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ABSTRACT 
 

It is always a major demand to provide efficient retrieving and storing of data and information in a large database 
system. For this purpose, many file organization techniques have already been developed, and much additional 
research is still going on. Hashing is one developed technique. In this paper we propose an enhanced hashing 
technique that uses a hash table combined with a binary tree, searching on the binary representation of a portion 
the primary key of records that is associated with each index of the hash table. The paper contains numerous 
examples to describe the technique. The technique shows significant improvements in searching, insertion, and 
deletion for systems with huge amounts of data. The paper also presents the mathematical analysis of the proposed 
technique and comparative results. 
 
Keywords: Database, Hashing, Information retrieval  
 
1 INTRODUCTION 
 
In a database file organization, records can be organized in various ways. The principal goal of these different 
organizations is to simplify the complexities of the operations on database files. In a small database, complexity in 
performing database operations is not a major concern. But when the database grows larger, we need efficient 
mechanisms for performing database operations that access database records.  
 
Accessing a record from a file requires some sort of unique identification that differentiates that record from other 
records. To achieve this unique identification, each record is associated with a unique key. In hashing, a hash 
function is used to generate a unique hash key based on where the record is stored in memory, termed a bucket 
(Silberschatz, Korth, & Sudarshan, 1997) According to different hash functions and bucket structures, different hash 
techniques have been developed. In this paper, we review some existing hash techniques, separate chaining 
(Dietrich & DeLillo, 2003) and dynamic hashing (Enbody & Du, 1988), and propose an enhanced technique that 
shows significant improvements over the reviewed ones. The proposed technique builds the advantages of and 
eliminates the disadvantages of those techniques. We illustrate different operations, for example, retrieval, insertion, 
and deletion of records to validate the performance of the technique. 
 
The remainder of the paper is organized as follows. In Section 2, we briefly review the basics of hashing and 
summarize separate chaining and dynamic hashing techniques. Section 3 introduces the data structure used in the 
proposed technique. Section 3 also discusses the proposed technique and presents several examples to illustrate 
retrieval, insertion, and deletion mechanisms. In Section 4, we give a mathematical analysis of the algorithm and its 
validation using experimental results. Section 5 presents the experimental results and comparison with other 
techniques. Finally, we summarize our conclusions in Section 6.  
 
2 OVERVIEW OF HASHING 
 
Hashing is a file organization technique that arranges the records of a file in some special way so that they can be 
retrieved quickly and efficiently, minimizing unnecessary comparisons (Folk, Zoellick, & Riccardi, 1999). Basically, 
hashing is divided into two parts: (1) calculation of the hash function and (2) resolution of collision. The function 
that transforms a key into an index table is called a hash function. If h is a hash function and key is the identification 
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key of a record, h(key) is called the hash of key and is the index which indicates the location where the record with 
the key should be placed. If r is a record whose key hashes into hr, hr is called the hash key of r. 

 
The principal criteria in selecting a good hash function are: 1) the function should produce as few hash clashes as 
possible; that is, it should spread the keys uniformly over the possible hash table indices (Cormen, Leiserson, & 
Rivest, 1999). Of course, unless the keys are known in advance, it cannot be determined whether a particular hash 
function disperses them properly. 2) A hash function should depend on every single bit of the key, so that two keys 
that differ in only one bit or one group of bits hash into different values. Thus a hash function that simply extracts a 
portion of a key is not suitable. 3) Similarly, if two keys are simply digit or character permutations of each other 
(such as 139 and 319 or meal and lame), they should also hash into different values. The reason for this is that key 
sets frequently have clusters or permutations that might otherwise result in collisions. Many hash functions are 
available in literature, and each has its own advantages and disadvantages depending on the set of keys to be hashed. 
One important consideration in choosing a hash function is efficiency of calculation.  
 
2.1 Classification of hashing 
 
Hashing can be classified into two categories: static hashing and dynamic hashing. In static hashing, the bucket size 
and storage capacity are predefined, which may be done using an array. Hence, this approach may waste memory if 
the number of records are less then the defined array size, or the out of memory situation occurs before allocation of 
all records (Langsam, Augenstein,  & Tenenbaum, 1997). This method can be implemented for a small range of 
applications, as it is quite easy to do. 
 
In dynamic hashing, the bucket size as well as the storage capacity is allocated dynamically (Kruse, 1996). This 
action may be achieved through a linked list, a binary tree, a B tree, or a B+ tree (Horowitz & Sahani, 1996) ( Dale 
& Lilly, 1997). Hence, memory waste can be avoided. Also, insertion of new records has no theoretical bound. 
Dynamic hashing can be implemented for a large number of applications, and its complexity is much higher than 
that of static hashing. If a hash table is maintained in external storage such as on a disk or some other direct access 
device, it can be called hashing in external storage. When a record is requested, its key is hashed, and the hash table 
(now in internal memory) is used to locate the external storage address of the appropriate bucket. 

 
Existing dynamic hashing techniques include linear hashing with overflow handling by linear probing (Larson, 
1982), linear hashing with partial expansions, and linear hashing with chaining (Larson, 1985). Any of these 
techniques can be implemented for real world problems, and each has some particularly good features. Among these, 
linear hashing with separator finds records very fast, while separate chaining has the most efficient memory 
utilization. Each of the existing hashing techniques tries to resolve hash collisions in different ways. In the following 
subsections, two hashing techniques, separate chaining and dynamic hashing, are described. These two methods lay 
the ground work for the proposed extended technique. 
 
