
RESEARCH PAPER

CORRESPONDING AUTHOR:
Vinicius M. A. Souza

Graduate Program in 
Informatics, Pontifícia 
Universidade Católica do Paraná 
Rua Imaculada Conceição 
1155, Curitiba, PR, Brazil

vinicius.mourao@pucpr.br

KEYWORDS:
mosquitoes; malaria; 
time-series classification; 
mid-infrared spectroscopy; 
machine learning; deep 
learning

TO CITE THIS ARTICLE:
Castro, LGM, Costa, HV and 
Souza, VMA 2024 Time-Series 
Mining Approaches for Malaria 
Vector Prediction On Mid-
Infrared Spectroscopy Data. 
Data Science Journal, 23: 25, 
pp. 1–21. DOI: https://doi.
org/10.5334/dsj-2024-025

Time-Series Mining 
Approaches for Malaria 
Vector Prediction On Mid-
Infrared Spectroscopy Data

LUCAS G. M. CASTRO 

HENRIQUE V. COSTA

VINICIUS M. A. SOUZA 

*Author affiliations can be found in the back matter of this article

ABSTRACT
Malaria is an infectious disease caused by the Plasmodium parasite transmitted to 
humans by the bite of infected female Anopheles mosquitoes. The disease remains 
a major cause of child mortality globally and caused more than 600,000 deaths 
in 85 countries only in 2022, predominantly affecting the African region. Recent 
discussions point out that climate change is expanding the geographical distribution 
of mosquitoes, accelerating the malaria burst in areas free from outbreaks. Traditional 
vector control relies on chemical methods (e.g., insecticides), but effective control 
implementation requires accurate and cheap mosquito population monitoring and 
longevity estimates. This study investigates using mid-infrared spectroscopy (MIRS) 
data as input for efficient time-series classification methods to predict the species 
and age of malarial mosquitoes. Unlike previous studies using traditional machine 
learning, our comprehensive evaluation includes 14 algorithms from four time-series 
mining approaches, such as feature-based, interval-based, convolutional-based, and 
deep learning methods. These methods consider the particularities of time series, such 
as temporal dependencies and correlations between observations. Results indicate 
that the deep learning algorithm InceptionTime achieves 97% species identification 
accuracy and 83% age prediction accuracy, outperforming the traditional methods. 
This research contributes to the field by highlighting the effectiveness of time-series 
mining approaches for malaria vector control using spectroscopy. As malaria continues 
to pose a significant threat, these advancements contribute to developing innovative 
and efficient tools for malaria control strategies.
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1 INTRODUCTION
Malaria is one of the leading causes of death in children. According to data from the Institute 
of Health Metrics and Evaluation (IHME), malaria is responsible for 12% of all child deaths.1 
Globally, in 2022, there were an estimated 249 million malaria cases and 608,000 deaths in 
85 endemic countries (WHO 2023). Malaria disproportionately affects the most marginalized 
populations. In 2022, the Africa region was home to about 94% of all malaria cases (233 
million) and 95% of deaths (580,000). Four countries accounted for just over half of all malaria 
deaths worldwide: Nigeria (26.8%), the Democratic Republic of the Congo (12.3%), Uganda 
(5.1%), and Mozambique (4.2%) (WHO 2023).

This infectious disease spreads to humans through the bite of a female infected mosquito of 
the Anopheles genus. The mosquito transmits a parasite of the Plasmodium group that enters 
the victim’s blood system and travels into the person’s liver, where the parasite reproduces. 
Once in the liver, the Plasmodium parasite undergoes further development, transforming into 
a form capable of infecting red blood cells. This intricate life cycle within the human host leads 
to a recurrent cycle of symptoms, including fever, chills, and anemia. The infection can become 
severe, causing organ failure and, in extreme cases, leading to death if not promptly diagnosed 
and treated.

Mosquitoes’ reproduction and spatial distribution of adults are strictly related to climatic factors 
that can influence the behavior and survival of species (Cella et al. 2019). Mosquitoes are 
prevalent in tropical and subtropical regions. However, the increases in temperature, humidity, 
and rainfall caused by climate change are helping to proliferate the mosquito population 
at higher altitudes regions (Caminade et al. 2014). This environmental change is widening 
the geographical distribution of malaria, allowing it to emerge in new locations that had 
previously not supported mosquito populations (Lubinda et al. 2021). Additionally, increases in 
temperatures at lower altitudes, where mosquitoes and malaria are already prevalent, allow 
it to develop malaria faster and increase transmission rates (Cella et al. 2019; Lubinda et al. 
2021).

