-based applications have 
resulted in an abundance of geotagged (spatial) data. As a consequence, numerous applications 
have emerged that utilize the spatial data to provide different types of location-based services. 
However, the huge amount of available spatial data presents a challenge to the efficiency of 
these location-based services. Although the advent of big data frameworks like Apache Spark 
has enabled the processing of large amounts of data efficiently, they are designed for general 
(non-spatial) data. That is due to the build-in data partitioning mechanism that does not take 
into account the spatial proximity of the data. Therefore, these big data frameworks cannot be 
readily used for spatial analytics such as efficiently answering spatial queries. To fill this gap, 
this paper proposes SparkNN, an in-memory partitioning and indexing system for  answering 
 spatial queries, such as K-nearest neighbor, on big spatial data. SparkNN is implemented on 
top of Apache Spark and consists of three layers to facilitate efficient spatial queries. The 
first layer is a spatial-aware partitioning layer, which partitions the spatial data into several 
 partitions ensuring that the load of the partitions is balanced and data objects with close 
proximity are placed in the same, or neighboring, partitions. The second layer is a local indexing 
layer, which provides a spatial index inside each partition to speed up the data search within the 
partition. The third layer is a global index, which is placed in the master node of Spark to route 
spatial queries to the relevant partitions. The efficiency of SparkNN was evaluated by extensive 
 experiments with big spatial datasets. The results show SparkNN significantly outperforms the 
state-of-the-art Spark system when evaluated on the same set of queries.

Keywords: spatial data; Apache Spark; global index; local index; partitioning; bounding boxes; 
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I. Introduction
The unparalleled popularity of online social media has resulted in the generation of vast amounts of data 
in various domains such as Banking, Government, Healthcare, Telecommunications, and Stock markets. 
Moreover, the widespread of devices that can acquire geotagged (spatial) data, e.g., mobile phones, wearable 
sensors and IoT sensors, have produced an enormous amount of spatial data. Such big data, whether spatial 
or non-spatial, requires significant attention to support queries efficiently. These queries are used in various 
applications and services such as social recommendations (Zhang & Chow 2015; Hammou et al. 2018), social 
community and event detection (Al Aghbari et al. 2019; Sapountzi & Psannis 2018), wireless sensor networks 
(Al Aghbari et al. 2012, 2013), image analysis (Dinges et al. 2011; Kubo et al. 2003), smart cities (Hanif et al. 
2018; Alsaafin et al. 2018), and urban route planning Babar et al. (2019). As a result, spatial data mining has 
emerged, which deals with gaining knowledge, forming spatial relations, and mining interesting trends and 
patterns from geo-tagged data (Al Jawarneh et al. 2018; Garaeva et al. 2017).

The big data that is being produced by the aforementioned domains need to be exploited and queried in 
real-time to serve a wide spectrum of applications. Due to vast amount data, batch-processing systems can-
not efficiently process such data in real time. That led to the significance of parallel computing frameworks 
such as MapReduce Dean & Ghemawat (2008) implemented on Hadoop White (2012). MapReduce process-
ing approach of data is to read from and write to disk. Such a processing approach is very slow specially 
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for iterative data processing, which is required by most queries. This motivated the emergence of Apache 
Spark Zaharia et al. (2016), which is an in-memory, real-time cluster processing platform to manage big data 
and facilitate queries. Spark followed up on the framework of MapReduce Dean & Ghemawat (2008) with 
 benefits of low latency due to its in-memory abstraction of Resilient Distributed Datasets (RDDs) Zaharia 
et al. (2012). It provides the scalability and fault tolerance. Moreover, it is especially useful for Interactive and 
Iterative tasks due to its in-memory processing where Hadoop has been reportedly deficient due to its use 
of disk while processing queries Zaharia et al. (2016).