2.1.1 Separate chaining 
 
Let us suppose the hash routine produces values between 0 and tablesize – 1. The technique separate chaining 
declares an array of buckets of size tablesize, which is called a hash table. Each of the indexes (or buckets) of the 
hash table acts as the header node of a distinct linear linked list. Bucket[i] points to the list of all records whose keys 
hash into i (i.e., h(key) = i). While searching for a record, if the hash key value for the record is j, the list pointed to 
by bucket[j] will be accessed and then traversed. During insertion, if the record is not found, it is inserted at the end 
of the list. During deletion, if the record is found, the corresponding node is removed, and the links are reordered 
accordingly. 
  
Some important points about this method that should be mentioned are: 
 

 In this method, a very small amount of memory space is wasted, and there are no empty nodes. Only those 
indices in the hash table that containing NULL value are wasted. The margin of wastage is very low. 

 The records in the list remain in unsorted order. As a result, the cost of searching, insertion, and deletion is 
very high. 
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 Moreover, the cost of searching may increase drastically if the hash function is not uniform. A non-uniform 
hash function may cause many records to hash into a single chain. The choice of a uniform hash function 
can be very difficult to make.  

 
2.1.2 Dynamic hashing 
 
Basically, dynamic hashing is a set of related and similar techniques. One type, which was introduced in the 1980’s, 
is discussed below (Enbody & Du, 1988).  

 
Initially, m buckets and a hash table (or index) of size m are allocated. Assuming that m equals 2b and assuming a 
hash routine h that produces hash values that are w>b bits in length, let h(key) be the integer between 0 and m 
represented by the first b bits of h(key). Then h is used initially as the hash routine, and records are inserted into the 
m buckets as in ordinary external storage hashing. When a bucket overflows, the bucket is split in two, and its 
records are assigned to the two new buckets based on the (b+1)th bit of h(key). If the bit is 0, the record is assigned 
to the left bucket; otherwise it is assigned to the right bucket. The records in each of the two new buckets use the 
same first b+1 bits in their hash keys, h(key). Similarly, when a bucket representing i bits overflows (where b <= i 
<= w), the bucket is split, and the (i+1)th bit of h(key) for each record in the bucket is used to place the record in the 
left or right new bucket. Both new buckets then represent i+1 bits of the hash key. The buckets whose keys have 0 
in their (i+1)th bit are called 0-buckets, and the others are called 1-buckets. 
 
Under dynamic hashing, each of the m original index entries represents the root of a binary tree whose leaves 
contains a pointer to a bucket. Initially, each tree consists of only one node (a leaf node) that points to one of the m 
initially allocated buckets. When a bucket splits, two new leaf nodes are created to point to the new buckets. The 
former leaf that had pointed to the bucket being split is transformed into a non-leaf node whose left child is the leaf 
pointing to the 0-bucket and whose right child is the leaf pointing to the 1-bucket. To locate a record under dynamic 
hashing, h(key) has to be computed, and then the first b bits are used to locate a root node in the original index. One 
must use each successive bit of h(key) to move down the tree, going left if the bit is 0 and right if the bit is 1, until a 
leaf is reached. The pointer in the leaf is used to locate the bucket that contains the desired record if it exists. In the 
case of deletion, the node containing the key to be deleted holds a meaningless value (say, -1) after the key is deleted. 
As the node is not removed, memory for that node remains allocated after deletion. 

 
Important points about this method are: 

• The main advantage of dynamic hashing is that performance does not degrade as the file size grows. 
• Buckets do not need to be reserved for future growth. 
• When a record is deleted, the corresponding node remains allocated containing a meaningless value. Thus, 

deletion creates unused allocated space. 
• As the number of nodes containing meaningless values remains in the structure, the overall cost of every 

operation increases. 
 
The two existing methods discussed so far have both positive and negative aspects. The main disadvantage of 
separate chaining is that the cost of each operation is linear, i.e., of order O(n), where n is the number of records 
present in the database. Therefore, for large databases, this technique is almost impractical to implement. Although 
dynamic hashing is of order O(log n), deletion creates a problem. If deletion increases, the searching cost increases 
unnecessarily. To design a technique that will work efficiently for large databases, these two major problems must 
be solved. This is the goal of the proposed extended technique. 
 
3 THE PROPOSED EXTENDED TECHNIQUE 
 
The extended technique introduces a hash table such that each index of this hash table contains a separate binary tree. 
The hash table has fixed size, but the binary tree can be expanded as necessary and thus can accommodate large 
numbers of records. In the following, we introduce the structures and organization of the tables and binary trees, the 
calculation of the hash index, and the position of a record in the tree from the key value and possible database size. 
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3.1 Hash table structure 
 
The Hash table is an array of pointers where each pointer points to a structure named root_node. Initially, the hash 
table is declared to be an array of an arbitrary number of pointers. Memory for each root node is allocated only when 
a tree needs to be constructed to store the first record under the corresponding index. In the discussion that follows, 
the array used here is of 100 indices, as shown in Figure 1, with MaxIndex equaling 100. The structure is defined 
below: 
 
 struct  root_node 
 { struct  record_node  *left , *right ; 
 }*hash_table[MaxIndex]. 
 