Combating and controlling malaria requires data-driven strategies and innovative tools for more 
efficient and effective solutions. As data-driven solutions, we can mention an outbreak early 
warning system that predicts malaria outbreaks based on climatic factors (e.g., temperature, 
precipitation, wind speed, solar radiation) in a region using machine learning algorithms (Modu 
et al. 2017). An example of an innovative tool is the intelligent trap that can capture target 
species (e.g., Aedes or Anopheles mosquitoes) according to their wing beat frequency measured 
by optical sensors (Souza 2017; Souza et al. 2020).

Traditionally, most insect vector control comprises chemical methods (e.g., adulticides applied 
as space sprays outdoors and indoors or insecticidal nets fitted in houses as curtains or screens) 
that target adult mosquitoes. These methods intend to reduce the densities, longevity, 
and biting behavior of mosquitoes (Ritchie et al. 2021). However, the effectiveness of such 
methods requires understanding the local population’s abundance and behavior of the vector 
mosquitoes. Thus, the accurate estimation of mosquito populations and their longevity is 
essential for assertive employment of the control measures and evaluating their effectiveness 
over time. The average age of a mosquito population is the most important determinant of 
vectorial capacity and the likelihood of disease transmission (Johnson et al. 2020).

Population density estimation depends on identifying mosquito species and age, which requires 
costly or time-consuming methods. Most methods are based on regularly collecting and 
manually counting mosquitoes from traps such as CDC light or CO2 traps (Sriwichai et al. 2015). 
For age estimation, an entomology expert dissects the mosquito ovaries and examines the 
presence and number of eggs (Johnson et al. 2020). However, some species, such as Anopheles 
gambiae and Anopheles arabienses, two of the most prevalent malaria vectors in Africa, can be 
distinguished only by molecular analysis due to their morphological similarities (Santolamazza 
et al. 2008).

Molecular analysis methods, such as Polymerase Chain Reaction (PCR), are time-consuming 
and can only be carried out on a subsample of insects trapped in a region. Recently, González 

1	 https://ourworldindata.org/malaria.

https://ourworldindata.org/malaria
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Jiménez et al. (2019) have shown that mid-infrared spectroscopy can be faster and more cost-
effective than traditional or PCR-based methods. In this technique, mosquitoes are subjected 
to the emission of infrared light, and the absorption of this light by mosquito tissue generates 
spectral data in which machine learning algorithms can recognize complex relationships that 
distinguish species and age. Each data point in the spectrum corresponds to the intensity of the 
measured signal at a specific wavelength.

The spectral data generated by the mid-infrared spectroscopy can be considered a time 
series, that is, a real-valued sequence of continuous data in which the observations are highly 
correlated. While spectral data from mid-infrared spectroscopy is not a traditional time series in 
the temporal sense, it is a real-valued sequence of measurements across different wavelengths. 
The observations within the spectrum can be highly correlated due to the underlying physics 
of molecular vibrations.

Previous studies using mid-infrared spectroscopy data for species and age prediction of malarial 
mosquitoes consider traditional machine learning algorithms (González Jiménez et al. 2019; 
Mwanga et al. 2019; Siria et al. 2022). An essential assumption of these algorithms is that 
the features of an example are independent. However, the features of time-series data are a 
sequence of observations that have temporal dependencies and correlations, which means that 
the value of a variable at one time point is influenced by its past values. Besides, this data have 
characteristics such as peaks, valleys, trends, and periodic patterns. Thus, a supervised model 
induced for this data must consider such data particularities. In this direction, we present and 
investigate the performance of time-series mining algorithms, a category of algorithms that 
take into account the sequential nature of the observations and the temporal dependencies.

This work comprehensively evaluates the state-of-the-art classification methods for time-
series data in malarial vector species identification and age prediction. Specifically, we consider 
14 algorithms from four time-series mining approaches: i) feature-based, ii) interval-based, iii) 
convolutional-based, and iv) deep learning. Our results show that the deep learning algorithm 
InceptionTime is an accurate method able to identify 97% of species correctly and predict the 
age of insects with 83% accuracy, outperforming the current results from the literature using 
traditional machine learning algorithms such as a SVM trained with specific wavenumbers from 
the spectroscopy or convolutional neural networks. Compared with complex deep learning 
methods, the convolution-based algorithm Rocket presents competitive results with a low 
computational cost. In addition, our results reinforce the power of mid-infrared spectroscopy 
data as input for supervised learning algorithms to distinguish species with morphological 
similarities correctly.