The RDD is the fundamental data structure in Spark. It can be viewed as an immutable, fault-tolerant and 
distributed collection of objects. The immutability property of RDDs implies that they can be re-computed if 
there is a loss of any computing node in the cluster. Each dataset in a RDD is divided into logical partitions 
which are then computed on different nodes of the cluster. There are two built-in data partitioning mecha-
nisms of one-dimensional RDDs across various data nodes in the cluster; namely Hash and Range partition-
ing. The hash partitioning attempts to spread data across all partitions by defining some function on the 
key-value pairs of RDDs. On the other hand, Range partitioning specifies data ranges for each partition and 
distributes the data accordingly.

These basic data partitioning approaches employed by Spark do not work well with spatial data due to its 
multi-dimensional property Zhang et al. (2017). That is the default Spark partitioning mechanisms ignores 
the spatial characteristics of the data. Although Spark balances the load between the different computing 
nodes, it randomly distributes the spatial data. Moreover, the concept of co-locality come into effect when 
querying spatial data, where each geographical location is viewed to be in vicinity or at a remote distance 
from another location. If the co-locality is taken into consideration when partitioning the data, neighbor-
ing data points would be placed in the same, or neighboring, partitions. Such proximity-aware partitioning 
of the data can significantly boost up spatial query performance. That is because all data points would be 
partitioned according to their inherent distance from other data points. So, for instance, if nearby locations 
from one area are requested, it would be easier to not go through the whole data to find nearby locations 
but only one, or few, partitions are searched.

To address this challenge, this paper proposes an in-memory partitioning and indexing system called 
SparkNN. SparkNN aims to efficiently support spatial queries such as k nearest neighbor queries. SparkNN 
consists of three layers, which are built on top of the Apache Spark system, namely, Spatial-aware data par-
titioning layer, Local indexing layer and Global index layer.

The Spatial-aware data partitioning layer uses the proximity information of the spatial data to partition the 
data among Spark’s computing nodes such that data points with close proximity are stored in the same, or 
neighboring, partitions. In this layer, not only the partitioning is ensured to be spatial-aware, but also the load 
is balanced among the different partitions. This is achieved by utilizing a kd-tree to partition the data, which 
inherently takes the data skewness into consideration when partitioning the data among m computing nodes.

In the Local indexing layer, a local index of kd-tree is created for every data partition. Due to the huge 
number of spatial points in every partition, fast access methods are required to retrieve the relevant data 
point for a given query. These local indexes are used to efficiently answer spatial queries, particularly the 
KNN queries. kd-trees are most effectively used for k nearest neighbor queries where the k most similar data 
points to the query point are retrieved.

The Global index layer routes user queries to the relevant partition(s). Since the data partitions are spatial-
aware that is points with close proximity are in the same partition, or in a neighboring partition. The global 
index layer determines to which partition(s) should a given query be sent based on the distance between the 
query point and borders of the neighboring partitions.

We have evaluated the efficiency of SparkNN with big spatial data and compared with the state-of-the-art 
Spark implementation. The result of the conducted experiments show that SparkNN significantly outper-
forms the Apache Spark system. Hence, the main contributions of this paper are:

•	 SparkNN, which is an in-memory partitioning and indexing system that efficiently supports the 
spatial queries.

•	 A spatial-aware partitioning algorithm for mapping spatially close data points to the same, or neigh-
boring, partitions. Moreover, the partitioning algorithm ensure load balancing among the different 
partitions.

•	 Building a local index in each partition to speedup answering kNN queries and a global index to 
route queries to the relevant partition(s).

•	 Conducting extensive experiments to evaluate the efficiency of SparkNN on a big spatial datasets.
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The rest of this paper is organized as follows. In Section II, a review of related distributed spatial systems 
that are developed on different frameworks is presented. Then, we introduce the architecture and different 
layers of SparkNN in Section III. Section IV presents the algorithms of the proposed SparkNN. The conducted 
experiments and the results are detailed in Section V. Finally, the paper is concluded and future directions 
to further extend this research are presented in Section VI.

II. Literature Review
This section discusses the related work on big spatial data processing and distinguishes it from the proposed 
SparkNN system.