The structure root_node in Figure 2 shows that each index of the array contains a pointer to a structure root_node 
that has two structure (record_node) pointers, left and right. The structure of record_node is described in Section 3.2. 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Hash table containing binary trees    Figure 2.  ith index pointing to the root_node 
 
3.2 Binary tree structure 
 
Each binary tree is constructed under a root node. The structure of the other nodes, excepting the root node, in the 
binary tree is shown in Figure 3. The field key contains the primary key of the corresponding record. The 
balance_indicator contains a positive or negative value indicating which sub-tree (left or right) of the node contains 
more nodes. Mathematically,  

 
balance_indicator = number of nodes in the right sub-tree - number of nodes in the left sub-tree. 

 
struct  record_node 
{ long  key ; 
 int  balance_indicatior ; 
struct  record_node *left , *right ; 
} 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 3.  Binary tree structure 
 

 0    1                                               98    99 
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For example, balance_indicator = -2 indicates that the left sub-tree contains two more nodes than the right sub-tree. 
On the contrary, balance_indicator = 3 indicates that the right sub-tree contains three more nodes than the left sub-
tree. balance_indicator = 0 means both the left and right sub-trees of the corresponding nodes contain the same 
number of nodes. When a node is created to store a record, its balance_indicator is assigned to zero. The value of 
this field helps us to keep the tree balanced, that is, to prevent as much as possible the tree from being linear. This 
technique helps to reduce the searching cost. 
 
The pointers left and right point to the left and right sub-tree respectively of the corresponding node. When a node is 
created, its left and right pointers are assigned to NULL. The symbol Ø is used to represent NULL value. 
 
3.3 Hash index and tree index 
 
The hash index is the hash key generated by a hash function. The hash index of a key indicates the position of the 
hash table that holds the binary tree in which the key is to be inserted or is probably located. The hash function used 
here is given below. 

 
hash_index = key mod 100 

 
For example, if the key is 46837, then the hash_index = 46837 mod 100 = 37. The tree index is a number that is 
generated using the following function tree_index = key div 100. In the proposed technique, the binary equivalent 
tree index is used to locate or place a key in the corresponding tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Position of the tree        (b) Possible positions in the tree 
 
Figure 4.  Positioning a key 46837 
 
For example, for the above key 46837, the tree_index = 46837 div 100 = 468. This tree_index is further converted to 
its binary equivalent of a specific size. While implementing the technique in this example, 10 bits are used to 
represent the binary equivalent of the tree_index. Using 10 bits for the binary equivalent is not rigid, and it can be 
varied depending on the possible future database size. Here, the binary equivalent of tree_index 468 is 0111010100. 
Starting from the least significant bit (LSB), the tree turns left if the bit is 0 and right if the bit is 1. 
 
3.4 Searching 
 
In this section we describe the searching mechanism. The key to be searched is broken into two parts, the hash_index 
and the tree_index, with the functions hash_index = key mod 100 and tree_index = key div 100 respectively, as 
described above. The hash_index is used to locate the corresponding index in the hash table. Then it must be 
checked to see if the root node of the corresponding index exists. If a root node exists, then a binary tree has already 
been created, and the key is searched using tree_index. Absence of the root node indicates the absence of a tree. That 
is, no data having the hash_index has yet been entered. Thus the searching process terminates with failure. 
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If a binary tree exists already, the process turns left or right depending on the value of the binary equivalent of the 
tree_index starting from the LSB. If a 0 is found, it turns to the left; otherwise it turns to the right. At each step, the 
key of the corresponding node is checked. If a match is found, the searching process terminates with success. 
Otherwise, this traversal continues until the next left or right pointer contains the NULL value. The algorithm is 
shown in Algorithm A1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm A1. Algorithm for searching 
 
Example 1:  Suppose the keys are stored with the configuration in Figure 6. The construction process of such a 
structure is described within the insertion process in section 3.5. Table 1 contains the key, hash_index, tree_index 
and binary equivalent of tree_index of the corresponding records.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. The trees constructed using the sample records 
 

Table 1.  A set of sample keys 
key hash_index tree_index Binary equivalent of tree_index 

1558 58 15 0000001111 
100 0 1 0000000001 
58 58 0 0000000000 

1200 0 12 0000001100 
3758 58 37 0000100101 
158 58 1 0000000001 
458 58 4 0000000100 
2358 58 23 0000010111 
1000 0 10 0000001010 
3258 58 32 0000100000 
6858 58 68 0001000100 
12758 58 127 0001111111 
51258 58 512 1000000000 
8658 58 86 0001010110 
1358 58 13 0000001101 

Algorithm for Searching 
 
Step 1 :  If the hash_index contains no tree, then go to step 4. 
Step 2 :  If the LSB equals zero, traverse to the left child of the root node, if it exists. 
              Otherwise, traverse to the right child of the root, if it exists. If neither exists, go 
              to step 4. 
Step 3 :  For each bit of binary equivalent except the LSB, 
              Check for the key in the corresponding node. If it is not found, depending on the 
              Bit value (zero or one respectively), traverse to the left or right child. If it is 
              found, go to step 5. 
Step 4 :  Show message “key not found” and go to step 6. 
Step 5 :  Show message “key found”. 
Step 6 :  End. 
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Suppose, the keys 458, 499, and 1358 are to be searched. Their corresponding hash_index, tree_index and binary 
equivalent of tree_index are given in Table 2. 

   
Table 2.  The keys to be searched 

Key hash_index tree_index Binary equivalent of tree_index 
458 58 4 0000000100 
499 99 4 0000000100 
1358 58 13 0000001101 

 
To search for the key 458, it is first broken into hash_index and tree_index. The key is then hashed into index 58. 
The process finds that there exists a root node; i.e., a binary tree has been already created. The binary equivalent of 
the tree_index is then calculated to be 0000000100. Because the LSB, i.e. the 0 bit, is 0, the process moves to the 
left from the root node. The key 58 found there is not the desired key. Thus the next bit, i.e. the 1st bit, is considered. 
As this bit is 0, it again takes a left turn and finds the desired key. Finally, the searching process terminates with 
success. 
 