We organized this work as follows: Section 2 discusses the related work. Section 3 introduces 
the material and methods employed, such as mid-infrared spectroscopy, data description, 
preprocessing steps, and an overview of state-of-the-art time-series classification approaches 
and algorithms. The results and analysis are presented in Section 4. The limitations and 
advantages of each approach are discussed in Section 5. Finally, Section 6 presents our 
conclusions.

2. RELATED WORK
Researchers have been investigating how to analyze insect behavior and identify species 
automatically using different techniques, technologies, and approaches for decades. According 
to Mankin et al. (2011), the first works aimed to identify the presence or absence of insects 
based on acoustic or vibrational monitoring for pest control, such as proposed by Main in 1909. 
In 1945, Kahn, Celestin, and Offenhauser used microphones to record the behavior of different 
insect species and distinguished males from females according to their noise. In 1991, Moore 
proposed an optical sensor to record the variation of the light caused by the insect crossings 
through the sensor, being able to automatically identify two species of Aedes genus using an 
artificial neural network. More recently, many studies have focused on improving electronic 
devices based on LED, laser or infrared light to measure the wing beat frequency of insects for 
their classification into species using supervised machine learning algorithms (Batista et al. 
2011; Fernandes, Cordeiro & Recamonde-Mendoza 2021; Potamitis & Rigakis 2016; Souza et 
al. 2020).
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Although using information from insect wing beats extracted by optical or acoustical 
sensors is a promising approach for species identification, it is notable that insects’ age and 
environmental conditions, such as temperature and humidity, affect each species differently, 
making the classification difficult in the field and requiring costly and large datasets built under 
varying conditions (Parmezan et al. 2021; Souza et al. 2020). Furthermore, these techniques 
may be efficient for distinguishing species from different genera (e.g., Aedes and Anopheles), 
but may not be accurate for distinguishing similar species of the same genus. In this direction, 
species identification based on molecular analysis is a precise and invariant technique to 
those conditions. However, molecular analysis techniques such as Polymerase Chain Reaction 
(PCR) are time-consuming and require repeated supply of reagents, making them expensive 
and unreliable in poorly resourced settings (Mwanga et al. 2019). Recent studies have shown 
that non-molecular techniques such as infrared spectroscopy are effective and a cheaper 
alternative, achieving competitive results to those obtained by molecular analysis. Thus, we 
discuss the recent advances focusing on MIRS methods for mosquito analysis.

González Jiménez et al. (2019) use mid-infrared spectra of mosquitoes to characterize both age 
and species of African malaria vector species Anopheles gambiae and Anopheles arabiensis. The 
study evaluated four traditional supervised machine learning algorithms: k-Nearest Neighbors, 
Logistic Regression, Support Vector Machines, Random Forests, and gradient-boosted trees with 
XGBoost. The algorithms were trained with 17 features regarding specific wavenumbers from 
the spectra. In the experiments on a dataset comprising 2,536 examples, the authors reported 
82.6% accuracy for species identification using Logistic Regression. The authors also predicted 
the age of each species from 1 to 15 days and reported results ranging from an average of 15% 
to 97% for Anopheles gambiae and 10% to 100% for Anopheles arabiensis.

Mwanga et al. (2019) evaluated seven traditional machine learning algorithms (k-Nearest 
Neighbors, Logistic Regression, Support Vector Machines, Random Forests, XGBoost, Naive 
Bayes, and MultiLayer Perceptron) to identify blood meal sources in malaria vector using mid-
infrared spectroscopy. The algorithms accurately distinguish between vertebrate blood meals 
in the guts of Anopheles arabiensis mosquitoes. The spectra data were used to classify blood 
meals into one of four host species classes: bovine, chicken, goat, and human. The Logistic 
Regression classifier obtained the best results with 98.4% overall accuracy, being 96% for goat 
blood, 97% for bovine blood, and 100% for chicken and human blood. The results were obtained 
from a dataset with 2,000 examples in which 90% was used for training and 10% for testing.

