
RESEARCH PAPER

CORRESPONDING AUTHOR:
Max Hahn-Klimroth

Goethe-University Frankfurt, 
13 Max-von-Laue St, Frankfurt 
60438, Germany

hahnklim@mathematik.uni-
frankfurt.de

KEYWORDS:
Clustering; Principle 
Component Analysis; 
Unsupervised Learning; 
Methods in Cross-Cultural 
Studies; Measurement 
Invariance

TO CITE THIS ARTICLE:
Hahn-Klimroth, M, Dierkes, 
PW and Kleespies, MW. 2024. 
An Unsupervised Learning 
Approach to Evaluate 
Questionnaire Data—What 
One Can Learn from Violations 
of Measurement Invariance. 
Data Science Journal, 23: 13, 
pp. 1–17. DOI: https://doi.
org/10.5334/dsj-2024-013

An Unsupervised Learning 
Approach to Evaluate 
Questionnaire Data—
What One Can Learn from 
Violations of Measurement 
Invariance

MAX HAHN-KLIMROTH 

PAUL W. DIERKES 

MATTHIAS W. KLEESPIES 

ABSTRACT
In several branches of the social sciences and humanities, surveys based on 
standardized questionnaires are a prominent research tool. While there are a variety of 
ways to analyze the data, some standard procedures have become established. When 
those surveys want to analyze differences in the answer patterns of different groups 
(e.g., countries, gender, age), these procedures can only be carried out in a meaningful 
way if there is measurement invariance; i.e., the measured construct has psychometric 
equivalence across groups. As recently raised as an open problem by Sauerwein et al. 
(2021), new evaluation methods that work in the absence of measurement invariance 
are needed.

This paper promotes an unsupervised learning-based approach to such research data 
by proposing a procedure that works in three phases: data preparation, clustering of 
questionnaires, and measuring similarity based on the obtained clustering and the 
properties of each group. We generate synthetic data in three data sets, which allows 
us to compare our approach with the PCA approach under measurement invariance 
and under violated measurement invariance. As a main result, we obtain that the 
approach provides a natural comparison between groups and a natural description of 
the response patterns of the groups. Moreover, it can be safely applied to a wide variety 
of data sets, even in the absence of measurement invariance. Finally, this approach 
allows us to translate (violations of) measurement invariance into a meaningful 
measure of similarity.
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1. INTRODUCTION
In several branches of the social sciences and humanities, a prominent research tool is 
to conduct surveys using standardized questionnaires. One reason for the prominence of 
questionnaire-based studies may be that they are inexpensive, relatively easy to administer, 
and if the responses are standardized, it is easy to compile the data. Measurement instruments 
in such questionnaires can either consist of single questions that measure separate variables, 
such as questions about preferences or daily activities, or they can consist of multiple questions 
that can be aggregated into a single value or index. In the latter case, it is common to say 
that all the items in the questionnaire measure the same construct. They are often used 
when measuring attitudes (Milfont and Duckitt 2010), connection to nature (Mayer and Frantz 
2004) or environmental behavior (F. G. Kaiser 1998). A common research question in both 
cases is whether several groups differ in their preferences, attitudes, or other environmental 
psychological measures. In this way, differences and similarities between age groups (Liefländer 
et al. 2013), between genders (Kleespies and Dierkes 2020) or across different disciplines 
(Feucht, Dierkes, and Kleespies 2023) can be examined.

There are a variety of ways to analyze and evaluate questionnaire data. Over the years, some 
standard procedures have become established in social science research and have been used 
in countless studies. When a large data set consisting of different psychological variables and 
constructs has been collected, a structurally simplifying procedure, such as a factor analysis or 
principle component analysis (PCA), is usually carried out to simplify the interpretation of the 
results (Costello and Osborne 2005; Yong and Pearce 2013).

However, these procedures require that the data collected are also suitable for carrying out 
such an analysis. To verify the applicability of these methods, Bartlett’s test of sphericity and 
the Kaiser, Meyer and Olkin criterion (KMO) are usually applied (Bartlett 1950; H. F. Kaiser 1970). 
The KMO criterion assesses the sampling adequacy for each variable of the model and for the 
entire model, and Bartlett’s test of sphericity tests whether there are correlations between the 
single items. A factor analysis or PCA only makes sense if these criteria are met. As a general 
rule, it is assumed that a factor analysis or PCA can only be applied if the Bartlett’s test finds 
significant deviations from the hypothesis of having no correlations and the KMO is above the 
value of 0.7 (Dziuban and Shirkey 1974).

In these structure-simplifying procedures, similar items are assigned to the same higher-level 
factors. In the analysis, the individual items of the higher-order factors can be summarized by 
calculating a mean value. If there is only a single factor, this is referred to as a unidimensional 
model. In order to confirm the internal consistency (the inter-relatedness between the test 
items) and validity of the individual factors or components, Cronbach’s alpha is often calculated 
(Cronbach 1951). The mean values of the individual factors can then be used to carry out group 
comparisons using for example hypothesis tests.

When making comparisons between different groups, it is only possible to carry out these 
procedures in a meaningful way if there is measurement invariance, i.e., the measured construct 
shows psychometric equivalence between groups (Putnick and Bornstein 2016). For example, it 
is possible that the perception of a measurement instrument differs between different cultural 
groups and that the factor analysis therefore produces a different factor structure for each 
group. In this case, there is a lack of measurement invariance and a comparison of the different 
groups is not easily possible. Verifying measurement invariance is a complex and multi-stage 
process that involves different stages (Knickenberg et al. 2019). Currently, methods are still 
needed that allow research data to be analyzed despite the lack of measurement invariance, as 
recently posed as an open problem (Sauerwein and Theis 2021). Such methods of analysis could 
help to carry out cross cultural studies, of which more are needed especially in environmental 
psychology (Tam and Milfont 2020).