A. Hadoop-based systems
To begin with, Hive, a data warehousing solution was built on top of Hadoop in 2009 by Thusoo et al. in 
Thusoo et al. (2009). This paradigm was built to make the low-level programming model of MapReduce 
more declarative by supporting queries written in a SQL like language. Spatial constructs were integrated 
into the Hive in Hadoop-GIS Aji et al. (2013). In this work, various types of fundamental and complex spatial 
queries like point, containment, joins, nearest neighbors etc. were supported on MapReduce by utilizing 
global and local indexing. Then, HBase (Hadoop database) George (2011) was developed as an open-source, 
distributed, and non-relational i.e. NoSQL database leveraging the capabilities of Hadoop Distributed File-
System (HDFS). Following up on this work, MD-HBase Nishimura et al. (2011) was proposed exclusively 
to support spatial data operations. It employed kd-tree and quad-tree indexes over HBase Index and Data 
Storage layers, respectively. MD-HBase processes multi-dimensional range and k-NN queries with a latency 
of less than a second, which was one to two orders of magnitude faster than its MapReduce based imple-
mentation. The main limitation of these Hadoop-based spatial systems was that they treated Hadoop like a 
black box and therefore were restricted by the limitations of Hadoop.

SpatialHadoop Eldawy & Mokbel (2015) was introduced as an open source project which overcame the limita-
tions of Hadoop-GIS and MD-HBase. It also used MapReduce for spatial data support. SpatialHadoop provided 
built-in spatial data awareness inside Hadoop base code. It supports various spatial queries like range, join, 
and kNN. Two-level global and local indexes with Grid file and R-tree were also implemented. Then, Parallel 
SECONDO Lu & Güting (2014) was proposed, which combined Hadoop and Secondo Güting et al. (2010) data-
bases. It developed a PSFS (Parallel SECONDO File System) for storing and shuffling intermediate data to sup-
port multiple types of queries like map-matching and symbolic trajectory pattern matching. The performance 
of Parallel SECONDO was demonstrated using generated road networks with data from OpenStreetMap (OSM) 
(OpenStreetMap 2019). The work in Whitman et al. (2014) also used MapReduce to implement PMR quadtree 
on spatial data. In this work, range and kNN queries on Hadoop were supported. Then, a spatio-temporal data-
base GeoMesa Hughes et al. (2015) was built on top of Hadoop. It was described as a suite of tools for persisting, 
querying, analyzing, and fusing spatio-temporal data. Furthermore, it supported non-point geometries, index-
ing of secondary attributes, and complex queries for both vector and raster datasets.

B. Spark-based systems
After the foundation of Apache Spark, many researchers leveraged the in-memory capabilities of Spark to 
perform distributed computing on spatial datasets. Xie et al. Xie et al. (2014) employed quad-trees and 
R-trees to search spatial data using the framework of Spark. In their experiments they concluded quad-trees 
are more efficient on distributed systems. The various data management techniques to enable interactive 
and scalable processing of spatial data was investigated in Sarwat (2015). This work envisioned extending 
Apache Spark to support spatial query operations and is considered as a foundation for GeoSpark Yu et al. 
(2015). GeoSpark is a three-layer architecture atop of Apache Spark and supports different geometrical and 
spatial objects like Points, Polygons, and Rectangles. It implemented various query processing algorithms 
like range, kNN, and join. It was shown that GeoSpark outperforms SpatialHadoop Eldawy & Mokbel (2015) 
due the use of in-memory data processing by GopSpark. Also, Yu et al. proposed SpatialSpark You et al. 
(2015), which supports indexed spatial joins based on point-in-polygon test and point-to-polyline distance 
computation by using JTS library (JTS 2019) for spatial predicates and functions. Several indexing and filter-
ing techniques were also implemented in SpatialSpark. However, it did not perform well on multiple com-
puting nodes especially for data intensive processing. Its low scalability was due to the data communication 
overheads between the distributed computing nodes.