Siria et al. (2022) employ a deep learning model to predict the age and species of Anopheles 
gambiae, Anopheles arabiensis and Anopheles coluzzii mosquitoes using MIRS data. Specifically, 
the authors consider a Convolutional Neural Network (CNN) composed of five 1D convolutional 
layers comprising 16 filters each to capture complex local features in the spectra, followed 
by fully connected layers to capture the correlation of the extracted features across the 
entire spectra. The model obtains 95.33% accuracy for species identification and 95% for age 
prediction, not comparing the results against other deep learning algorithms or traditional 
supervised machine learning. The results were measured in a dataset with spectra from 41,151 
female mosquitoes reared in different laboratories in Tanzania and Burkina Faso to guarantee 
variability.

While mid-infrared spectroscopy presents essential advantages over molecular analysis 
techniques, the identification of species, sex, and age of insects requires machine learning 
algorithms tailored for MIRS data. As noted in the discussion of related work, much of the 
work considers traditional machine learning algorithms that do not address the unique aspects 
of time series. Thus, the literature lacks a comprehensive comparison that considers suitable 
methods, as carried out in this work.

3. MATERIAL AND METHODS
3.1 MID-INFRARED SPECTROSCOPY

Spectroscopy is a technique that investigates the interaction between matter and 
electromagnetic radiation (e.g., light), focusing on the relationship between the radiation’s 
wavelength or frequency and its interaction with the material. The method involves measuring 
and analyzing the spectrum of absorbed radiation by a substance under analysis.
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Infrared spectroscopy is used in entomological surveillance to identify mosquito species by 
quantifying how their cuticles absorb infrared light. Most works generally consider near-infrared 
spectroscopy (NIRS) for examining insects, in which the spectrum is restricted from 10,000 to 
4,000 cm–1 (Barbosa et al. 2018; Johnson 2020; Mayagaya et al. 2009). Although efficient in 
identifying insect species, age prediction using NIRS is still challenging (Siria et al. 2022). In 
order to obtain better age predictions, researchers have investigated the use of mid-infrared 
spectroscopy (MIRS) (González Jiménez et al. 2019). MIRS considers the absorption spectrum 
in the mid-infrared region from 400 to 4,000 cm–1. In Figure 1, we illustrate the mid-infrared 
absorption spectra obtained by Anopheles gambiae and Anopheles arabienses mosquitoes, 
studied in this work.

As we note in Figure 1, the data generated by MIRS are time series, that is, real-valued continuous 
data with a length of 3,600 observations. These series are used as input for machine learning 
methods to predict species and age of insects.

3.2 DATA AND PREPROCESSING

Our study considers an MIRS dataset collected by Siria et al. (2022) and publicly available in 
the Enlighten database.2 This dataset contains spectra of 41,151 female mosquitoes aged 
1 to 17 days from the following malaria vector species: Anopheles gambiae (AG), Anopheles 
arabiensis (AA), and Anopheles coluzzii (AC). In order to increase variability, the data was 
collected from mosquitoes with different physiological states and the spectroscopy was 
measured in laboratories in the UK, Tanzania, and Burkina Faso. From this data, we perform 
a set of preprocessing procedures to train supervised algorithms from different approaches to 
predict the species and age of malarial mosquitoes, as discussed in the following.

Initially, we discarded the examples from the Anopheles coluzzii species to reduce the class 
imbalance since this species represents only 3% of the examples, making the steps of training 
and testing classifiers more difficult. Thus, our experiments consider 39,716 examples from two 
species, which we split into 70% for training and 30% for testing. Since we have two tasks (i.e., 
species and age prediction), we split the data into stratified training and test sets according to 
the labels of each task. For age prediction, we grouped the examples spanning 17 days into 
three age classes: 1–4, 5–10, and 11–17 days. Figure 2 illustrates the class distribution for both 
tasks considered in our holdout evaluation.

We have noted that the original data have varying sampling rates, with examples from 1,701 
to 14,932 observations due to the different equipment used in the analysis. However, we need 
a fixed length to use the data as input to train the machine learning models. In this direction, 
we downsampled all examples to have 1,000 observations after applying an anti-aliasing 
filter (Broersen & de Waele 2000). Such a dimensionality reduction also contributes to the 
computational cost spent on model training or feature extraction.

Finally, the last preprocessing step was the normalization to guarantee that all examples are 
in the same range of values. Without normalization, observations with larger magnitudes or 
variances may dominate the learning process, leading to biased model training and inaccurate 
classification results. Normalization also reduces the impact of outliers.

2	 https://github.com/SimonAB/DL-MIRS_Siria_et_al.