1.1. OUR CONTRIBUTION

In this contribution, we propose an unsupervised learning-based approach towards such 
research data. As already described, standard methods require either a similar data structure 
in all subgroups, or at least comparable pairwise correlations between the individual items 
across all groups. However, especially when comparing heterogeneous groups, this cannot 
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be guaranteed, so the application of the standard methods described is not appropriate. In 
addition, missing data pose a major challenge, as the standard approach requires missing data 
to be replaced by the mean of the questionnaire, regardless of any correlations or similarities 
between different items. As an alternative, missing values are often simply ignored by 
excluding cases, although this has a negative impact on the sample size. Finally, from a more 
statistical point of view, following the standard approach results in dealing with multiple groups 
comparisons. With an increasing number of groups, the number of pairwise comparisons also 
increases, which quickly becomes confusing and very difficult to interpret when there are many 
groups. In this case, applied error corrections can contribute to the result becoming inaccurate. 
Our approach will analyze a questionnaire data set in three steps; more precisely, we describe 
an algorithm that:

(1)	prepares the questionnaire data,

(2)	clusters the questionnaires according to their response types,

(3)	measures the similarity between groups using the proportion of questionnaires of each 
response type in the group.

In the data preparation step, the algorithm takes care of missing values in the original data 
using k-nearest neighbor imputation, and prepares the data for the actual clustering step. 
The clustering step clusters the individual questionnaires, and the centroids of the clusters 
will be called response types, as they refer to the typical questionnaire in each cluster. Finally, 
the proportion of each response type per group provides a very natural measure of similarity 
between groups, and further statistical analyses that might explain group similarities or 
differences can be applied based on this quantity.

In this paper, we give examples of this method applied to synthetic data and compare the 
result with the classical methods when they can be applied. We also give examples where 
our approach can be easily applied, but standard methods fail. Of course, the unsupervised 
learning approach itself (the actual clustering) and the imputation approach (nearest neighbor 
imputation) are well known and extensively studied methods in the data science community. 
However, the main goal of this paper is to combine these methods and to promote this 
approach for the evaluation of questionnaire data to a wide range of researchers who evaluate 
questionnaire data in different fields.

2. IMPORTANT DEFINITIONS AND NOTATION
2.1. STUDIED DATASETS

Below, we describe three synthetic datasets that are used throughout the paper. The datasets 
were created using the NumPy package in the Python programming language, and for 
completeness, the generated data are provided in the Supplementary Material. The first and 
second datasets are based on questionnaires consisting of seven items, where each item takes 
an integer value in [1, 5], and the third dataset consists of questionnaires with only three such 
items.

Questionnaires are often used to measure a construct using multiple questions. In this case, 
the value of each item xi in a questionnaire can be described as a noisy measurement of some 
base value b ∈ [1, 5] ∩ ℤ. In particular, a questionnaire like (4, 4, 4, 5, 4, 5, 4) is expected to 
be observed, while (1, 3, 5, 2, 4, 1, 5) is very unlikely to occur if the questionnaire is answered 
truthfully. The first data set, 1, models this case.

As already explained, in the case of 1, the standard PCA can easily be applied because the data 
in each group show a similar, one-dimensional component structure, and only the distributions 
of the different base values of the groups might differ. However, in the other data sets, we 
model the case that some items do not measure the same construct as the others, thus the 
measurement invariance is violated. Formally speaking, in those cases, we are given multiple 
base scores per questionnaire (each corresponding to a construct). If, in each group, the same 
items measure the same constructs, PCA can be conducted and will find multiple relevant 
components. Now, the groups can be compared on each of those components independently. 
However, if different items measure different constructs in different groups, the standard 
approaches can be applied, but it is not clear how the results can be interpreted (Schmitt and 
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Kuljanin 2008; Van De Schoot et al. 2015). However, our approach is still a valid method in this 
case. Data set 2 models a corresponding questionnaire survey.

Finally, it is possible that a questionnaire does not try to measure a specific construct, but each 
item corresponds to the opinion on a certain topic. These topics are usually related in studies, 
but in principle they could be completely unrelated. The standard approach of a factor analysis, 
or a PCA, cannot be used to compare groups on such datasets. However, with the proposed 
approach, similarity between groups can be measured quite naturally. The third dataset, 3 , is 
presented as an example of this scenario.

2.1.1. Case 1: measurement invariance is given

The first data set, 1, describes the situation where all items in the questionnaire measure the 
same construct in each group, but different groups have different perceptions of the items. 
This means that measurement invariance is given along the groups. Four different groups are 
simulated and each group contains 1,000 questionnaires. The groups differ in their perceptions 
of the construct, or more formally, the choice of the base value b differs between the groups. 
Group 1 is supposed to contain mostly questionnaires with high item values, while Group 2 
typically gives moderately high answers. Finally, in Group 3, each opinion is roughly equally 
distributed, and an average person in Group 4 has either a high or a relatively low base value.

Formally, for each group i, 1,000 entries v ∈ ([1, 5] ∩ ℤ)7 are first sampled independently from a 
probability law i, and in a second step the individual entries are perturbed. To formally describe 
the laws from which we sample in the first step, we denote by δx = δ(x,x,x,x,x,x,x) the Dirac measure 
on Î7x , hence 

( ( )) = { = },x xd t t1

and let unif (1, 5) denote the uniform distribution on {1, 2, 3, 4, 5}7. Then,

1 5 4 3

2 4 3 2

3 5 4 3 2 1

4 5 4 2 1

= 0.25 + 0.55 + 0.15 + 0.05 unif(1, 5),

= 0.25 + 0.45 + 0.25 + 0.05 unif(1, 5),

= 0.19 + 0.19 + 0.19 + 0.19 + 0.19 + 0.05 unif(1, 5),

= 0.3 + 0.175 + 0.175 + 0.3 + 0.05 unif(1, 5).

d d d
d d d

d d d d d

d d d d

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅






In the second step, the value of each element x is perturbed by the following noise function F, 
so that

( )( )b e( ) = max 1, min 5, + (0, 0.66) .F x x

This means that an independent Gaussian noise with mean 0 and variance 0.66 is added to 
the value of each element and the result is rounded to the nearest integer. Also, values above 
5 and below 1 are truncated to 5 and 1, respectively.