To search for the key 499, the key hashes into the 99th index according to the hash_index of the key. But the process 
observes the absence of the root node. Therefore, no key having hash_index 99 has been inserted yet. Thus, the 
search key is not present in the database. 
 
To search for 1358, the key hashes into the 58th index of the hash table. The calculated binary equivalent is 
0000001101. First it takes a right turn. As a match is not found, it then turns left. The process again fails to get a 
match. Because the 2nd bit is 1, the process then moves to the right, and the search key is found. 
 
3.5 Insertion 
 
This section describes the insertion mechanism. The key to be inserted is first broken into two parts, the hash_index 
and the tree_index, with the functions hash_index = key mod 100 and tree_index = key div 100 respectively, as 
performed in the searching procedure. The hash_index is used to locate the corresponding index in the hash table. It 
must be checked to see whether the root node of the corresponding index exists. If a root node exists, then it is clear 
that a tree has already been created. The process then inserts the key using the binary equivalent of the tree_index. 
On the other hand, the absence of the root node indicates that no tree has been created yet; that is, no data having 
this hash_index has been hashed before. In this case, a root node is created, and the key is inserted either to the left 
or right of the root node according to the LSB of the binary equivalent. The algorithm is shown in Algorithm A2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm A2. Algorithm for insertion 
 
If a binary tree already exists, the process turns left or right depending on the value of the binary equivalent of the 
tree_index, starting from the LSB. If a 0 is found, it turns to left. Otherwise it turns to the right. Each time the 
process checks whether the key of the corresponding node matches. If a match is found, the insertion process 
terminates after generating the message “the key already exists”. Otherwise, this traversal continues until a leaf node 
is reached. According to the corresponding bit value, a new record is then created to store the key either to the left or 
the right of that leaf node. 

Algorithm for Insertion 
 
Step 1 :   If the hash_index contains no tree, create a root node and insert the key to its left or

right child after creating it, according to the LSB value. 
Otherwise, traverse to the left or right according to value of the LSB. 

Step 2 :  For each bit of binary equivalent except LSB: 
If there is no node, create a node and insert the key. If there is a node already and 
no duplicate is found, keep track of the node and direction and then traverse to the 
left or right in the same way. If a duplicate is found, go to step 4. 

Step 3 :  Update the balance indicator of the corresponding node and go to step 5. 
Step 4 :  Show message “key already exists”. 
Step 5 :  End. 
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While traversing the tree, in order to find the appropriate position of the key to be inserted or to check whether it 
already exists, the process has to keep track of the path. If the key is inserted, then the value of the balance_indicator 
of those nodes that are encountered along the path of traversal is updated. For example, consider Figure 7. 
 
 
 
 
 
 
 
 
 
 
Figure 7.  Operations:  (a) before insertion      (b) after insertion 
 
Consider that before insertion, the tree contains 9 nodes, n1, n2, …, n9. Here, the node ni has the balance_indicator 
value bi, where i = 1, 2, …, 9. Suppose a new node n10 is to be inserted, and the insertion procedure finds its position 
of insertion to the left of the node n8. To reach the position of insertion, the process has to traverse along the path 
that contains the nodes n1, n4, n8. Therefore, the addresses of these nodes must be stored. In addition, for each of the 
nodes n1, n4, and n8, a separate integer value is stored which is added to the corresponding balance_indicator. 
During traversal, if the process turns left, –1 is stored, and if it turns right, 1 is stored. Thus, corresponding integer 
values for the nodes n1, n4, and n8 are 1, 1, and –1 respectively. Therefore, after insertion, the balance_indicator of 
the nodes n1, n4 and n8 are b1+1, b4+1, and b8-1 respectively. 
 
Example 2:   Consider the database structure in Figure 6 in which some new keys 2858 and 599 are to be inserted. 
The corresponding hash_index, tree_index, and the binary equivalent of these keys are given in the Table 3. 
 
  Table 3. The keys to be inserted 

Key Hash_index tree_index Binary equivalent of tree_index 
2858 58 28 0000011100 
599 99 5 0000000101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  The tree structure after inserting the key 2858 
 
To insert the key 2858, the process first hashes into the 58th index of the hash table. Its tree_index is 28, and the 
binary equivalent is 0000011100. To find the appropriate position of insertion, the process traverses the tree in the 
same manner as the searching process. During traversal, each node is checked on the way to be sure that the key 
doesn’t exist already. If the key already exists, a message is generated, and the process terminates. Because the LSB, 
i.e. the 0 bit, is 0, the process turns left from the root node and finds the key 58. As the 1st bit is 0, it has to turn left 
again, and at the same time the address of this node and a value –1 against this node are stored. Then the process 
reaches the node holding the key 458, which doesn’t match the key 2858. It turns right as the 2nd bit is 1. The address 
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of the node containing 458 and a value 1 against it are stored. Then it reaches the node containing the key 6858, also 
no match. The 3rd bit is 1, and it has to turn right. The value 1 against the address of the node containing 6858 is 
stored. Because this is a leaf node, a new node to the right of this node is created, and the key 2858 is stored there. 
Now the balance_indicator values of the stored nodes are updated by adding the values stored against them. After 
the insertion of key 2858, the database structure is shown in Figure 8. 
 
Table 4 shows the value of  the balance_indicator of the stored nodes before and after insertion of the key 2858. 
 