Figure 1 Example of mid-
infrared spectroscopy obtained 
from two insect species.

https://github.com/SimonAB/DL-MIRS_Siria_et_al
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In this phase, we employed z-normalization (Lima & Souza 2023). This method rescales the 
time-series values to have zero mean and standard deviation close to one. The normalized 
values X’ of a time series X are obtained according to Equation 1, in which μ and σ are, 
respectively, the mean and standard deviation of a series with n observations.

–
= i

i
X

X
m

s
¢

� (1)

In Figure 3, we illustrate the same time series previously shown in Figure 1 after resampling to 
1,000 observations and z-normalization, responsible for changing both horizontal and vertical 
original axes.

3.3 TIME-SERIES CLASSIFICATION

A time series X = (x1, x2,…,xn), such as the MIRS data previously illustrated in Figure 3, is an 
ordered sequence of n real-values xi measured at equal time intervals, in which xi represents 
a value observed at time i. In the classification task, we aim to assign a class label ŷ (e.g., AG 
or AA) to an unknown query time series using a supervised model built with a labeled training 
set 1 1 2 2= {( , ), ( , ), , ( , )}N NX Y X Y X Y¼  of N time series where Yi denotes the target variable for 
each Xi.

Since the features of time-series examples are ordered and correlated, classification models for 
this data differ from traditional models in which the features are independent. In the following, 
we introduce the main approaches for time-series classification based on the categories 

Figure 2 Class distribution into 
training and test sets for the 
tasks of species prediction 
(top) and age prediction 
(bottom). For species prediction, 
AA represents the species 
Anopheles arabiensis and AG 
represents Anopheles gambiae.

Figure 3 MIRS data after 
the preprocessing steps of 
dimensionality reduction and 
normalization.
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discussed in Bagnall et al. (2017) and other recent proposals (Dempster, Schmidt & Webb 2023; 
Middlehurst et al. 2021).

3.3.1 Feature-based

Feature-based classifiers consider a preliminary step of extracting descriptive statistics from the 
time series to use them as features to train conventional machine learning algorithms, such 
as Random Forests, Support Vector Machines (SVM), and XGBoost. The process is illustrated in 

Figure 4 given an input time series. The most straightforward approach is to use the raw data 
comprising the 1,000 observations of the time series as descriptive features for each example.

Another strategy is to consider a subset of values as features instead of all observations. For 
example, González Jiménez et al. (2019) consider the values observed at 17 specific positions 
of the MIRS time series that represent the absorption of pre-selected wavenumbers. These 
wavenumbers contain well-defined intense peaks, which are easily identifiable as coming from 
the chemical components of the cuticle, being discriminant to identify the species. Figure 5 
illustrates the positions of such wavenumbers in an MIRS time series.

For more general time-series classification problems, we can consider statistical features in 
the time domain such as mean, maximum, minimum, standard deviation, mean absolute 
deviation, skewness, and kurtosis or structural features such as trend, seasonality, periodicity, 
and self-similarity. Besides, we can transform the series from time to frequency domain by 
Discrete Fourier transform (DFT) to extract features such as spectral irregularity, flux, roll-off, 
and energy (Silva et al. 2015). We can also transform the time series to a two-dimensional 
representation, such as a Recurrence Plot, then extract statistical descriptive features related 
to texture (Souza, Silva & Batista 2014).

Highly Comparative Time-Series Analysis (HCTSA) is a library that computes over 7,700 
features from time series (Fulcher & Jones 2017). Recently, Lubba et al. (2019) introduced the 
22 CAnonical Time-series CHaracteristics (Catch-22), which identified a reduced subset with 
the 22 most discriminatory features from the HCTSA that provides competitive results for 
different time-series problems. Among the selected features, we can highlight: longest period 
of consecutive values above the mean, time intervals between successive extreme events above 
and below the mean, first minimum of autocorrelation function, centroid of the Fourier power 
spectrum, change in correlation length after iterative differencing, periodicity, among others. It 

Figure 4 General process of 
the feature-based approach.

Figure 5 Wavenumbers 
selected as features to train 
supervised machine learning 
algorithms.
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is noteworthy to mention that such features are suitable for the particularities of time series 
and implicitly consider the temporal dependence of the observations.

In this work, we also combine the 22 features computed by Catch-22 with the 17 values 
observed at specific wavenumbers, composing a new feature set with 39 descriptive features 
to train the classifiers.

