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ABSTRACT 
 
When several transactions execute concurrently in a database, the isolation property may no longer be preserved.  It 
is necessary for the system to control the interaction among the concurrent transactions.  This paper presents a new 
locking model for concurrency control in object oriented database systems.  This model is motivated by a desire to 
provide high concurrency and low locking overheads in accessing objects.  The proposed model consists of a rich 
set of lock modes, hash table, lock-based signatures and B+ trees.  The performance study result shows that the 
proposed  model performs well for all possible operations on objects. 
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1 INTRODUCTION 
 
Recently, there has been increased interest in object oriented database systems, which appear to be driven mainly by 
the demands of data intensive applications such as CAD/CAM, office information systems and software 
development environments.  With its flexible data model and object-oriented programming paradigm, it is believed 
that object oriented databases have great potential to be applied widely. 
 
A transaction is a collection of read or update processes, each accessing a data item in a database.  The read 
processes do not change the contents of the database but the update processes would modify the contents of the 
database.  The concurrency control  system should control the simultaneous execution of reads and updates, 
preserving the consistency so that the computer resources are used as efficiently as possible. The problems of 
concurrency control in conventional databases such as lost updates and uncommitted dependency (Datta & Son, 
2002) remain unresolved in object oriented databases.  Furthermore, due to the complexity of the object oriented 
data model, the problems become more complicated.  One of the main techniques used to control concurrency is 
based on the concept of locks. These locks are categorized as S (shared lock), X (exclusive lock), IS (intention-
shared lock), IX (intention-exclusive lock), and SIX (shared and intention-exclusive lock). Various locking models 
(Lee & Liou, 1996)  have been developed to manage concurrency issues and their details are explained in Section 2. 
 
Since different transactions obviously have different characteristics and requirements, it is desirable that the DBMS 
should provide a range of locking granularities (Pollari, Soisalon-Soininen  & Ylonen, 1996).  The term ‘granularity’ 
refers to the size of the object that can be locked. The objective of this paper is to develop a feasible locking model 
for an object-oriented database system (Norvag, Sandsta & Bratbergsengen, 1997), which overcomes the 
shortcomings of other locking models while retaining their advantages.  The proposed model uses a new structure 
against B+ trees (Bertino, 1994) which are mostly used as an indexing structure to make efficient querying on 
objects.  
 
 The remainder of the paper is organized as follows: Section 2 is devoted to issues relevant to concurrency control. 
In Section 3, we describe the architecture for concurrency control. Section 4 shows the results of evaluating the 
performance of the algorithm.  Finally, in Section 5 we present the conclusions. 
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2  RELATED WORK  
 
Database systems frequently use indexes to access data.  These systems typically operate at a high level of 
concurrency and, as the transactions have a high probability of accessing an index, it is necessary to ensure that 
concurrent access to indexes is not a bottleneck in the system.  B+ trees are the most common dynamic index 
structures (Tao & Papadias, 2002) in database systems. The following algorithms have been developed to take care 
of the concurrent access of an object in object oriented databases. 
 
Bayer-Schkolnick Algorithms (Srinivasan & Carey, 1993): All operations that get an X lock on the root, lock-
couple their way to the leaf using X locks and then release the locks at higher levels whenever a safe node is 
encountered.  This strategy ensures that when an update operation reaches a leaf, it holds X locks on all pages in its 
scope and  there are no locks on any other index nodes.  Updates and reads whose scopes do not interfere can thus 
execute concurrently.  However, a considerable number of conflicts such as the non-availability of a node and 
deadlocks may be caused at higher-level nodes due to the use of X locks. 
 
Locking model in ORION (Thangaraj, Kuppuswami, Prasanna & Paul, 1999): The locking model in ORION is 
based on Gray’s hierarchy locking model.  Two level hierarchies are used to model the lockable granules in Object 
Oriented databases.  A coarse granule is at the class level and a fine granule is  at the instance level.  The instance 
objects in an ORION system are locked only in S or X mode.  Class objects can be locked in S, X, IS, IX, or SIX 
modes. 
 