Table 4. Changes of balance_indicator after insertion 

Value of balance_indicator Key values of the 
stored nodes Before insertion After Insertion 

58 -3 -3 + (-1) = -4 
458 -1 -1 + 1 = 0 

6858 0 0 + 1 = 1 
 
Now the key 599 is inserted. This key hashes to the 99th index of the hash table which does not have a root node. The 
root node must be created first. The binary equivalent is 000000010. A record node is created to the right of the root 
node, as the LSB is 1. Its balance_indicator is initialized to zero. 
 
Figure 9 shows the structure after inserting the key 599.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The tree structure after inserting the key 599 
 
3.6 Deletion 
 
This section describes the deletion technique. The first step is to calculate the hash_index, tree_index and binary 
equivalent as done in the searching procedure. The hash_index is used to locate the corresponding index in the hash 
table. The next step is to see whether or not the root node of the corresponding index exists. The presence of a root 
node indicates that a tree already exists. Then the process finds the key for deletion using the binary equivalent of the 
tree_index. On the other hand, the absence of the root node indicates that no tree is present; that is, no data having 
this hash_index has been entered yet. In this case, the deletion process terminates, generating a message “the key is 
not found”. 
  
If a binary tree already exists, the process traverses the tree to find the node containing the key to be deleted as in the 
searching procedure. While traversing, it keeps track of all the record nodes it encounters on the path to the node 
containing the key to be deleted, if it exists, from the root node. It stores the addresses of the nodes encountered 
along the path, and in association with each address a distinct integer value is also stored. 
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Algorithm A3: Algorithm for deletion 
 
If the process fails to find the key value, it terminates with a failure. If the key exists and the node containing it is a 
leaf node, it then deletes the node by freeing the memory allocated by it. In the case where the key is contained by a 
non-leaf node, it tries to find a leaf node in either the right or left sub-tree of the node containing the key. If the left 
sub-tree contains n1 number of nodes and the right sub-tree contains n2 number of nodes and n1≥ n2, then a leaf node 
is chosen from the left sub-tree. If n1< n2, the leaf node is chosen from right sub-tree. This choice is made with the 
help of the value of the balance_indicator. If the balance_indicator is less than or equal to zero, the process turns 
left; otherwise it proceeds right. In this way, while the process searches for a leaf node, the addresses of each node 
on the path including the node containing the key to be deleted and an integer value for each node are stored. The 
integer value is either 1 or –1 depending on the direction of the traversal. –1 is stored for a left turn, and 1 is stored 
for a right turn.  

 
When the process finds a leaf node, it first replaces the key to be deleted by the key contained by this leaf node. Then 
it deletes this leaf node by freeing its respective allocated memory. After that, using the corresponding stored integer 
value, the values of the balance_indicator of the nodes whose addresses are already stored is updated. An integer 
value, either 1 or –1, is subtracted from the balance_indicator of the corresponding node. Consider the tree structure 
in the Figure 10. The process of deleting a non-leaf node is explained further using this structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.  (a) Before deletion      (b) After deletion 
  
Suppose before deletion the tree contains nodes n1, n2, …, n12. Each node ni contains the key ki for i = 1, 2, …, 12. 
Also, the node ni has the balance_indicator value bi, where i = 1, 2, …, 12. From Figure 10(a), we get b1= 0, b2= - 6, 
b3= 0, b4= 0, b5= -2, b6= 0, b7= 1, b8= 1, b9= 0, b10= -1, b11= 0, and b12= 0.  

 

Algorithm for Deletion 
 
Step 1 :  If the hash_index contains no tree, then go to step 5. 
Step 2 :  If the LSB equals zero, traverse to the left child of the root. Otherwise, traverse to  
              the right child.  
Step 3 :  For each bit of the binary equivalent except the LSB: 
              If there is no node, go to step 5. If the key is found and the corresponding node is a 
              leaf node, delete it; Otherwise, call the reordering scheme (replace by a leaf).  
              If the key is not found, keep track of the node and direction and then traverse to the 
              Left or right in the same way. 
Step 4 :  Update the balance indicator of the corresponding node and go to step 6. 
Step 5 :  Show message “key not found”. 
Step 6 :  End. 
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Consider that the key k5 is selected for deletion. To reach the node containing k5, the process has to turn right from 
the root node and then turn left from node n2. The address of node n2 and an integer value –1 against it are stored. 
The node n5 containing the key k5 is a non-leaf node. Therefore, a leaf node from either the left or right sub-tree of 
n5 has to be found. Because b5< 0, the process turns left, and the address of node n5 and a value –1 is stored. The 
process reaches n7 and from n7 has to turn right as n7 is not a leaf node and b7>0. At this point, the address of n7 and 
a value 1 against it are stored. Then it reaches the node n10, which is also not a leaf node. From n10, it turns left as 
b10< 0. Here, the process stores the address of n10 and a value –1 against it. After that it arrives at the node n12 , a 
leaf node. 

 
Now the key k5, the target for deletion, is replaced by the key k12 contained by the node n12. Then the node n12 is 
removed. After that the values of the balance_indicators of all the nodes whose addresses are already stored are 
updated by subtracting the corresponding stored value from them. Here, b2, b5, b7, b10 are updated as shown in the 
Table 5. 
 
Table 5.  Changes of balance_indicator after deletion 

Balance_indicator Before deletion After deletion 
b2 -6 -6 – (-1) = -5 
b5 -2 -2 – (-1) = -1 
b7 1 1 – 1 =0 
b10 -1 -1 – (-1) = 0 

 
Example 3: Consider the database structure in Figure 11 from which the key 458 is to be deleted. Table 2 shows its 
hash_index, tree_index and the binary equivalents of the key. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.   A database structure 
 
To delete the key 458, the process hashes into the 58th index of the hash table. Its tree_index is 4, and the binary 
equivalent is 0000000100. Prior to deletion, it is necessary to find the node containing 458 as in the searching 
process. As the LSB, the 0 bit, is 0, the process turns left from the root node and finds the key 58. Since the 1st bit is 
0, it has to turn left again, and at the same time, the address of this node and a value –1 against this node are stored. 
It then reaches the node holding the key 458 and deletes it. 
 