3.3.2 Interval-based

While feature-based methods extract features from the whole time series, interval-based 
methods select one or more intervals (i.e., contiguous subsequences) of the series to derive 
features. An advantage of this approach is to discard regions of the series with noise that 
could confound the classifier through irrelevant features. For example, in Figure 6, we show 
five examples from the same class (AG) and highlight two different regions. The region on the 
left represents a promising candidate interval to extract discriminatory features. On the other 
hand, the region on the right side contains a significant variation between the examples of the 
same class, and the extraction of features in this interval can confound the classifier.

For a given time series with n observations, there are ( –1)
2

n n  possible intervals, and a challenge is 
finding the best interval. In general, these algorithms generate different random intervals and 
classifiers on each one, ensembling the resulting predictions.

The most representative interval-based algorithms are Time Series Forest (TSF) (Deng et al. 
2013), Canonical Interval Forest (CIF) (Middlehurst, Large & Bagnall 2020), and interval-based 
Diverse Representation Canonical Interval Forest (DrCIF) (Middlehurst et al. 2021).

TSF is an ensemble of tree classifiers based on Random Forest (Breiman 2001), built on the 
summary statistics of randomly selected intervals from the time series. For each tree, k 
intervals with a random start position and length are randomly selected. The mean, standard 
deviation, and slope are extracted from each interval and concatenated into a feature vector 
with 3k length. These features are then used to build a tree, which is added to the ensemble. A 
TSF predicts a testing instance as the majority class according to the votes from all time-series 
trees in the ensemble. TSF considers 500 trees and n  random intervals by default.

CIF classifier is an adaptation of TSF that embeds the Catch-22 features. The classifier considers 
the three TSF features along with the 22 features from Catch-22. In order to add diversity to the 
ensemble, eight of the 25 features are randomly chosen for each tree.

DrCIF is an extension of CIF that extracts features from multiple intervals taken from the original 
series, the first-order difference series, and the periodograms of the whole series. Seven basic 
summary statistics are extracted from the interval of any of the three representations: mean, 
standard deviation, slope, median, interquartile range, minimum, and maximum. DrCIF adds 
the Catch-22 features to form a set of 29 features. As performed by CIF, eight of the 29 features 
are randomly selected for each tree.

3.3.3 Convolution-based

The convolution-based methods are computationally efficient classifiers that use many 
random convolutional kernels to extract features from the time series and use them as input 

Figure 6 Example of promising 
and unpromising intervals 
on MIRS data of Anopheles 
gambiae.
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for linear classifiers such as logistic regression. For time series, a kernel is a vector of weights 
(e.g., [–1, 0, 1]) convolved with a time series through a sliding dot product operation to produce 
a feature map. Such convolution kernels at different and random lengths and weights can 
capture complex patterns and shapes to discriminate the series. The main methods of this 
category are Rocket (Dempster, Petitjean & Webb 2020) and MiniRocket (Dempster, Schmidt & 
Webb 2021).

Instead of learning a convolutional kernel as performed by convolutional neural networks, 
Rocket (RandOm Convolutional KErnel Transform) generates more than 10,000 random 
convolutional kernels that capture relevant features from time series when combined. Each 
one-dimensional kernel with random weights, length, bias, dilatation, and padding slides 
through a time series, performing the dot product and producing a transformed time series 
named feature map. Rocket computes two aggregate features from this transformed time 
series by a pooling operation: the maximum value (i.e., global max pooling) and the proportion 
of positive values (PPV). Figure 7 illustrates the whole feature extraction process by convolution 
considering a single kernel. Since Rocket produces two features per kernel (MAX and PPV) and 
there are 10,000 random kernels, the algorithm produces 20,000 features per time series. 
These features are then used to train a linear classifier, such as ridge regression or logistic 
regression using stochastic gradient descent.

A limitation of Rocket is the large number of kernels required to make it accurate. Besides, 
Rocket is non-deterministic due to the use of random kernels. In this direction, MiniRocket 
(MINImally RandOm Convolutional KErnel Transform) follows the main steps of Rocket, reducing 
the computational cost and removing the randomness by using a small and fixed set of kernels. 
MiniRocket uses kernels of length 9, with weights restricted to two values, and computes only 
PPV from the transformed time series. Thus, the algorithm uses 10,000 features to train a linear 
classifier.