Another geospatial open source library developed by (Magellan 2015) made use of Spark SQL and 
DataFrame API of Spark to ensure efficient execution of spatial queries. Various spatial operators like 
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intersects, contains, covers, etc. were implemented along with multiple spatial data structures. Spark SQL 
and DataFrame was again leveraged to conduct relational processing in Simba (Spatial In-Memory Big data 
Analytics) Xie et al. (2016). A Query optimizer and SQL context module of Simba were used to support logi-
cal and cost-based optimizations for selecting efficient query plans and running multiple queries in parallel. 
Similarly, Tang et al. proposed LocationSpark Tang et al. (2016), which is a full-fledged library of memory 
management, spatial indexing, query execution and spatial analytics.

Support of spatio-temporal data process has been proposed by some researchers. For example, TrajSpark 
Zhang et al. (2017) was proposed, in which an index called IndexRDD for spatio-temporal data was intro-
duced to manage trajectory segments. Furthermore, it provided a STPartitioner which used quad tree to 
group spatio-temporally close data into the same partition. The support of both global and local indexes 
was provided where the global index is stored at the master node and is updated when new data partitions 
arrived by keeping track of the data distribution through a time decay model. It was shown that TrajSpark 
outperforms its peers like GeoSpark and Simba on real and synthetic datasets in terms of query latency and 
scalability. Similarly, a system that supports spatio-temporal analytics on Spark, called the STARK Hagedorn 
et al. (2017), was proposed. This system provides alternative data partitioners (unbalanced grid and balanced 
binary space) to users. STARK used R-tree for spatial indexing, however different options were provided 
to the user to select if an index is to be built. Query operators of filter, join, kNN, and clustering were also 
developed in STARK.

The proposed SparkNN is expected to perform better than systems like GeoSpark Yu et al. (2015) and 
SpatialHadoop Eldawy & Mokbel (2015) due to its indexing structure (kd-tree) that facilitates fast search 
since it is a tree and adapts well to skews data since its nodes are adaptive to the point density of the space. 
On the other hand, GeoSpark, which uses uniform grid as its index, does not support skewed spatial data 
due the uniformity of grid cell; thus, negatively affecting the efficiency of spatial queries. Further, it has been 
reported that GeoSpark outperforms SpatialHadoop.

III. SparkNN
The aim of SparkNN is to support efficient spatial queries such as KNN. The state-of-the-art Apache Spark 
framework is efficient in processing non-spatial big data due to its in-memory data processing approach. 
However, the efficiency of Apache Spark degrades significantly because of the partitioning mechanism, 
which does not take into consideration the co-locality of data points and thus ignores their spatial char-
acteristics during the data partitioning process. Therefore, SparkNN addresses this challenge by extending 
the Apache Spark framework to boost up the efficiency of processing spatial queries, particularly the KNN 
query. SparkNN is built on top of the Apache Spark core and consists of three layers, as shown in Figure 1: 
Spatial-aware data partitioning layer, Local indexing layer and Global index layer.

A. Spatial-Aware Data Partitioning Layer
In this layer, spatial-aware data partitioning mechanism is developed to ensure that data points that are in 
close proximity in the real 2-dimensional space are mapped to the same, or neighboring, partitions. That is 
the partitioning mechanism of SparkNN maintains the respective inherent distances between the points in 
the space. This is achieved by using kd-tree, which is a binary data structure that recursively partitions all the 

Figure 1: Extension of Spark core to implement SparkNN.
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data points into two halves by hyperplanes that are perpendicular to the coordinate axes Hajebi et al. (2011). 
Although other spatial data partitioning techniques, such as the R-tree, can be used, the kd-tree is faster 
for spatial point data and requires less memory space. A kd-tree is formed from a set of multi-dimensional 
points by selecting a splitting data value using only one of the dimensions at each level of the tree. Normally, 
this procedure stops after log(n) levels, where n is the number of spatial data points. However, the proposed 
spatial-aware partitioning mechanism stops the splitting process of the kd-tree when the number of leaf 
nodes is equal to the number of available computing nodes m in SparkNN. Where m is a user defined vari-
able set according to the desired number of partitions.