2.1.2. Case 2: violations of measurement invariance

The second data set, 2, describes the situation where the items that do not measure the same 
construct are not the same across groups, and thus measurement invariance is violated. This 
means that, either the standard approaches do not provide an interpretation of the results, or 
even may not be applied. However, our approach can still be used to analyze similarities and 
differences across groups.

To create 2, we extend the first data set 1 by three additional groups, each consisting of 1,000 
independent samples. The typical questionnaire in the additional groups, Group 5, Group 6, and 
Group 7, is described as follows. In Group 5, the first six items measure the same construct and 
typically assign a high value to that construct, but item 7 is expected to be answered with a low 
score. Group 6 questionnaires are expected to measure the same construct with moderately 
small baseline scores on items 1, 2, 3, 5, 6, 7, but item 4 is expected to be atypically high. 
Finally, in Group 7, item 4 is expected to be large, item 7 is typically small, and the other items 
measure the same construct with either large or small base values.

Formally, we describe the probability laws from which we sample, as follows. Again, we denote 
by δv the Dirac measure on v and by unif (1, 5) the uniform distribution on {1, 2, 3, 4, 5}. Then,
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5 (5,5,5,5,5,5,1) (5,5,5,5,5,5,2)

(4,4,4,4,4,4,2) (4,4,4,4,4,4,1)

6 (1,1,1,4,1,1,1) (3,3,3,5,3,3,3)

(2,2,2,5,2,2,2)

7 (

= 0.24 + 0.24

+ 0.24 + 0.24 + 0.04 unif(1, 5),

= 0.32 + 0.32

+ 0.32 + 0.04 unif(1, 5),

= 0.12

d d

d d

d d

d

d

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅





 5,5,5,5,5,5,2) (5,5,5,4,5,5,1) (4,4,4,4,4,4,1)

(4,4,4,5,4,4,2) (2,2,2,4,2,2,1) (2,2,2,5,2,2,1)

(1,1,1,5,1,1,1) (1,1,1,4,1,1,1)

+ 0.12 + 0.12

+ 0.12 + 0.12 + 0.12

+ 0.12 + 0.12 + 0.04 unif(1,5).

d d

d d d

d d

⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Having sampled 1,000 elements for each group independently, the same perturbation as 
before is applied, meaning that each value is perturbed by

( )( )b e( ) = max 1, min 5, + (0, 0.66) .F x x

2.1.3. Items are unrelated and show differences between groups

The last example data set is called 3 . The main idea is that each item asks about a different 
construct, which means that we expect the items to be weakly correlated. In this case, we 
simulate only three items per questionnaire, so that each questionnaire is represented as a 
point in [1, 5]3 ∩ ℤ3. The typical response to each item differs by group. Four groups are modeled: 
Group 8 is expected to have very different answers to each question, Group 9 is expected to 
have a high score for item 1, Group 10 is expected to have a low score for this item, and finally 
Group 11 is expected to have a relatively high score for item 2.

Formally, for Group i we sample 1,000 questionnaires from the corresponding probability law i 
and then perturb the individual entries, but the perturbation will be different from the previous 
cases. Analogously as before, let unif(1, 5) denote the uniform distribution on {1, 2, 3, 4, 5}3 
and let

1 2 3 4 5 6= (5, 3,1), = (1, 3,5), = (3, 3, 3), = (5,1, 3), = (1, 5, 3), = (3, 5,1).s s s s s s

Then define

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

8

9

10

= 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.16 + 0.04 unif(1, 5),

= 0.4 + 0.02 + 0.12 + 0.4 + 0.02 + 0.02 + 0.02 unif(1,5),

= 0.06 + 0.4 + 0.04 + 0.02 + 0.4 + 0.06 + 0.

s s s s s s

s s s s s s

s s s s s s

d d d d d d

d d d d d d

d d d d d d

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅







1 2 3 4 5 611

02 unif(1, 5),

= 0.07 + 0.07 + 0.07 + 0.07 + 0.35 + 0.35 + 0.02 unif(1, 5).s s s s s sd d d d d d

⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

After the sample procedure, we perturb each item’s value by the noise function G, where

( )( )b e( )= max 1, min 5, + (0,1) .G x x

Compared to 1 and 2, the perturbation is slightly larger to be able to observe a variety of 
different questionnaires representing that all items measure different constructs.

2.2. WARD’S CLUSTERING METHOD

The clustering obtained in this paper is due to performing a standard agglomerative clustering 
with Ward’s minimum variance criterion as the objective function (Ward 1963). When this 
method is applied to a data set of size n, in the first step of the clustering algorithm, all n data 
points form their own cluster. Now, in each step, the two clusters whose merging minimizes 
the total within-cluster distance are merged, and the cluster center of the new cluster is 
computed as the point minimizing the sum of squares distance to all points in the cluster. 
More precisely, in each step, the clustering algorithm must find the pair of clusters that leads to 
the minimum increase in the total within-cluster variance after merging (Cormack 1971; Ward 
1963). Formally, we choose those clusters A and B with centers cA and cB that minimize

2| || |
( , )= || – || .

| |+ | | A B
A B

A B c c
A B

D

This clustering approach is quite popular because it usually produces compact and comparably 
sized clusters (Szmrecsanyi 2012).
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However, the algorithm requires a stopping criterion. This can either be calculated automatically, 
e.g., when the increase of the within-cluster variance exceeds a certain threshold, or when 
a certain number of clusters is reached. We follow the second approach, where the user 
determines the number of clusters obtained by the method. This choice can be guided by 
clustering indices.