3.3.4 Deep learning-based

Conventional machine learning algorithms such as SVM or Random Forests learn a predictive 
model from handcrafted features extracted from data, as discussed in Section 3.3.1, requiring 
domain experts to design adequate extractors according to the problem. On the other hand, 
deep learning algorithms consider an end-to-end approach in which the entire predictive 
task is addressed as a single and integrated system without the need for explicit feature 
engineering. These algorithms receive raw data as input and generate the answer as output 
after transforming the data into multiple levels of representations that contain relevant and 
discriminative features (LeCun, Bengio & Hinton 2015). In general terms, a deep neural network 
is a composition of multiple hierarchical parametric functions (in practice, the layers of a 
network) where each layer is a different representation of input data (Sarker 2021).

While deep neural networks, commonly referred to as deep learning, have a well-established 
track record in computer vision applications like face recognition (Lawrence et al. 1997) and 
object detection (Zhao et al. 2019), their application to one-dimensional data as time-series 
classification problems has only gained prominence in recent times, as demonstrated by the 

Figure 7 Process of kernel 
convolution for feature 
extraction in which two 
features (MAX and PPV) 
are extracted from the 
transformed time series (or 
feature map). Rocket performs 
such a process for 10,000 
random kernels generating 
20,000 features for training a 
linear classifier.
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competitive results discussed in Ismail Fawaz et al. (2019) in a comprehensive comparison 
considering time-series benchmark datasets from different domains.

Currently, InceptionTime Ismail Fawaz et al. (2020) is the state-of-the-art neural network for 
time-series classification. InceptionTime is an ensemble of five deep learning models, each 
one created by cascading multiple Inception modules. The Inception Network is inspired by the 
Inception-v4 architecture Szegedy et al. (2017) and contains two residual blocks in which each 
residual block’s input is transferred via a shortcut linear connection to be added to the next 
block’s input. Following these residual blocks, a Global Average Pooling (GAP) layer averages 
the outputted multivariate time series by the previous layers. The network contains a softmax 
activation function for label prediction in the last layer.

Previously to the proposal of InceptionTime, Ismail Fawaz et al. (2020) showed that the 
Residual Network (ResNet) is a strong deep learning baseline for time series, followed by the 
Fully Convolutional Network (FCN). In this work, we also evaluate the performance of the Time 
Convolutional Neural Network (Time-CNN) (Zhao et al. 2017).

FCN is a type of neural network architecture designed for semantic segmentation tasks (e.g., 
image segmentation), where the goal is to label the regions of an image based on its semantic 
category. The use of FCNs for time-series classification was first proposed by Wang, Yan, and 
Oates (2017). The key characteristic of FCNs is that they are composed entirely of convolutional 
layers without fully connected layers at the end, different from a typical Convolutional Neural 
Network (CNN). In the context of time series, a convolution consists of sliding one-dimensional 
filters over the series, enabling the extraction of non-linear discriminant features. Precisely, 
the FCN architecture proposed by Wang, Yan, and Oates consists of three convolutional blocks 
with the filter sizes {128, 256, 128}, where each block contains three operations: a convolution 
followed by batch normalization, and the result is then fed into a Rectified Linear Unit (ReLU) 
activation function. The convolution operation is fulfilled by three one-dimensional kernels with 
the sizes {8, 5, 3} without striding. The output features of the third convolutional block are 
fed into a Global Average Pooling (GAP) layer. Finally, the prediction is produced by a softmax 
function.

ResNet increases the depth of conventional neural networks by introducing residual shortcut 
connections between consecutive convolutional layers (Wang, Yan & Oates 2017). Figure 8 
illustrates the ResNet architecture evaluated in this work (Ismail Fawaz et al. 2019). The 
network contains 11 layers, of which the first nine are convolutional layers, followed by a GAP 
layer that averages the time series across the time dimension. The network has three residual 
blocks followed by a GAP layer and a final softmax classifier with the number of neurons equals 
the number of classes. Each residual block comprises three convolutions whose output is 

Figure 8 Residual Network 
(ResNet) architecture for time-
series classification (Lima & 
Souza 2023).
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added to the residual block’s input and then fed to the next layer. The number of filters for all 
convolutions is 64, with the ReLU activation function. In each residual block, the filter’s length 
is set to 8, 5, and 3 for the first, second, and third convolution.

A standard CNN architecture consists of two main components: i) a feature extraction module 
composed of convolution layers followed by pooling operations to reduce the dimension of 
feature maps, and ii) a fully connected network that receives the previously extracted features 
as input. In the context of time-series classification, the Time-CNN architecture comprises 
two consecutive convolutional layers with 6 and 12 filters, respectively, followed by a local 
average pooling operation of length 3. In this network, the convolutional layers use the sigmoid 
activation function. Time-CNN diverges from the typical CNN in two aspects: firstly, it employs 
the mean squared error (MSE) as the loss function instead of the traditional categorical cross-
entropy, and secondly, the network incorporates a local average pooling operation instead of 
local max pooling.