When the kd-tree grow to m leaf nodes, each leaf node corresponds to one partition. That is the spatial 
region represented by each leaf node determines the lower and upper bounds (boundary) of the parti-
tion. Note that the set of points n used to determine the spatial boundaries of the kd-tree nodes is a 
random sample extracted from the real spatial data, which is initially stored by in the RDDs of Apache 
Spark. In case of static spatial datasets, the SparkNN partition boundaries are determined based on the 
extracted sample of spatial data points. However, if the spatial data points are dynamic, a periodic rebal-
ancing mechanism can be applied to ensure data balancing among the different SparkNN partitions. 
That is periodically the boundaries of neighboring partitions are adjusted to balance the data loads of 
the partitions.

Based on the determined boundaries of leaf nodes, which are mapped to the SparkNN partitions, the 
spatial data points are mapped to the relevant SparkNN partition. These partitions correspond to the spatial-
aware RDDs, which we refer to as SARDDs. The spatial data is loaded into Spark as latitude and longitude 
coordinates. Each spatial point is mapped to one SARDD, which has a predefined boundary called here 
Bounding Box (BB). A BB is defined by the lower – left(xmin, ymin) and upper – right(xmax, ymax) coordinates of the 
region owned by a leaf node in the kd-tree. The number of these leaf nodes is determined by the depth of 
the tree and is specified by the user to tune the number of partitions. The depth of the tree is initialized as 0 
and incremented by 1 when the tree is recursively grow down another level. The following condition is used 
to determine whether the tree needs to be grow down to another level or is it the tree growth should stop. 
if the number of leaf nodes, which corresponds to the desired number of partitions m, has been reached 
that is equivalent to 2depth, the kd-tree stops growing. Otherwise, the leaf nodes of the tree are split to grow 
down one level.

,  
2

,    
depth m Stop growing

m Grow down another level

ì>=ïïíï<ïî

The approach to partition the data by creating bounding boxes is illustrated in Figure 2.
In Figure 2, a tree of depth 2 results in 4 leaf nodes. The formulation of lower – left and upper – right 

parameters of the grey BB, which is shown in the Figure 2, are determined by using conditional statements 
according to the depth of the tree, the splitting axis defining the direction of split, and finally the branch 

Figure 2: Partitioning the spatial data into BBs.
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(left or right) that would be created next. The skewness of data is an issue with kd-trees, however a simple 
solution is to implement a balanced kd tree. To build a balanced kd-tree, it is necessary to find the median 
of the data for each recursive split of the data.

After the creation of these boxes, a key-value pair SARDD is created by mapping every spatial point to one 
of the SARDDs, where each SARDD corresponds to one BB.

B. Global indexing
A kd-tree that is formed to create the m partitions, which are SARDDs of SparkNN, is used as a global index 
to route user queris to the relevant SARDDs. Where m is a user defined variable set according to the desired 
number of partitions. Since the data partitions are spatial-aware that is points with close proximity are in the 
same partition, or in a neighboring partition. Note that the inherent distances between the spatial points are 
preserved in the SARDDs. The global index layer determines to which partition(s) should a given query be 
sent based on the distance between the query point and borders of the neighboring partitions.

First the the partition in which the query point resides is determined. Then, the KNN points are retrieved. 
Also, the distance di between the query point and every neighboring partition is computed. If di between the 
query and a certain partition is less than distance r between the query point and farthest point (kth point), 
then kNN query is routed to this neighboring partition. Figure 3 shows the global indexing mechanism, 
where the query point represented by a red star is contained in the BB P2. Since r intersects with the neigh-
boring BBs (the BBs P4, P5 and P7), the kNN query will be sent these BBs.

C. Local indexing
Due to the huge number of spatial points in every partition, fast access methods are required to retrieve the 
relevant data point for a given query. A local index is created for each of the SARDDs (partitions) by using 
kd-trees. These local indexes are used to efficiently answer spatial queries, particularly the KNN queries. kd-
trees are most effectively used for k nearest neighbor queries where the k most similar data points to the 
query point are retrieved.

This SARDD with the local index is saved in memory by persisting it for easy access for all of the queries. 
By caching the local index of SARDD, it does not need to be re-computed for each query and can be fetched 
from the memory when required. Note that in our experiments, we varied the size of the dataset to measure 
the impact of the data size. Therefore, the depth and the required memory space of a kd-tree are dependent 
on the size of the dataset.