B+ tree concurrency control algorithm (Lee & Liou, 1996): This method does not  use all the lock modes but only 
the IS, IX, SIX and X locks.  The first three locking modes are used in a hierarchical locking protocol. The X lock 
mode is the traditional lock mode.  This algorithm can be improved by considering every index page as an 
independently lockable item instead of locking the entire tree. 
 
3 THE PROPOSED MODEL 
 
The model named as Arumugam-Thangaraj Concurrency Model (ATCM), is an integrated model supporting both 
inheritance and aggregation hierarchies  The ATCM model (in Figure 1) is an improved version of the  model  
proposed by Thangaraj et al, (1999) and Thangaraj & Sujatha (2001). The additional features of the data structure of 
the ATCM model bring efficiency when compared with B+ tree models.  It consists of two indexes, namely primary 
and auxiliary indexes. Both indexes use the data structures with a combination of signatures, hash tables and 
B+trees.   
 
The primary index is organized on the key to be indexed and it consists of a hash table, signature and B+trees.  Each 
bucket in the hash table has a signature pattern (Tao & papadias, 2002) and a pointer to a B+ tree. The signature is a 
bit pattern that has a collection of n bits, which indicates the type of lock on a particular object. The columns in the 
pattern matrix are used to represent S, X, IS, IX, SIX locks and availability of the object. A bit corresponding to a 
class in the bit map is set if and only if there is at least one object that belongs to that class having the key value K.  
During access, the objects availability and types of lock on the object can be determined easily.  Any effective 
hashing function can be used to hash the given key into the hash table and hence into the corresponding B+ tree. 
 
The leaf node in the primary B+tree has the format shown in Figure 1.  It consists of the classid, record length, key 
value, class directory and signature having instances with the key value in the indexed attribute, their lock details 
and the offset where the object identifiers (OIDs) of the classes are stored.  The remaining part of the node consists 
of the number of OIDs in each class and the OID along with the pointer to the corresponding object in the auxiliary 
index.   
 
An auxiliary index is maintained for all objects except for those that belong to the root class and its subclasses.  The 
auxiliary index also consists of a hash table, signature patterns and B+ trees.  Every entry in the hash table has a 
signature pattern that indicates the availability of the object and a  pointer to a B+ tree.  Any effective hashing  
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technique can be used to hash the OID of the object to the hash table and hence to the corresponding B+ tree.     The 
format of a leaf node in the auxiliary B+ tree is shown in Figure 1.  It consists of the OID of the object, the record 
length (the number of  parent OIDs),  a pointer to the primary record and list of its parents. 
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Figure 1.  ATCM architecture. 
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3.1 Operations 
 
The proposed model facilitates operations like reading an object, writing an object and updating the contents of an 
object. The following algorithms describe how each operation is carried out: 
 
a) Algorithm  : Read 
 Data structure  : See Figure 1 
 Input   : search value K 
 Output   : object 

 
Steps : 

  Hash the key K, find the relevant bucket in primary hash table 
  If the K is in Bit matrix  and  S bit =1 and not IX bit =1 
      { 
  func find ( nodepointer, search value K) 
  { 
  if *nodepointer is a leaf 
                 Check the signature for the type of lock on the class 
                 Return the object. 
  else 
   if K < K1 then return find(P0, K) 
    
   else 
 
    if  K >= Km  then return find ( Pm, K)  
     //m = number of entries 
    else 
     Find i such that Ki <= K <= K i+1 
   
     Return find (Pi, K) 
  } 
  find the class directory in the  primary record node 
  check for the signature  
  retrieve  the object. 
       } 
 
b)  Algorithm  : Update 
 Data structure  : See Figure 1 
 Input   : Key  K, V new value 
 Output   : updated object 
   

Steps : 
  Hash the key K, find the relevant bucket in auxiliary hash table 
  If the K is in Bit matrix and X = 0  
  { 
     set the corresponding bit in the matrix 
     func modify (value V, pointer P) 
      { 
       find(node pointer, search value K) 
        find the leaf node L that contains value K 
        find the primary record using the pointer 
        using class directory  access the OID and  modify with V 
      } 
  } 
 
In the case of B+ tree model the tree is searched to find a particular object but in the ATCM case, the signature 
pattern helps the user to identify the availability of an object and the type of lock on that object.  
 