Now a leaf node from either the left or right sub-tree of the node containing 458 has to found. As the 
balance_indicator of the node containing 458 is 1, which is greater than zero, the process proceeds towards the right 
form of this node. At the same time, the address of this node and a value 1 against it are stored. Next it arrives at the 
node containing 6858, which is not a leaf node. Since the balance_indicator of this node is 2, the process must turn 
right. Before that, it stores the address of this node containing 6858 and a value 1 against it. Then the process 
reaches the node holding key 2858, which is also non-leaf node. Its balance_indicator value is –1. Therefore, it turns 
left from here after storing the address of this node and a value –1 against it. Then the node, containing key 1258, is 
reached and is a leaf node. 
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Because the process has found the appropriate leaf node, it first replaces the key 458 by 1258 and then deletes the 
node containing the key 1258. After that, it updates the values of the balance_indicators of the nodes whose 
addresses have been stored using the corresponding stored integer values, either 1 or –1. Here, the integer value is 
subtracted from the balance_indicator. Table 6 shows the changes of the balance_indicator values. 

 
 

Table 6.  Changes of balance_indicator after deletion 
Value of balance_indicator Key values of the 

stored nodes Before insertion After Insertion 
58 -5 -5 + (-1) = -4 

458/1258* 1 1 – 1 =0 
6858 2 2 – 1 = 1 
2858 -1 -1 – (-1) = 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12.   After deletion of key 458  
 
The database structure after deleting the key 458 is shown in Figure 12. 
 
4 MATHEMATICAL ANALYSIS 
 
4.1 Successful search 
 
To analyze this method mathematically, let us assume that the records are uniformly distributed among the tree and 
each tree is also constructed uniformly. 
 
For a successful search, let, 
 r = number of records in the database, 
        i = number of indices in the hash table, 
        p = number of records in a tree, 
        b = number of bits to represent p, 

q = number of internal nodes,  
e = number of external nodes, and 
I = internal path length (total path length to reach all the internal nodes from the root node). 
 

Here, p = 2b as b is the number of bits required to represent p. Therefore, b = log 2 p. 
Because b must be a positive integer, b = ⎡|log 2 p|⎤.   
The total number of nodes in a tree, p = r/; thus b = ⎡|log 2 (r/i)|⎤. 

 
The (b-1)th and bth levels consist of (2b-1-2) and 2 leaf nodes respectively. Then the total number of external nodes, 
            e = 2b-1-2+2  

  = 2b-1, where b ≥ 2. 
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The rest of the nodes are internal, and the total number of internal nodes,  
 q  = p - e   

    = 2b - 2b-1  
    = 2b-1(2-1)   
    = 2b-1,   where b ≥ 2. 

 

For b bits, I = ∑
−

=

2

1

b

n
 (n*2n) + 2*(b-1), where b ≥ 2. 

 
The following steps are perfomed to obtain the average number of comparisons Savg in a successful search 

1. Divide I by the number of internal nodes, q; 
2. Add 1 for a leaf node or 0 for a non-leaf node; 
3. Multiply that result by 3 because of the following three comparisons: 

• One for checking the target key, 
• One for making the decision to turn right or left, and 
• One for determining if a child node is required at each internal node. 

4. Add 3 because of  the following three comparisons: 
• One checking if a tree exists in the corresponding hash index, and 
• Two for making the decision to turn right or left from the root node (one for checking the binary 

equivalent and the other for checking the NULL value); and  
5. Subtract 2 for the one comparison done at the node where the target is found (compare to the three 
comparisons required in step 3). 

 
The average number of comparisons for a successful search is 

 
           Savg  = (I/q+1)*3+3-2  

        = (I/q)*3+4,    where b ≥ 2. 
 

 For b = 0 and 1, there is no internal path, that is, I = 0. In this case, 
Savg  = 4. 

 
Finally, 

  4,   0 ≤ b ≤ 1  
 Savg  =  

    (I/q) * 3 + 4,  b ≥ 2 
 

For Figure 12, Savg = (16/8)*3+4 = 10. 
 
Table 7.  Comparison between mathematical analysis and experimental result 

Successful Search  
Number of records Mathematical Analysis 

(No. of  probes) 
Experimental result 

(No. of  probes) 
          100              4  4 
          200              4  4 
          400              7  6 
          800              9  7 
        1600            10  9 
        3200            12 11 
        6400            14 14 
      12800            17 17 
      25600            19 20 
      51200            22 22 
    102400            25 25 
    204800            28 28 
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Table 8.  Comparison between mathematical analysis and experimental result 
 

 
4.2 Unsuccessful search 
 
An unsuccessful search ends at a leaf node.  
 
Let 
           x = Total path length to reach the leaf nodes at (b-1)th level from the root node, 
           y = Total path length to reach the leaf nodes at bth level from the root node,    
           m = Total number of comparisons for the leaf nodes at (b-1)th level, and 
           n = Total number of comparisons for the leaf nodes at bth level. 
 
There are (2b-1-2) leaf nodes at the (b-1)th level, and the path length for each of these nodes from the root node is (b-
1). The total path length for these nodes is  
  x = (2b-1-2)*(b-1), where b ≥ 2. 