IV. KNN Querying
In SparkNN, each SARDD stores the spatial point of local certain region in the space, in addition to the local 
index build to access the spatial point. A local index at each SARDD is used to answer the user’s KNN queries. 
That is given a set of n data points P = p1, p2, …, pn and query point q, SparkNN computes and a subset S ∈ P 
of points that contains the k nearest points (kNN) to q.

Figure 3: Global indexing of the partitions.
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Where dist(.) is a function that returns the Euclidean distance between two spatial points. If p1 = (x1, y1) and 
p2 = (x2, y2), then the distance between p1 and p2 is given by:    2 2

1 2 1 2 1 2( , ) ( ) ( )dist p p x x y y . The proposed 
kNN algorithm (see Algorithm 1) utilizes a bounded-priority queue (Ryan LeCompte 2019), which retains 
the top k points from the priority queue of nearest points. These points are prioritized by their distances 
dist(.) from the query point q. So, the data point with the least distance from the query point is the highest 
priority element in the bounded-priority queue and vice-versa. The Algorithm 1 is used to find the kNN 
from the SARDD, which are persisted in memory.

In the kNN from SARDDs algorithm, the function Knearest takes as input three arguments: the local index 
node, the query point needle, and the number of nearest neighbors k. The nearest neighbors to be found will 
be stored in the bpq which uses a heap implementation to maintain a priority queue of k objects ordered 

Algorithm 1: kNN from SARDDs.

Input:  node := root of the tree in a RDD partition, needle := {n0, n1, …} the query point, k := an integer value 
corresponding to the number of nearest neighbors to find

Output: bpq := A bounded priority queue containing the k-nearest neighbors

Function Knearest (node, needle, k) :

Declare bpq as a BoundedPriorityQueue to contain can didate nearest neighbors

Set the size of bpq to k

Function nearest (node) :

default ← node

if default == NULL then

return NearestPoint

else

Enqueue default into bpq

end

if ni ≤ defaulti then

NearestPoint ← nearest (left(node))

else

NearestPoint ← nearest (right(node))

end

if bpq is not full OR |defaulti – ni| < distance(needle, head(bpq)) then

if ni ≤ defaulti then

NearestPoint ← nearest (right(node))

else

NearestPoint ← nearest (left(node))

end

return NearestPoint

end

Knearest (node, needle, k)

return bpq
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by the distance of spatial points from the query point. So that the points at the head of the queue termed 
as head(bpq) has the least priority and is the farthest from the query point. The size of this bpq is set to k.

Initially, the default is set to root node of the local kd-tree and it is enqueued into the bpq. The splitting 
axis dimension ni of needle is compared with the same dimension of current node i.e. defaulti. If this needle’s 
value is less or equal than the node, then the left(node) is recursively searched and its value is obtained as 
NearestPoint, however if needle’s value is greater than the node, then the right(node) is recursively searched 
and its value is obtained as NearestPoint. Finally, it is determined whether there is a point closer to the nee-
dle at the other side of the tree by using the distance of current point with the needle. The other branch of 
the tree is only searched if the bpq isn’t full or if the |defaulti – ni| is less than the distance of farthest point 
from the needle, i.e., head(bpq). After the nearest procedure ends, when leaf node is reached and it is deter-
mined that there is no better branch to find a candidate point to be included in the kNN, the bpq is returned.

It is worth mentioning that a range query can be easily computed using a kNN query. A range query of a 
spatial point dataset returns all points inside a query region R. A kNN query returns the k closest points to 
a query point q. To find the points in a given region (rectangle) R, a kNN query is executed on a given query 
point q. the result of the kNN search is a set of k nearest points that define a circle centered at q with radius 
equal to the distance from q to its kth nearest neighbor. The area of the circle define a range. By adjusting 
value of k, the area of a circle can cover the required range to be computed Bae et al. (2007). Thus, the set of 
kNN points represents a superset of the result of the range query q. Then, a second phase of filtering is exe-
cuted to remove the points that are outside R would result in a set of points that is the exact answer to the 
range query. As explained above, it is possible to retrieve the result set of a range query using multiple KNN 
queries, however a native range query executed directly on the data would be more efficient. As discussed 
in Bae et al. (2007), the number of KNN queries that retrieve a range result can be reduced by selecting a 
relatively large value of k. Nevertheless, this would return extra non-relevant points (false positives), which 
requires a second phase of filtering to remove them.

