
Data Science Journal, Volume 4, 31 August 2005 59

AN EFFICIENT LOCKING MODEL FOR CONCURRENCY CONTROL IN
OODBS

G Arumugam1* and M Thangaraj2
*1Department of Computer Science, Madurai Kamaraj University, Madurai 625021 TN India
Email : gurusamyarumugam@yahoo.co.in
2Department of Computer Science, Madurai Kamaraj University, Madurai 6250 21 TN India
Email : thangarajmku@yahoo.com

ABSTRACT

When several transactions execute concurrently in a database, the isolation property may no longer be preserved. It
is necessary for the system to control the interaction among the concurrent transactions. This paper presents a new
locking model for concurrency control in object oriented database systems. This model is motivated by a desire to
provide high concurrency and low locking overheads in accessing objects. The proposed model consists of a rich
set of lock modes, hash table, lock-based signatures and B+ trees. The performance study result shows that the
proposed model performs well for all possible operations on objects.

Key words: Concurrency, lock modes, hash table, B+ tree, signatures, object

1 INTRODUCTION

Recently, there has been increased interest in object oriented database systems, which appear to be driven mainly by
the demands of data intensive applications such as CAD/CAM, office information systems and software
development environments. With its flexible data model and object-oriented programming paradigm, it is believed
that object oriented databases have great potential to be applied widely.

A transaction is a collection of read or update processes, each accessing a data item in a database. The read
processes do not change the contents of the database but the update processes would modify the contents of the
database. The concurrency control system should control the simultaneous execution of reads and updates,
preserving the consistency so that the computer resources are used as efficiently as possible. The problems of
concurrency control in conventional databases such as lost updates and uncommitted dependency (Datta & Son,
2002) remain unresolved in object oriented databases. Furthermore, due to the complexity of the object oriented
data model, the problems become more complicated. One of the main techniques used to control concurrency is
based on the concept of locks. These locks are categorized as S (shared lock), X (exclusive lock), IS (intention-
shared lock), IX (intention-exclusive lock), and SIX (shared and intention-exclusive lock). Various locking models
(Lee & Liou, 1996) have been developed to manage concurrency issues and their details are explained in Section 2.

Since different transactions obviously have different characteristics and requirements, it is desirable that the DBMS
should provide a range of locking granularities (Pollari, Soisalon-Soininen & Ylonen, 1996). The term ‘granularity’
refers to the size of the object that can be locked. The objective of this paper is to develop a feasible locking model
for an object-oriented database system (Norvag, Sandsta & Bratbergsengen, 1997), which overcomes the
shortcomings of other locking models while retaining their advantages. The proposed model uses a new structure
against B+ trees (Bertino, 1994) which are mostly used as an indexing structure to make efficient querying on
objects.

 The remainder of the paper is organized as follows: Section 2 is devoted to issues relevant to concurrency control.
In Section 3, we describe the architecture for concurrency control. Section 4 shows the results of evaluating the
performance of the algorithm. Finally, in Section 5 we present the conclusions.

Data Science Journal, Volume 4, 31 August 2005 60

2 RELATED WORK

Database systems frequently use indexes to access data. These systems typically operate at a high level of
concurrency and, as the transactions have a high probability of accessing an index, it is necessary to ensure that
concurrent access to indexes is not a bottleneck in the system. B+ trees are the most common dynamic index
structures (Tao & Papadias, 2002) in database systems. The following algorithms have been developed to take care
of the concurrent access of an object in object oriented databases.

Bayer-Schkolnick Algorithms (Srinivasan & Carey, 1993): All operations that get an X lock on the root, lock-
couple their way to the leaf using X locks and then release the locks at higher levels whenever a safe node is
encountered. This strategy ensures that when an update operation reaches a leaf, it holds X locks on all pages in its
scope and there are no locks on any other index nodes. Updates and reads whose scopes do not interfere can thus
execute concurrently. However, a considerable number of conflicts such as the non-availability of a node and
deadlocks may be caused at higher-level nodes due to the use of X locks.

Locking model in ORION (Thangaraj, Kuppuswami, Prasanna & Paul, 1999): The locking model in ORION is
based on Gray’s hierarchy locking model. Two level hierarchies are used to model the lockable granules in Object
Oriented databases. A coarse granule is at the class level and a fine granule is at the instance level. The instance
objects in an ORION system are locked only in S or X mode. Class objects can be locked in S, X, IS, IX, or SIX
modes.

B+ tree concurrency control algorithm (Lee & Liou, 1996): This method does not use all the lock modes but only
the IS, IX, SIX and X locks. The first three locking modes are used in a hierarchical locking protocol. The X lock
mode is the traditional lock mode. This algorithm can be improved by considering every index page as an
independently lockable item instead of locking the entire tree.

3 THE PROPOSED MODEL

The model named as Arumugam-Thangaraj Concurrency Model (ATCM), is an integrated model supporting both
inheritance and aggregation hierarchies The ATCM model (in Figure 1) is an improved version of the model
proposed by Thangaraj et al, (1999) and Thangaraj & Sujatha (2001). The additional features of the data structure of
the ATCM model bring efficiency when compared with B+ tree models. It consists of two indexes, namely primary
and auxiliary indexes. Both indexes use the data structures with a combination of signatures, hash tables and
B+trees.