2.3. DETERMINING THE NUMBER OF CLUSTERS

A fairly intuitive, however, quite recent, approach to determine a suitable number of clusters 
during agglomerative clustering, is based on the so-called gap statistic (Mohajer, Englmeier, and 
Schmid 2010; Tibshirani, Walther, and Hastie 2001). It compares the cluster compactness of a 
given clustering with a null reference distribution of the data, which is data with no (obvious) 
clustering. The number of clusters suggested by the method is the value for which cluster 
compactness on the original data is significantly smaller than the cluster compactness on the 
reference data (Mohajer, Englmeier, and Schmid 2010; Tibshirani, Walther, and Hastie 2001). 
Hence, we are looking for a (local) maximum in a scree plot which plots the number of clusters 
against the gap value. Intuitively, this corresponds to ‘unnaturally large gaps’ in a corresponding 
dendrogram. A dendrogram, which represents a tree, illustrates the arrangement of clusters 
produced by an agglomerative clustering process. The leaves of the tree are the individual data 
points, and whenever two clusters are merged, an edge is used to visualize the merging. The 
corresponding height, the distance from the leaves, is equal to the ‘distance’ of the cluster 
centroids at that moment. The clusters are induced by a horizontal line, so the tree is cut into 
a forest by removing all lines above this line. The height of such a natural horizontal line should 
correspond to the existence of a large level gap in the dendrogram (Tibshirani, Walther, and 
Hastie 2001).

Of course, there are several other indices which can be used to measure the goodness of a 
clustering, like the Calinski-Harabasz index (Calinski and Harabasz 1974; Liu et al. 2013) or the 
Silhouette coefficient (Rousseeuw 1987). However, while the gap statistic can be used with any 
clustering algorithm, the latter indices are known to prefer convex clusters over non-convex 
clusters, even if a non-convex variant might intuitively reflect the better clustering (Liu et al. 
2013; Rousseeuw 1987), in particular if an underlying community structure is supposed to 
exist. Due to this reason, we decided to use the gap statistic in this contribution.

3. EVALUATION ALGORITHM FOR QUESTIONNAIRE DATA
In this section, we present the proposed evaluation method in detail. As previously described, 
the algorithm used to evaluate the questionnaire data runs in three phases. The first phase is 
the data preparation phase and consists of the following steps.

The first step of the data preparation phase is called data imputation. More specifically, there 
may be questionnaires in which some items were not answered. Such missing data must be 
imputed (or the questionnaire ignored). One method of imputing data that takes into account 
the correlations between items is k-nearest neighbor imputation (Cover and Hart 1967; 
Troyanskaya et al. 2001). It samples the k most similar questionnaires given the existing items, 
and fills in the missing items with the average score of the items in the sample. More formally, 
suppose that the questionnaire data is expressed by Î Ìdv A  and Ì {1,…, }M d  are the indices 
of the items with no answers. Then, we define Î Î –| |= { | }d M

MW x x A  and find the k closest 
points Ì( )kX v W to 

Mv . Finally, set Î ( )= avg ( )
kx X vv x  for Î M.

The next step, the data balancing step, is required to obtain a meaningful clustering of the 
questionnaires. As we assume that the distribution of questionnaires might vary between 

Phase 1 Data preparation.
Data: Original data matrix A

Result: Prepared data matrix D

Fill missing values by k-nearest neighbor imputation and call the resulting matrix A’

Balance group sizes by upsampling rows of smaller groups

Perturb each item value independently by a defined noise function
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groups, and the sample sizes between the groups might also vary, we need to make sure that 
the questionnaires appearing (only) in groups with a comparably small sample size are not 
irrelevant during the clustering step. A standard approach to guarantee this in (supervised) 
learning tasks is to balance the data by oversampling minority groups and/or downsampling 
majority groups (Chawla et al. 2002; Menardi and Torelli 2012). In our case, we propose 
to oversample groups with smaller sample sizes until all groups contain equally many 
questionnaires, as the actual evaluation will only be with respect to original data and not the 
synthetically oversampled data (see Phase 2).

The last data preparation step is to perturb each item’s value slightly with independent additive 
Gaussian noise with mean zero and standard deviation 0.1. The main purpose is that the 
clustering (e.g., the cluster centers) becomes much more stable towards adding or removing 
single data points if the raw data is augmented. This is a well-known principle, not only in 
clustering, but in various machine learning tasks in which the models generalize much better 
if the training data is augmented by random noise (Belinkov and Bisk 2018; Ding et al. 2007; 
Min et al. 2020; Zhang, Kinoshita, and Kiya 2020). Moreover, the data matrix becomes full rank 
as there are no duplicate rows anymore (with high probability), which increases the numerical 
stability of the computation.

The second phase, the clustering phase, starts with clustering the oversampled and augmented 
questionnaires given by D. As a clustering algorithm, we propose to perform a standard 
agglomerative cluster analysis with Ward’s minimum variance method as the objective 
function (see Section 2.2). The number of clusters l is determined visually using the gap 
statistic (Tibshirani, Walther, and Hastie 2001) based on a scree plot as well as a dendrogram. 
As explained earlier, the number of clusters is expected to be at a local maximum in the scree 
plot. The main idea is described in Section 2.3.