Note that it is possible that the query may run in parallel in more than one partition depending on the 
location of the query point q and value of k. In such a case, each partition that is executing the same query 
will retrieve its local kNN candidate set and return it to the master Spark node that received the query. The 
master will aggregate the local kNN results and find the final set of kNN. This is easily computed by a one 
pass comparison, O(n), over the aggregated local kNN results to extract the global kNN set, which is the 
answer to the query.

V. Experiments and Results
A. Experimental Setup
The experiments were conducted on 64-bit Ubuntu 16.04 LTS with a memory of 31.3 GiB and a processor of 
Intel® Xeon(R) CPU E5-2630 v3 @ 2.40GHz × 32. The Spark version used is 2.3.2 using the Scala 2.11.8. The 
Standalone deployment of Spark was used in Client mode. These experiments were conducted on a cluster 
with 2 nodes; one with 32 cores and the other with 16 cores.

B. Dataset
The spatial dataset obtained for this research was obtained from (Free Downloadable Databases MaxMind 
Developer Site) and the database used was GeoLite2 City. A CSV downloadable file was obtained on which 
data transformations were performed to select the latitude and longitude columns. This total number of col-
lected spatial data points for testing purposes is 11.5 million points. The average querying times taken in the 
following experiments were computed over an average of 99 queries selected randomly from the data points.

C. Impact of k
The first experiment was performed by varying k to measure and study the query processing time and 
throughput. The result of the kNN queries shown in Figure 4a depicts a comparison between the Apache 
Spark referred to as Spark with SparkNN. A total of 8 executor cores were used for this experiment for all of 
the data points. The values of k were taken as 1, 10, 30, 50, 75, and 100, as shown on x-axis in Figure 4a. Due 
to the huge difference in performance values, a logarithmic scale is used to compare the two systems. That 
is the values of processing kNN queries using SparkNN was in the range of milliseconds while the processing 
time of Apache Spark is in minutes.

The significant gain in performance when using SparkNN is due to the spatial-aware partitioning of data 
points that narrowed down the search to one, or few, SARDDs. Moreover, the local indexes that reside inside 
the SARDDs facilitated fast access to the relevant points to the query. In case of Apache Spark, the query 
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latency of kNN was almost constant when k was varied from 1 to 100, as shown by the red line in Figure 4a. 
This is because data points are randomly stored inside the RDDs of Apache Spark and thus processing a 
query regardless of the value of k requires checking all the data points in all RDDs. So the variation of k has 
no impact on the processing times. On the other hand, when using SparkNN, as k is increased, querying 
time increases almost linearly. It is worth noting that if we have an extreme case where the value of k is very 
large relative to the size of the database, Where r overlaps with all partitions, this would cause all partitions 
to execute the same query.

Figure 4b illustrates the query throughput results of Apache Spark and SparkNN systems. Where through-
put is the number of queries that are processed in a second. For this experiment, we used eight cores to 
store the 11.5 million spatial data points. The x-axis shows the variation of k, and the red bars depict the 
throughput of Apache Spark, while the blue bars represent the throughput of SparkNN. Clearly, the query 
throughput of SparkNN is much higher (in the range of 1500 to more than 2000 queries per second) than 
that of Apache Spark. However, the throughput of SparkNN slightly decreases when k is increased from 1 to 
100 due to the fact that more time is required to find a larger number of nearest neighbors.

D. Impact of data size
The second set of experiments was performed to compare the effects of data size on querying time for both 
SparkNN and Apache Spark. In addition, the time to perform the data partitioning which mapped all the 
points to their respective SARDDs by building a kd-tree was also analyzed. The value of k was kept constant 
for this experiment with a value of 10. In this experiment, eight executor cores were used while the number 
of input data points were varied from 0.5 million, 1 million, 3 million, 6 million, 9 million, and 11.5 million, 
as shown by the x-axis of Figure 5a.