 
Because at each node except the root node (as described in step 3) 3 comparisons are needed and at the root node (as 
described in step 4) 3 and 2 comparisons are needed, the total number of comparisons for the nodes at (b-1)th level is 
   m = x*3+(2b-1-2)*2, where b ≥ 2.  
 
Again, there are 2 leaf nodes at bth level and the path length is b for each of these nodes from the root node. The total 
path length for these nodes is 
   y = 2*b, where b ≥ 2. 
 
Because at each node 3 and at the root node 2 comparisons are needed, the total number of comparisons for these 
nodes of bth level is 

n = y*3+2*2, where b ≥ 2. 
 

The average number of comparisons for an unsuccessful search is determined in the following way: 
 
1) Adding m and n, 
2) Dividing the result by the number of external nodes e , and  
3) Adding this result to 1 as one comparison is needed to check whether the hash index contains a 

tree or not. 

Unsuccessful Search  
Number of records Mathematical Analysis 

(No. of  probes) 
Experimental result 

(No. of  probes) 
          100              5  4 
          200              6  6 
          400              9  8 
          800            11 10 
        1600            13 12 
        3200            15 15 
        6400            18 18 
      12800            21 21 
      25600            24 24 
      51200            27 27 
    102400            30 30 
    204800            33 31 
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Therefore, the average number of comparisons for an unsuccessful search is 
  Uavg = [(m+n)/e]+1, where b ≥ 2. 

 
For b = 0, five comparisons are required for one side and two for other side. In doing this, we find the average 
number of comparisons to be 3.5. One comparison is added to this average for checking the existence of a tree. 
Therefore, Uavg = 4.5. 
 
For b = 1, five comparisons are required for both sides, and we find the average number of comparisons to be 5. 
Similarly, one comparison is added to this average. Therefore, Uavg = 6. 

 
In summary, 

              4.5,   b = 0  
 Uavg =    6,   b = 1 

     [(m+n)/e]+1,  b ≥ 2 
 
 
 
4.3 Deletion 
 
To delete a node, first a search for it must be executed. Then the node is checked to see whether or not it is a leaf 
node. If it is a leaf node, the node is simply removed; otherwise a reordering scheme is needed to replace the key to 
be deleted with a key of its leaf node. As the number of internal nodes and the number of external nodes are equal, 
i.e., 2b-1, for a tree having b levels (b ≥ 2), the probability of the necessity of a reordering scheme for a deletion of a 
node is 0.5. 

 
The average cost of deletion = Cost of a successful search 

           + 0.5 * Cost of checking a leaf node  
           + 0.5 * Cost of reordering scheme. 

 
That is, Davg = Savg + 0.5 * 2 + 0.5 * Ravg. 

       = Savg + 0.5 * Ravg + 1, where b ≥ 2 
And Davg = Average cost of deletion and 

Ravg = Cost of reordering scheme. 
 

While reordering the tree, the traversal starts from the node that is to be deleted and must end at a leaf node. 
 
For a uniform distribution of the records in the tree, leaves are placed at the (b-1)th  and bth levels. As (2b-1-2) leaves 
are placed at the (b-1)th level, the probability of finding a leaf node at this level is 

 
Pl (b-1) = (2b-1-2)/2b-1  

 = (1- 2/2b-1)  
 = (1-22-b). 

 
Similarly, as 2 leaves are placed at the bth level, the probability of finding a leaf node at this level is  

Pl (b) = 2/2b-1  
                      = 22-b. 
 
A node at ith level, which finds the leaf node at the (b-1)th level, needs to traverse (b-i-1) internal nodes and a leaf 
node. At each internal node, 3 comparisons are required: 

1. one to check whether the left pointer is null or not,  
2. one to check whether the right pointer is null or not, and 
3. one to check the balance indicator value. 

           
At the leaf node, 2 comparisons are required: 

1. one to check whether the left pointer is null or not, and 
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2. one to check whether the right pointer is null or not. 
 

Therefore, the cost for a non-leaf node of ith level which finds its leaf node at (b-1)th level is Ci(b-1) = Pnl(i) * Pl(b-1) 
* [(b-i-1)*3 + 2]. 

 
A node at the ith level which finds the leaf node at the bth level needs to traverse (b-i) internal nodes and a leaf node. 
Thus, the cost for a non-leaf node at the ith level which finds its leaf node at the bth level is 
                         Ci(b) = Pnl(i) * Pl(b) * [(b-i)*3 + 2]. 

 
For the 2 non-leaf nodes at the (b-1)th level, the traversal must end at a leaf node of bth level. Here, 5 comparisons 
are required: 

1. 3 for the non-leaf node and 
2.  2 for the leaf node. 

 
Therefore, a cost Cb-1(b) = Pnl(b-1) * 5 is added. 

 
Finally, we get the cost of reordering scheme: 

 

Ravg = ∑
−

=

2

1

b

i
  (Ci(b-1) + Ci(b)) + 5 * 22-b, where  b ≥ 2. 

For b = 0 and 1, two comparisons are necessary for leaf node checking. 
 