Once the clusters are obtained, we compute the corresponding cluster centers (geometrically 
speaking, the centroid of each cluster) and call these points response types. While mathematically 
the response types are really just cluster centroids, the name should reflect the fact that we 
expect a typical questionnaire in the cluster to follow that response type. We call the set of all 
response types R and fix an arbitrary order. Let the ordered response types be r1, …, rl.

Now we forget the augmented data D and return to using the original (but imputed) data 
matrix A’. For each group i, we compute the group’s fingerprint fi as a point in the l-dimensional 
standard simplex as follows. For each Î ¼ {1, , }j , we let fi be the proportion of questionnaires in 
group i in the cluster corresponding to response type j.

The last phase of the proposed method combines the explorative data-driven approach with 
the actual content interpretation. First, the response types can be interpreted as a typical 
response to a questionnaire in that cluster. The fingerprints thus reflect the distribution of people 
following a certain response type in the different groups. The more similar two fingerprints are 
between two groups, the more similar people answered the questionnaires, which is a natural 
measure of similarity between groups.

Data: Prepared data matrix D

Result: Cluster centers R (response types) and the groups’ fingerprints per group F

Obtain l cluster centers R using the data D by agglomerative clustering with Ward’s linkage

For each row of A, calculate the closest cluster center of V and assign the cluster to the 
corresponding questionnaire.

Calculate the fingerprints types per group F

Data: Response types R and fingerprints F

Result: Group similarity

Interpretation of the response types R content-wise

Measure the similarity of the fingerprints F

(optional) use additional data and methods to analyze the groups’ fingerprints

Phase 2 Questionnaire 
clustering.

Phase 3 Measuring group 
similarity.
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In Section 2.3, it was already explained that a dendrogram (a tree representation of a clustering 
algorithm) can be used to determine how many natural or robust clusters exist. It also yields 
a very intuitive description of similarity between data points, as those points whose clusters 
merge earlier are more similar. Such a notion of similarity is also standard outside of data 
science; for example, in ecology and evolution such dendrograms are known as phylogenetic 
trees, and show the evolutionary relationships among species (Letunic and Bork 2006).

As an optional last step, the fingerprints in combination with the response types may be 
explained by group specific properties. This step is not related to cluster analysis, nor is it part 
of the proposed method, but for completeness we present it here. For example, suppose the 
groups are different countries, and the response types are easy to interpret: response type 
1 might reflect a high interest in conservation, response type 2 might reflect a high interest 
in conservation in principle, but some parts of preservation are irrelevant to the people, etc. 
Thus, fingerprints with a high value in response type 1 reflect countries where the majority of 
people are highly interested in conservation, and fingerprints with a high value in response type 
2 reflect countries where people are also interested in conservation, but certain aspects are 
irrelevant. These results could be explained by indices that describe countries, such as wealth 
indices or a country’s forest cover. A simple but powerful way to test such hypotheses is to 
measure the rank correlation between the marginal of the fingerprint representing a particular 
response type and the corresponding index.

4. RESULTS
4.1. STRUCTURE OF THE CONSTRUCT EQUALS IN ALL GROUPS

4.1.1. Factor analysis or PCA with follow-up testing

In the first phase, the applicability of PCA was assessed for each of the four groups using 
Bartlett’s test and the Kaiser-Meyer-Olkin (KMO) criterion. Given the significance of the 
Bartlett’s test (p < 0.001) and a KMO criterion of over 0.700 in all groups, PCA was considered 
appropriate. The PCA in all groups showed that the 7 items could be combined into one 
higher-order component according to the Kaiser criterion (F. G. Kaiser 1998). The calculation 
of the Cronbach’s alpha for this component showed a high internal consistency and reliability 
between the items for all four groups (α > 0.700). After determining the component, the mean 
values of the items were calculated for each data point. To determine differences between 
the groups, those mean values were compared using a hypothesis test between groups. 
We applied a Kruskal-Wallis test followed by the Dunn-Bonferroni post-hoc test. The level of 
significance was adjusted by the Bonferroni correction. The results demonstrated pairwise 
significant differences between all groups, with the exception of Groups 2–3 (p = 0.564) and 
3–4 (p = 1.00).

4.1.2. Our approach

First, the data preparation described in Phase 1 was applied to the data. Second, we needed 
to determine an appropriate number of response types. Figure 1 contains the gap values 
of the gap statistic as well as the corresponding dendrogram. Clearly, this indicated that 
5 response types should be used. Since the underlying data was artificially generated, we 
knew that we should expect about 5 response types in 1, as all items in most questionnaires 
measured the same construct, but the expected value was different. However, due to random 
fluctuations, we could have observed more response types. For completeness, we give an 
example of the stability of our approach with respect to more response types in section 4.4. 
The response types reflect, as one would expect, the questionnaires (1, …, 1) to (5, …, 5), with 
some slight noise.

The next step is to compute the fingerprints of the 4 groups and express the similarity of 
the groups (see Figure 2). The four groups are visually different. Group 1 is concentrated on 
response types corresponding to large uniform responses, Group 2 is concentrated on medium 
large answer patterns, Group 3 contains roughly equally many questionnaires of any response 
type, while in Group 4, most questionnaires contain either quite small or quite large answers. 
When compared to the model used to generate the data, it is immediately apparent that this 
is a very good reconstruction of the actual data which is also easy to interpret content-wise.
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4.2. STRUCTURES OF THE CONSTRUCT DIFFERS BETWEEN GROUPS

4.2.1. Factor analysis or PCA with follow-up testing

In the case of the data set 2, the standard approach using factor analysis or PCA with 
subsequent follow-up testing encounters problems. The results of the Bartlett’s test and 
KMO criterion indicated that a PCA can be performed for Groups 5, 6, and 7 (p < 0.001; KMO > 
0.700). However, several problems arise from the results of the PCAs. In Group 5, item 7 has 
a much lower loading compared to the other items, while in Group 6, item 4 has a noticeably 
lower loading. In Group 7, according to the Kaiser criterion, an additional second component 
is formed by items 4 and 7. As the results of the PCA differ considerably from one another, 
it is not possible to simply calculate a mean value to compare the groups, as in the previous 
data set 1. A common approach in such cases would be to delete the items with low factor 
landings or cross-landings from the data set (Yong and Pearce 2013). However, this is likely to 
result in information being lost, and in some cases is not possible due to the low number of 
items. Especially if measurement invariance is not given, it is not possible to test the constructs 
between the groups in a meaningful way (Putnick and Bornstein 2016).