Figure 4: Impact of k.
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The scale of y-axis was set to logarithmic due the huge difference in performance between SparkNN and 
Apache Spark. The y-axis illustrates the latency variations with the different data sizes. When increasing the 
data size, the average time in milliseconds increases for both the sequential version and SparkNN. For the 
Apache Spark, shown by the red line in Figure 5a, the significant increase in latency is due to the fact that it 
takes more time to process the data points as the size increases. This is expected since Apache Spark requires 
to process all the spatial data point in the SARDDs. On the other hand, SparkNN, which is shown by the blue 
line, the query time only slightly increases as the data size increases because it requires to process the k near-
est neighbors using relatively larger local indices.

The time to load the data points by building bounding boxes for different data sizes is illustrated in 
Figure 5b. In this experiment, we used eight cores to load the data into the partitions. The data size is shown 
on x-axis, while the data load time is shown on the y-axis. The time to build the kd-tree and load the data into 
the desired number of partitions (SARDDs) increases when data size increases.

E. Scalability
The third experiment was performed to test the Scalability of SparkNN, which is depicted in Figure 6. This 
goal of this experiment was to find out how the SparkNN scales as more executor cores are used. For this 
experiment, a constant value of k = 10 was used for all queries on the 11.5 million data points. The y-axis 
depicts the latency in seconds. As shown in Figure 6, the average time of processing kNN queries decreases 
as the number of cores increases up to 16 executor cores, however, after that the latency is almost constant.

Figure 5: Impact of data size on data load time.
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F. Impact of SARDDs
Lastly, an experiment was conducted to study the impact of increasing number of SARDDs (partitions) on 
the time to build the tree that partitions the spatial data at the master node. The number of executor cores 
were kept constant for this experiment with a value of 4, however the number of BBs which determined the 
number of generated SARDDs during the partitioning process were increased from 1 to 48. Figure 7 shows 
the results of this experiment with the x-axis showing the number of SARDDs, which were specified to the 
values: 1, 4, 8, 16, 24, 32, 40, and 48. The y-axis shows the query time in seconds. A slight increase in time 
to build the tree at the master node was observed when the partitions were increased. This slight increase 
is because it take a longer time to build a deeper tree when the desired number of SARDDs is increases. For 
instance, for 1 SARDD, only 1 node of the tree is built to determine 1 BB for the whole region, while for 8 
SARDDs, a 3-level tree would be built to compute 8 BBs. Note that the number of SARDDs (x-axis values in 
Figure 7) can follow and go up to 2depth of the kd-tree, however it can be less depending on the available 
cores (machines) and the point density of the space.

VI. Conclusion and Future Directions
The paper proposed SparkNN, which is an in-memory partitioning and indexing system to process K-nearest 
neighbor spatial queries on big spatial data. SparkNN extended the state-of-the-art Apache Spark to support 
efficient storage and processing of spatial queries. This extension consists of three layers to be built on top 
of Apache Spark. As a result, the storage of data is spatial-aware that led to the creation of a new concept 

Figure 6: Effect of no. of cores on the scalability of SpakNN.

Figure 7: Effect of the number of SARDD on the partitioning time.
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of SARDDs. Since the geographical boundaries of the SARDDs were determined by the partitioning kd-tree, 
the SARDDs are balanced in terms of load. Moreover, SparkNN built a local index inside each SARDD and a 
global index in the master node of SparkNN to route user queries to the relevant SARDDS. Our experiments 
have shown that SparkNN significantly improved the average query time over that of the Apache Spark. 
In addition, SparkNN significantly outperformed Apache Spark in terms of query throughput, scalability 
toward data size and increasing the number of execution cores.

In the future, the Spark Streaming and Spark SQL components of Apache Spark can be used to achieve 
further structure into the data used and to ingest real-time data in mini-batches. Also, spatio-temporal data 
can be used which logs the location details of moving objects at different times.
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