Therefore, the cost of deletion of a record is 
 
  Savg + 2,   0 ≤ b ≤ 1 

 Davg = 
   Savg + 0.5 * Ravg + 1,  b ≥ 2 
 
 
 
Table 9.  Comparison between mathematical analysis and experimental result 

Deletion 
Number of records Mathematical Analysis 

(No. of  probes) 
* Experimental result 

(No. of  probes) 
          100               6   6 
          200               6   6 
          400             11   9 
          800             12 11 
        1600             14 14 
        3200             16 16 
        6400             19 19 
      12800             21 22 
      25600             24 25 
      51200             27 28 
    102400             30 31 
    204800             33 34 
 
The node containing a record in the proposed technique requires a little more memory than separate chaining and 
dynamic hashing. The extra field balance_indicator, however, helps to maintain proper balance in the tree and thus 
increases efficiency for searching, insertion, and deletion. The facility of using the binary equivalent is that it does 
not depend on the order in which keys arrive, whereas for a usual binary tree, its balance depends on the order of 
keys. Moreover, the association of a binary tree with each hash index enables the technique to handle large numbers 
of records efficiently. The experimental results in the next section explore the performance of the method. 
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5 EXPERIMENTAL RESULTS 
 
Analyses have been performed on several sets of data. First, a set of 100 records is inserted, and then an additional 
10 records are inserted. The total numbers of comparisons are evaluated; from this, the average number of 
comparisons for an insertion is found. After this, the same experiment is performed on additional sets of data. The 
last set contains 204800 records. Experimental results for searching and deletion are also tested in the same manner. 
The same experiments are performed on the same sets of data after deleting 10% of the records.  
 
Table 10.  No. comparisons for successful search       Table 11.  No. comparisons for unsuccessful search 

 
  
 
 
 
 
 
 
 
 
 

Table 11.  Comparisons for insertion                          Table 12.  Comparisons for deletion  
    
 
 

Table 13.  No. of comparisons for an                     Table 14.  No. of comparisons for an 
unsuccessful search after 10% deletion                                  unsuccessful search after 10% deletion 

 
 
 
 
 
 
 
 
 
 

 
Table 15.  No. of comparisons for insertion                   Table 16.  No. of comparisons for deletion 
after 10% deletion            after 10% deletion 
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5.1 Memory utilization 
 
In the proposed technique, each record node requires total 10 bytes, whereas in dynamic hashing, each node requires 
8 bytes. After deletion, dynamic hashing does not destroy the node containing the key to be deleted, but the 
proposed technique does. For x records in a database, the proposed technique requires 10x bytes; whereas dynamic 
hashing requires 8x bytes. After the deletion of p% records, memory requirements for both techniques are the same. 
Therefore,  

8x = 10x – 10 * 
100
px

 

          ⇒  
10
px

= 2x.      Therefore,   p = 20. 

 
That is, after 20% deletion, the memory requirements for both techniques are same. If more than 20% deletion 
occurs, the proposed technique requires less memory than dynamic hashing. 
 
Table 17.  Memory comparison 
Number of records Separate chaining 

(in KB) 
Dynamic hashing 
(in KB) 

Proposed technique 
(in KB) 

           500           3.20           4.13             5.40 
         1000           6.20           8.13           10.40 
         2000         12.20         16.13           20.40 
         5000         30.20         40.13           50.40 

 
Table 18.  Memory comparison after 20% deletion 

 
Table 19.  Memory comparison after 30% deletion 

     
 
6 DISCUSSION AND CONCLUSION 
 
From the experimental results, it is obvious that separate chaining works better for small numbers of records. When 
the number of records increases, however, its performance degrades drastically. In dynamic hashing, the main 
problem is that each deletion creates an unused node, thus increasing the cost for accessing a record. In the proposed 
technique, when a record is deleted, the key is replaced by another key located in a leaf node, and that leaf node is 
destroyed. Thus, no unused node is ever created in the tree. Also in the proposed technique, an extra field is added to 
each node in order to prevent the tree from becoming unbalanced when a record is deleted. As a result, the memory 

Number of records Separate chaining 
(in KB) 

Dynamic hashing 
(in KB) 

Proposed technique 
(in KB) 

          400            2.60             4.13             4.40 
          800            5.00             8.13             8.40 
        1600            9.80           16.13           16.40 
        4000          24.20           40.13           40.40 

Number of records Separate chaining 
(in KB) 

Dynamic hashing 
(in KB) 

Proposed technique 
(in KB) 

         350           2.32           4.13             3.90 
         700           4.40           8.13             7.40 
       1400           8.60         16.13           14.40 
       3500         21.20         40.13           35.40 
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required for the technique is greater than for separate chaining and dynamic hashing. Today, sufficient memory is 
available, and in the proposed technique, reduction in comparison costs has been given greater importance. 
 
From the experimental results, it is also clear that the proposed technique works better in some cases than in others. 
In the deletion operation, the proposed technique costs more in comparisons than dynamic hashing due to the 
reordering scheme. But after deletion, dynamic hashing performs worse than the proposed technique during the 
insertion and searching operations. The main advantage of the proposed technique over dynamic hashing is that after 
deletion, the former works better in searching and insertion. But in the case of deletion, dynamic hashing performs 
better. 
 
From the experimental results, it is also observed that the proposed technique performs well while searching and 
inserting a record. Except in a few cases, it shows better results than separate chaining and dynamic hashing. When 
database size increases, the proposed technique’s cost of comparison increases at a not very high rate. Though 
memory utilization in the proposed technique is better than in dynamic hashing, the former requires more memory 
space. For a large database distributed uniformly, there is no allocated but unused node in this technique. Thus, it 
can be said that though the proposed technique requires more memory, it shows significant improvements in several 
cases. 
 
We have assumed the input data to be uniform. However, if the input records are not uniformly distributed, 
performance of the proposed technique degrades. For example, the greater the difference between the numbers of 
records having odd and even key values, the more the corresponding tree becomes one-sided and the more the 
performance degrades. In the worst case, a tree may become linear. The proposed technique has no efficient way to 
handle sequential key order traversal, which is sometimes important in order to retrieve a range of records. 
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