4.2.2. Our approach

Again, Figure 3 gives an overview of the indices that determine the number of response types as 
well as the similarity of the groups. The local maximum in the gap statistic is at 10 clusters, and 
those 10 clusters are highly visible in the corresponding dendrogram. As in the previous case, 
this fits well with the model used to generate questionnaires. We expect up to five symmetric 
clusters in which all items have roughly the same value, as well as clusters in which the typical 
item is small to moderate but item 4 is large (response types 1, 2 & 5), and finally clusters in 
which the typical item is large but item 7 is small (response types 7 & 8), see Figure 3.

Next, the fingerprints of the groups are computed and the similarity of the group is expressed 
in Figure 4. Again, the group fingerprints reflect the actual groups very well. Groups 1 to 4 are 
described similarly to the previous case; they are still concentrated on those response types 
which express uniform answers of different height. Moreover, the ‘new’ groups are also well 

Figure 1 Graphical 
representation of the gap 
statistic as well as the 
dendrogram corresponding to 
the goodness of the clustering 
of the questionnaires in 
data set 1. Moreover, the 
corresponding response types 
are shown as a spider plot.

Figure 2 The fingerprints of 
the different groups regarding 
the response types as spider 
plots. The radial y-axes are 
scaled to (0, 0.7). Also, the 
group similarity on data set 1 
is given by a dendrogram.
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described, in particular the distribution on the fingerprints yields the following interpretations: 
Group 5 has many high responses and item 7 is artificially small. Group 6 has small to medium 
responses but item 4 is large. Finally, in Group 7 we observe a large proportion of questionnaires 
in which all answers are small but item 4 is large (response types 1 & 2), but also questionnaires 
with high answers in which item 7 is comparatively small (response types 7 & 8). We also 
observe that the previously more similar groups (Group 3 and Group 4) are measured as similar 
again, and Group 1 and Group 2 are still more similar than either of them is to Group 3 or Group 
4. The measure of similarity is thus stable with respect to adding data of more groups.

4.3. ITEMS ARE UNRELATED AND SHOW DIFFERENCES BETWEEN GROUPS

4.3.1. Factor analysis or PCA with follow-up testing

When items show only a low correlation with each other, for example, because they measure 
completely different constructs, a PCA or factor analysis is not applicable. For 3 , the KMO 
criterion for all four groups indicates that the conditions for applying a PCA are not met (KMO 

Figure 3 Graphical 
representation of the gap 
statistic as well as the 
dendrogram corresponding to 
the goodness of the clustering 
of the questionnaires in 
data set 2. Moreover, the 
corresponding response types 
are shown as a spider plot.

Figure 4 The fingerprints of 
the different groups regarding 
the response types as spider 
plots. The radial y-axes are 
scaled to (0, 0.7). Moreover, 
the group similarity on 
data set 2 is shown as a 
dendrogram.
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< 0.4). Therefore, the standard approach described above is not applicable for this data set. If 
a PCA is nevertheless conducted, it produces results that cannot be meaningfully interpreted. 
The items form two components for each of the groups, which cannot be separated from 
each other due to high cross-loadings. In addition, the components differ between the four 
groups. Standard rotation methods (such as varimax) do not improve the result. A meaningful 
evaluation, a group comparison or a follow-up test, is therefore not possible using this method.

4.3.2. Our approach

As before, we plot the response types in Figure 5. The gap statistic suggests the use of 5 response 
types, and in the dendrogram, one would choose 5–6 response types. Again, this fits well with 
the actual data generation, which is based on noisy instances of 6 types. The response types 
correspond to noisy measurements of five of the six ground-truth values σ1, …, σ6, but σ3 = (3, 
3, 3) does not appear as a response type. This might well be due to the relatively large noise 
applied to each coordinate, such that a typical sample from σ3 will have different entries.

Regarding the interpretation of the group’s fingerprints (see Figure 6), we observe that Group 
8 contains questionnaires of each response type, Group 9 is mostly concentrated on response 
types with a high score for item 1, Group 10 is concentrated along those response types in 
which item 1 is small, and finally, Group 11 has large entries in item 2. This reflects the actual 
data model very well.

4.4. ROBUSTNESS TOWARDS THE NUMBER OF CLUSTERS

In this section, we briefly show that a slight over-estimation of the number of clusters does 
not change the similarity between groups significantly. In Figure 7, we present the dendrogram 
describing the groups’ similarity on data set 1 for the optimal choice of 5 response types, as 
well as for 6, 7, and 8 response types. As can be easily observed, the similarity between groups 
does not change significantly.

Figure 5 Graphical 
representation of the gap 
statistic as well as the 
dendrogram corresponding to 
the goodness of the clustering 
of the questionnaires in 
data set 3 . Moreover, the 
corresponding response types 
are shown as a spider plot.