3.2 Locking request scheduling  
 
The set of all requests for a particular object is kept in a queue and sorted by a type of fair scheduler.  A fair 
scheduler must guarantee that no particular transaction is blocked indefinitely.  Most of the granted requests are  
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placed in a queue called the granted buffer. Even though the First-Come-First-Served technique is simple and fair 
for scheduling requests, it fails to maximize the degree of concurrency.  So, a dual-queue scheduling (Lee & Liou, 
1996) scheme is used in our ATCM model. 
 
4 PERFORMANCE ANALYSIS 
 
This section provides experimental results of the performance of the ATCM model at accessing objects 
concurrently.  The experiments were designed to answer the following questions:   
 

• How good is the performance of the ATCM model compared with the B+ tree model ? 
• What is the improvement achieved by this new model? 
 

The ATCM model was implemented using C++ in Windows.  The experiments were performed on Pentium 
machines using a data set of 10 million objects with a uniform distribution of search keys (ie. OID). The primary 
performance metric used was the miss ratio (fraction of transactions that miss their deadlines) and  was calculated as 
             number of transactions missing deadline 

miss ratio    = 
              total number of transactions arriving into the system 
It is found that the miss ratio is very minimal in our model because of the introduction of dual-queue scheduling. 
 
In our experiments, three factors were varied: the workload (the percentage of searches and updates), the system 
(number of CPUs and disks) and the structure of the tree (the fan-out and the number of keys).  These factors 
determine the data and resource conflict levels of the system. The parameters used in our experiments are given in 
Table 1. 
 

Table 1 : Simulation parameters 
Nc                Number of CPU 
Nd                Number of disk 
Dsk time      Min: 0 msec; Max:30 msec 
Lock time    0.05 
Fanout         Number of index entries per page 
Mpl             Multiprogramming level 

 
 
It is essential to study the performance of these models when executing  requests for reading and updating an object. 
As the ATCM model distributes objects uniformly among the B+ trees in various buckets, carrying out concurrent 
request for various operations is effective. Accessing all the objects through a single root path is a major drawback 
of the B+ tree model.  The following graphs show the outcome of the experiments when read and update operations 
are done  on objects using the two models: 
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Figure 2 shows the read operation in the indexing structures 
 
 
 
The graph in Figure 2 shows the performance of the two models when applying read operation on a particular 
object.  The new model performs well compared to the B+ tree  model.Figure 3 shows the performance of these two 
models on update operation. 
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Figure 3  shows the update operation in the index structures 
 
The performance of the two models were evaluated when multiple transactions concurrently access  an object for a 
particular operation.  In Figure 4, we present the result of the concurrent read operations by multiple transactions 
and it can be seen that ATCM model performs better than B+ tree model. 
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Figure 4 shows the concurrent read operation in the index structure 
 
By supporting a full set of lock modes for classes, ATCM has a low overhead on locking classes.  It also gains  a 
higher degree of concurrency by applying  both the techniques of hierarchical locking on composite objects and a 
dual queue-scheduling scheme.  These results state that the proposed ATCM is quite an efficient locking model with 
a higher degree of concurrency. 
 
 
5 CONCLUSION 
 
In this paper, a new model is proposed to control the concurrent access of objects in an object database.  ATCM 
model uses a signature pattern, hash table and B+ trees. This paper builds upon  previous work on locking strategies 
in object databases. Due to some fundamental differences between B+ tree and ATCM model architectures, the 
algorithms developed for B+ tree model do not provide a feasible solution for concurrent access. Motivated by the 
limitations of the previous approach, we have developed a new granular locking approach suited for concurrency 
control in OODB.  This model provides a high degree of concurrency and has a low lock overhead.  Our 
experiments have shown that the proposed model works well under various system loads and significantly 
outperforms the B+ tree model for small to medium sized data sets. This work can further be extended towards 
range queries and concurrent access in distributed objects. 
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