The primary index is organized on the key to be indexed and it consists of a hash table, signature and B+trees. Each
bucket in the hash table has a signature pattern (Tao & papadias, 2002) and a pointer to a B+ tree. The signature is a
bit pattern that has a collection of n bits, which indicates the type of lock on a particular object. The columns in the
pattern matrix are used to represent S, X, IS, IX, SIX locks and availability of the object. A bit corresponding to a
class in the bit map is set if and only if there is at least one object that belongs to that class having the key value K.
During access, the objects availability and types of lock on the object can be determined easily. Any effective
hashing function can be used to hash the given key into the hash table and hence into the corresponding B+ tree.

The leaf node in the primary B+tree has the format shown in Figure 1. It consists of the classid, record length, key
value, class directory and signature having instances with the key value in the indexed attribute, their lock details
and the offset where the object identifiers (OIDs) of the classes are stored. The remaining part of the node consists
of the number of OIDs in each class and the OID along with the pointer to the corresponding object in the auxiliary
index.

An auxiliary index is maintained for all objects except for those that belong to the root class and its subclasses. The
auxiliary index also consists of a hash table, signature patterns and B+ trees. Every entry in the hash table has a
signature pattern that indicates the availability of the object and a pointer to a B+ tree. Any effective hashing

Data Science Journal, Volume 4, 31 August 2005 61

technique can be used to hash the OID of the object to the hash table and hence to the corresponding B+ tree. The
format of a leaf node in the auxiliary B+ tree is shown in Figure 1. It consists of the OID of the object, the record
length (the number of parent OIDs), a pointer to the primary record and list of its parents.

 Primary index
Hash table B+ tree
 Ptr to B+ tree

 …. ……. ……..
 B+ tree leaf record

OID

Record
length

Key
value

Class
Directory
&
Signatures

No. of
 OIDs in
the list

List of
OIDs and
auxiliary
pointer

……

……

 Auxiliary index
Hash table B+ tree

 B+ tree leaf record ….. … .. ….. …… …. …..

OID

Pointer to primary
record

Number of
parents

List of OIDs of parents

Figure 1. ATCM architecture.

sign1
sign2
sign3
sign4
……
…….
……
…….
…….

sign1
sign2
sign3
sign4
……
…….
……
…….
…….

Data Science Journal, Volume 4, 31 August 2005 62

3.1 Operations

The proposed model facilitates operations like reading an object, writing an object and updating the contents of an
object. The following algorithms describe how each operation is carried out:

a) Algorithm : Read
 Data structure : See Figure 1
 Input : search value K
 Output : object

Steps :

 Hash the key K, find the relevant bucket in primary hash table
 If the K is in Bit matrix and S bit =1 and not IX bit =1
 {
 func find (nodepointer, search value K)
 {
 if *nodepointer is a leaf
 Check the signature for the type of lock on the class
 Return the object.
 else
 if K < K1 then return find(P0, K)

 else

 if K >= Km then return find (Pm, K)
 //m = number of entries
 else
 Find i such that Ki <= K <= K i+1

 Return find (Pi, K)
 }
 find the class directory in the primary record node
 check for the signature
 retrieve the object.
 }

b) Algorithm : Update
 Data structure : See Figure 1
 Input : Key K, V new value
 Output : updated object

Steps :
 Hash the key K, find the relevant bucket in auxiliary hash table
 If the K is in Bit matrix and X = 0
 {
 set the corresponding bit in the matrix
 func modify (value V, pointer P)
 {
 find(node pointer, search value K)
 find the leaf node L that contains value K
 find the primary record using the pointer
 using class directory access the OID and modify with V
 }
 }

In the case of B+ tree model the tree is searched to find a particular object but in the ATCM case, the signature
pattern helps the user to identify the availability of an object and the type of lock on that object.

3.2 Locking request scheduling

The set of all requests for a particular object is kept in a queue and sorted by a type of fair scheduler. A fair
scheduler must guarantee that no particular transaction is blocked indefinitely. Most of the granted requests are

Data Science Journal, Volume 4, 31 August 2005 63

placed in a queue called the granted buffer. Even though the First-Come-First-Served technique is simple and fair
for scheduling requests, it fails to maximize the degree of concurrency. So, a dual-queue scheduling (Lee & Liou,
1996) scheme is used in our ATCM model.

4 PERFORMANCE ANALYSIS

This section provides experimental results of the performance of the ATCM model at accessing objects
concurrently. The experiments were designed to answer the following questions:

• How good is the performance of the ATCM model compared with the B+ tree model ?
• What is the improvement achieved by this new model?