Figure 6 The fingerprints of 
the different groups regarding 
the response types as spider 
plots. The radial y-axes are 
scaled to (0, 0.7). Again, the 
group similarity on data set 3  
is visualized by a dendrogram.
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While the similarity itself does not change, it is important to notice that over-estimation of 
the number of response types clearly has its drawbacks. The main challenge might arise, as 
the cluster centroids (the typical questionnaire per cluster) are no longer well separated and 
potentially harder to explain content-wise. Recall from Figure 1 that the five response types were 
very easy to interpret: they referred to the typical sheets 1…1–5…5 up to some noise. However, if 
eight response types are formed, they are not that easy to describe (see Figure 8). For example, 
we observe that response types 4 & 5 do clearly emerge from the previous response type 3 
(see Figure 1). They contain questionnaires in which the answers are around the typical answer 
3, but the cluster centroids are are slightly ‘deformed’ rather than being roughly uniform in 
all coordinates. This is not desirable, because, obviously, even if all items measure the same 
construct and the participant answers with care, the questionnaires (4, 3, 3, 3, 3, 2, 3) (in the 
cluster of response type 4) and (3, 3, 3, 4, 3, 3, 3) (in the cluster of response type 5) are highly 
likely to be observed and should, intuitively, both correspond to the same response type.

To summarize, it is unproblematic to over-estimate the number of response types with regard 
to the similarity of the groups, but the response types might become harder to interpret.

5. DISCUSSION & CONCLUSION
5.1. ON THE DATA PREPARATION STEP

All the steps used in the data preparation step are well known to the data science community, 
but in the described application, namely the evaluation of questionnaire data, these steps 
are unlikely to be found. The first step was to impute missing data by k-nearest neighbor 
imputation. Normally, such missing data are filled by simply taking the average (either of the 
row, or of the column) (Troyanskaya et al. 2001; Weaver and Maxwell 2014), or simply ignored 
(Husson and Josse 2013), but this either does not take into account the dependencies between 
different items, or it reduces the sample size. Therefore, especially since our method is also 
applicable to questionnaires measuring different constructs with different items, we need a 
better imputation technique. Since nearest neighbor imputation is well studied and often used 
for missing data in a variety of data science applications (Troyanskaya et al. 2001), we believe 
that it should be used in this case as well.

Figure 7 The similarity 
between the groups in data 
set 1 for a growing number 
of response types (left: 5 
response types, right: 8 
response types). The similarity 
based on the optimal number 
of response types (5) gives no 
significantly different result as 
the similarity based on more 
response types.

Figure 8 The eight response 
types on data set 1. While 
the similarity between group 
fingerprints does not vary 
if more response types are 
used, the response types 
themselves are much worse 
separated.
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Next, the group samples are balanced by simple oversampling. This is necessary when the 
sample sizes of the different groups are different. For example, suppose one group has a 
completely different typical response than the other groups, but the number of questionnaires 
in that group is small. This tiny fraction of data points won’t significantly affect the clustering 
metrics, and therefore the response type is unlikely to appear as a cluster centroid. This effect 
does not occur when the group samples are comparably large. While oversampling is a standard 
method in supervised learning, one usually has to be very careful not to overfit a model to a few 
examples (Chawla et al. 2002; Menardi and Torelli 2012). Note that this overfitting effect does 
not have a serious impact on the proposed method. First, we use the oversampled data set only 
to identify appropriate response types, while the actual evaluation (e.g., measuring similarity 
based on the fingerprints) is based only on the actual (not oversampled) data. Second, the 
obtained clustering is not intended to be applied to unseen data, but only to describe a data 
set. We emphasize that an alternative to oversampling would be weighted clustering, but 
linkage-based clustering algorithms as applied here are known to be incompatible with this 
approach (Ackerman et al. 2021). However, this choice results in a much higher computational 
cost, and in applications it may well be that non-linkage-based clustering algorithms could 
also be used. Furthermore, while oversampling allows for different sample sizes in the different 
groups, it is very important to note that the sample in each group is representative and valid for 
the question being studied.

Finally, the data augmentation step adds some noise to the individual questionnaire items. 
Thus, the questionnaire items are no longer integers, but floating-point numbers. This makes 
the data matrix more likely to be of full rank, which is crucial for numerical stability, and the 
resulting clustering more stable against removal of individual data points. Moreover, it is well 
known that almost all machine learning models generalize much better when the training 
data is augmented with random noise (Belinkov and Bisk 2018; Ding et al. 2007; Min et al. 
2020; Zhang, Kinoshita, and Kiya 2020). A further idea behind the augmentation is that it turns 
the naive over-sampling of step two into a SMOTE-similar over-sampling as the single over-
sampled data points are subjected to noise and are no simple duplicates of the original data 
(Chawla et al. 2002).

5.2. COMPARISON TO FACTOR ANALYSIS AND PCA

First, we observe that certain patterns in the response types correspond to the applicability of 
the factor analysis approach. For example, it is highly unlikely that a PCA or factor analysis can 
be performed meaningfully if the centroids of the clustering of the questionnaire data, i.e., the 
response types, look different. In other words, if all response types have a similar shape (as 
in the set 1), or response types 1, 2, and 5 in the data set 2, then the principal components 
between different groups are expected to be the same.

