Start Submission Become a Reviewer

Reading: Variables As Currency: Linking Meta-Analysis Research and Data Paths in Sciences

Download

A- A+
dyslexia friendly

Research Papers

Variables As Currency: Linking Meta-Analysis Research and Data Paths in Sciences

Authors:

Hua Qin ,

Division of Applied Social Sciences, University of Missouri-Columbia, Columbia, Missouri, USA, US
X close

Lynne Davis,

University Corporation for Atmospheric Research and National Center for Atmospheric Research, Boulder, Colorado, USA, US
X close

Matthew Mayernik,

University Corporation for Atmospheric Research and National Center for Atmospheric Research, Boulder, Colorado, USA, US
X close

Patricia Romero Lankao,

University Corporation for Atmospheric Research and National Center for Atmospheric Research, Boulder,Colorado, USA, IN
X close

John D’Ignazio,

School of Information Studies, Syracuse University, Syracuse, New York, USA, US
X close

Peter Alston

School of Life Sciences, University of Liverpool, Liverpool, UK, GB
X close

Abstract

Meta-analyses are studies that bring together data or results from multiple independent studies to produce new and over-arching findings. Current data curation systems only partially support meta-analytic research. Some important meta-analytic tasks, such as the selection of relevant studies for review and the integration of research datasets or findings, are not well supported in current data curation systems. To design tools and services that more fully support meta-analyses, we need a better understanding of meta-analytic research. This includes an understanding of both the practices of researchers who perform the analyses and the characteristics of the individual studies that are brought together. In this study, we make an initial contribution to filling this gap by developing a conceptual framework linking meta-analyses with data paths represented in published articles selected for the analysis. The framework focuses on key variables that represent primary/secondary datasets or derived socio-ecological data, contexts of use, and the data transformations that are applied. We introduce the notion of using variables and their relevant information (e.g., metadata and variable relationships) as a type of currency to facilitate synthesis of findings across individual studies and leverage larger bodies of relevant source data produced in small science research. Handling variables in this manner provides an equalizing factor between data from otherwise disparate data-producing communities. We conclude with implications for exploring data integration and synthesis issues as well as system development.
DOI: http://doi.org/10.2481/dsj.14-030
How to Cite: Qin, H. et al., (2014). Variables As Currency: Linking Meta-Analysis Research and Data Paths in Sciences. Data Science Journal. 13, pp.158–171. DOI: http://doi.org/10.2481/dsj.14-030
59
Views
42
Downloads
Published on 26 Nov 2014.
Peer Reviewed

Downloads

  • PDF (EN)

    comments powered by Disqus