The ATCM model was implemented using C++ in Windows. The experiments were performed on Pentium
machines using a data set of 10 million objects with a uniform distribution of search keys (ie. OID). The primary
performance metric used was the miss ratio (fraction of transactions that miss their deadlines) and was calculated as
 number of transactions missing deadline

miss ratio =
 total number of transactions arriving into the system
It is found that the miss ratio is very minimal in our model because of the introduction of dual-queue scheduling.

In our experiments, three factors were varied: the workload (the percentage of searches and updates), the system
(number of CPUs and disks) and the structure of the tree (the fan-out and the number of keys). These factors
determine the data and resource conflict levels of the system. The parameters used in our experiments are given in
Table 1.

Table 1 : Simulation parameters
Nc Number of CPU
Nd Number of disk
Dsk time Min: 0 msec; Max:30 msec
Lock time 0.05
Fanout Number of index entries per page
Mpl Multiprogramming level

It is essential to study the performance of these models when executing requests for reading and updating an object.
As the ATCM model distributes objects uniformly among the B+ trees in various buckets, carrying out concurrent
request for various operations is effective. Accessing all the objects through a single root path is a major drawback
of the B+ tree model. The following graphs show the outcome of the experiments when read and update operations
are done on objects using the two models:

Data Science Journal, Volume 4, 31 August 2005 64

Read operation

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

Volume of index (x 10,000)

Ti
m

e
(in

 s
ec

)

ATCM
B+ tree

Figure 2 shows the read operation in the indexing structures

The graph in Figure 2 shows the performance of the two models when applying read operation on a particular
object. The new model performs well compared to the B+ tree model.Figure 3 shows the performance of these two
models on update operation.

Update operation

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Volume of index (x 10,000)

Ti
m

e
(in

 s
ec

)

ATCM
B+ tree

Figure 3 shows the update operation in the index structures

The performance of the two models were evaluated when multiple transactions concurrently access an object for a
particular operation. In Figure 4, we present the result of the concurrent read operations by multiple transactions
and it can be seen that ATCM model performs better than B+ tree model.

Data Science Journal, Volume 4, 31 August 2005 65

Concurrent read operation

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

No.of concurrent read

Ti
m

e
(in

 s
ec

)

ATCM
B+ tree

Figure 4 shows the concurrent read operation in the index structure

By supporting a full set of lock modes for classes, ATCM has a low overhead on locking classes. It also gains a
higher degree of concurrency by applying both the techniques of hierarchical locking on composite objects and a
dual queue-scheduling scheme. These results state that the proposed ATCM is quite an efficient locking model with
a higher degree of concurrency.

5 CONCLUSION

In this paper, a new model is proposed to control the concurrent access of objects in an object database. ATCM
model uses a signature pattern, hash table and B+ trees. This paper builds upon previous work on locking strategies
in object databases. Due to some fundamental differences between B+ tree and ATCM model architectures, the
algorithms developed for B+ tree model do not provide a feasible solution for concurrent access. Motivated by the
limitations of the previous approach, we have developed a new granular locking approach suited for concurrency
control in OODB. This model provides a high degree of concurrency and has a low lock overhead. Our
experiments have shown that the proposed model works well under various system loads and significantly
outperforms the B+ tree model for small to medium sized data sets. This work can further be extended towards
range queries and concurrent access in distributed objects.

6 ACKNOWLEDGEMENTS

We would like to thank F J Smith, the editor-in-chief and the anonymous reviewers whose careful reading and
constructive criticisms on the work helped to improve the clarity and content of this paper.

7 REFERENCES

Bertino, E. (1994) A survey of indexing techniques for OODB. Proc.of Query processing for advanced database
systems, Dagstuhl, Morgan Kaufmann Publishers, Inc.

 Datta, A., & Son, S.H. (2002) A study of concurrency control in Real-time, active Database systems. IEEE
Transaction on Knowledge and Data Engg. 14(3), 465-484.

Data Science Journal, Volume 4, 31 August 2005 66

Lee, S.Y., & Liou, R.L. (1996) A multi-granularity locking model for Concurrency control in OODB. IEEE Trans
on Knowledge and Data Engg. 8(1), 144-156.

Norvag, K., Sandsta, O., & Bratbergsengen, K. (1997) Concurrency control in Distributed object-oriented database
systems. Proc. of ADBIS, St.Petersburg, Russia.

Pollari, K., Soisalon-Soininen, E., & Ylonen, T. (1996) Concurrency Control in B-Trees with Batch Updates. IEEE
Trans. on Knowledge and Data Engg. 8(6), 975-984.

Srinivasan, V., & Carey, M.J. (1993) Performance of B+ tree concurrency control Algorithms. VLDB Journal, 2,
361-406.

Tao, Y., & Papadias, D. (2002) Adaptive index structures. Proc.of VLDB Conference, Hong Kong, China.

Thangaraj, M., Kuppuswami, S., Prasanna, V., & Paul, R. (1999) A new integrated indexing model for OODB.
Proc. Int. Conf. ROVIPIA, Ipoh, perak, Malaysia.

Thangaraj, M., & Sujatha, G. (2001) An efficient locking model for concurrency control in object oriented data base
systems. Proc. Of NCHPC. Pollachi, India.