On data set 1, our approach as well as the PCA approach could be safely applied. It is not very 
surprising that the hypothesis test following the PCA did not find a significant difference in the 
group median between Group 3 and Group 4 (p = 1.00) if this result is compared to the similarity 
dendrogram in which those groups are also close to each other. However, we observe a striking 
difference in the ‘similarity’ of Group 2 and Group 3 between the approaches. Our approach 
suggests that Group 2 and Group 3 are far apart from each other, while the hypothesis test 
following the standard PCA approach found no significant differences between these groups 
(p = 0.564). From a mathematical point of view, this is easy to explain: The hypothesis test 
is on the average response per group (hence a group mean or median, depending on the 
actual choice of statistical test) and tests the hypothesis that this value is the same between 
two groups. For Group 2 & 3, this value is expected to be the same (namely 3, based on the 
data generation). However, Group 2 contains mostly moderately answered sheets (expected 
values between 2 and 4), while Group 3 contains mostly extreme sheets (values either 1–2 or 
4–5). This difference cannot be observed with a mean or median test. We emphasize that this 
is not a flaw of either method. If the hypothesis test result is interpreted correctly, no false 
conclusions should be drawn. However, in applications, such a test result is often misleading 
because it is interpreted as ‘there are no group differences,’ which is clearly wrong, because it 
does not take into account the lack of homogeneity of responses in certain groups. Be that as it 
may, our approach manages to naturally distinguish between groups with homogeneous and 
heterogeneous responses, and thus may not lead to false conclusions as easily.
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Additionally, our approach gives a very natural and clean way to describe what a typical answer 
is supposed to mean. When a group’s fingerprint is narrowly focused on one response type, 
that response type is close to the usual group average. In most cases, however, a fingerprint 
will have non-vanishing weight on more than one response type. In this case, the fingerprint 
yields several typical response patterns, and the weight indicates what proportion of the 
questionnaires belong to each typical pattern. Note that if Î [0,1]f  is the fingerprint of a group 
and ¼ Î 1, , dr r  are the response types, the convex combination S i if r  can be seen as the natural 
group mean. Thus, depending on the absolute size of each fi, the fingerprint also directly gives 
a measure of the variability in the group. For example, if one fi = 1, then only questionnaires of 
that response type belong to the group, while fi ∼ l–1 for all i means a uniform distribution across 
all response types, i.e., a large variation. A natural measure of the heterogeneity in a group 
could therefore be the normalized entropy,
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of its fingerprint f, a quantity that is a very natural measure of variation in a variety of 
applications from physical systems to information theory (Wehrl 1978), and we propose to 
use the entropy of fingerprints to measure the heterogeneity of a group. A key property of the 
normalized entropy is that it takes values between 0 (all questionnaires belong to the same 
response type)1 and 1 (there are equally many questionnaires of each response type), which 
quantifies homogeneity of a group quite naturally.

5.3. ADVANTAGES AND LIMITATIONS OF THE PROPOSED APPROACH

Probably the most limiting factor of our approach is its purely descriptive nature, i.e., it does 
not provide a typical measure of significance with respect to group differences. In addition, 
the number of required response types is usually hard to determine. While the gap statistic 
yields an algorithmic approach by taking the number of response types at a local maximum in 
the corresponding scree plot, it is not clear that such a unique or obvious maximum exists. Of 
course, visual inspection of the dendrogram can support the choice, but overall, this freedom 
of choice might reduce the inter-observer reliability.

On the positive side, unlike factor analysis or PCA, the proposed method can be applied to any 
questionnaire data set where differences between multiple groups are to be compared. The 
method comes with a very natural dimensionality reduction from individual questionnaires to 
fingerprints of groups that have a very natural interpretation, given reasonable response types. 
Moreover, the similarity between groups can be described in a straightforward way.

5.4. OVERCOMING SOME OF THE CHALLENGES

While the result of the method is indeed descriptive, the obtained similarity between groups 
can be seen as a quantification of how similar different groups are. When an agglomerative 
clustering algorithm is applied to the fingerprints, visual inspection of the dendrogram or 
the formal gap statistic (if the number of groups is large) can be used to identify clusters of 
fingerprints (Mohajer, Englmeier, and Schmid 2010; Tibshirani, Walther, and Hastie 2001). A 
difference between two groups exists if and only if these groups do not belong to the same 
cluster. Moreover, as given as an example, the proportion of each response type in a group can 
be compared to additional describing factors, e.g., country indices via standard methods. As 
long as the response types can be well interpreted, such analyses can be used to explain the 
observed effects.

Similarly, while the number of response types used during the algorithm has an impact on 
the results, we saw in 4.4 that the similarity between the fingerprints of groups is robust 
against choosing too many response types. The only effect was observed with respect to the 
interpretation of the response types (or, the groups’ fingerprints on those response types). The 
most extreme case is a full clustering, where all possible questionnaire types form a singleton 
cluster (this corresponds to nd response types, with d being the number of items and n being 
the possible number of scores). While the similarity can, in principle, still be measured based 

1	 As usual, we assume that 0 log(0) = 0.
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on the nd-dimensional fingerprints, an interpretation of the results becomes out of reach. 
However, due to the gap statistic backed up by visual inspection of the dendrogram, it is easy 
to determine a number of response types that is at least close to the potentially optimal choice. 
Here, we emphasize that the property of being a local maximum of the gap value is important. 
As can be observed in Figure 5, a local maximum appears around 5 response types. However, 
for more than 10 response types, the gap value increases again and becomes even larger as 
the local maximum. As the data set was generated based on noisy instances of 6 base types σ1, 
…, σ6, it is not to be expected that considerably many answer patterns are observed regularly, 
such that the later response types, based on much more than 10 clusters, are likely to be 
artificial and cannot be well interpreted.

5.5. CONCLUSION

We presented a method to quantify the similarity between different groups based on 
questionnaire studies, and how it might be possible to explain group differences. The method 
does, in contrast to the standard approaches, not require measurement invariance, but it can 
even use variance in the measurements to better distinguish between the groups. The approach 
is easy to apply and relies on very well-known data scientific concepts and yields a natural 
interpretation of the results. Moreover, we observed that even in situations in which standard 
factor analyses could be conducted, following simply the standard approach, did not detect all 
occurring group differences if they were with respect to group homogeneity or heterogeneity 
rather than based on the average answer. Overall, we believe that the proposed approach may 
help a variety of applicants to analyze their complex data sets.
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