4. EXPERIMENTAL EVALUATION AND RESULT ANALYSIS
4.1 SETTINGS

We performed the tasks of species and age prediction of malarial mosquitoes using the mid-
infrared spectroscopy data provided by Siria et al. (2022). We split the dataset into training and 
testing sets following the 70/30 ratio. For both tasks, we use classification accuracy to measure 
the performance of our models. This measure represents the ratio of correct predictions to the 
total number of examples in the testing set.

Our evaluation considers 14 machine learning algorithms from four time-series learning 
approaches: i) feature-based, ii) interval-based, iii) convolution-based, and iv) deep learning-
based. In Table 4.1, we show the set of algorithms from each approach and their parameter 
values. For feature-based methods, we found the values by a grid search procedure performed 

APPROACH ALGORITHM PARAMETERS

Feature-based K-Nearest Neighbors (KNN) k = 1, Distance: Manhattan

Logistic Regression (LR) C = 5, Penalty: L1, Solver: linear

Support Vector Machines (SVM) C = 5, Kernel: linear

Random Forest (RF) Estimators: 300, Criterion: entropy

XGBoost (XGB) Estimators: 300, Learning rate: 0.1, Gamma: 
0.1, Max. depth: 7

Interval-based Time Series Forest (TSF) Estimators: 200, Intervals: m

Canonical Interval Forest (CIF) Estimators: 200, Intervals: m

Diverse Representation CIF (DrCIF) Estimators: 200, Intervals: m

Convolution-based Random Convolutional Kernel 
Transform (Rocket)

Kernels: 10000

Minimally Rocket (MiniRocket) Kernels: 10000, Max. dilations per kernel: 32, 
Features per kernel: 4

Deep learning-based Residual Network (ResNet) Residual blocks: 3, Conv. per residual block: 
3, Filters: [128,64,64], Kernel size: [8,5,3], 
Padding: same, Activation: ReLU, Epochs: 
2000

InceptionTime Classifiers: 5, Depth: 6, Filters: 32, Conv. per 
layer: 3, Kernel size: 40, Padding: same, 
Activation: ReLU, Epochs: 1500

Fully Convolutional Network (FCN) Layers: 3, Kernel size: [8,5,3], Filters: 
[128,256,128], Avg. pool size: 3, Padding: 
same, Activation: ReLU, Epochs: 2000

Time Convolutional Neural Network 
(Time-CNN)

Layers: 2, Kernel size: 7, Filters: [6,12], Avg. 
pool size: 3, Padding: valid, Activation: 
sigmoid, Epochs: 2000
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in the training data (Syarif, Prugel-Bennett & Wills 2016). For the remaining algorithms, we 
consider default values.

Since algorithms such as TSF, CIF, DrCif, Rocket, and MiniRocket are unsuitable for non-time-
series data, we categorize these algorithms as non-traditional along the paper. On the other 
hand, algorithms such as KNN, LR, SVM, RF, and XGB used in the feature-based approach are 
categorized as traditional since they can be employed on conventional and time-series data.

For approaches such as feature-based, we trained five algorithms considering the following 
feature sets: i) raw data, in which we consider the 1,000 observations of a time series after the 
preprocessing phase as features, ii) wavenumbers, in which we extract the time-series values 
at 17 representative positions, iii) Catch-22, in which we extracted 22 predictive features and iv) 
Catch-22 + wavenumbers, in which we concatenate the 22 features extracted from Catch-22 
and 17 wavenumbers, composing a feature vector with 39 features. The second option for 
feature sets (wavenumbers) is the same as considered by the related works previously 
discussed. The other feature sets are our attempts to improve the results from the literature.

Given the 14 supervised learning algorithms and feature sets, we have evaluated 29 different 
settings. Figure 9 shows an overview of our experimental setting considering varying approaches, 
feature sets, and supervised learning algorithms.

4.2 SPECIES PREDICTION

The species prediction task evaluated in this work aims to distinguish two species from the 
Anopheles genus. The Anopheles gambiae and Anopheles arabiensis are morphologically 
indistinguishable in the adult stage (Zianni et al. 2013), and both are the most broadly 
distributed and efficient vectors of malaria (Coetzee, Craig & Le Sueur 2000).

We begin our analysis by showing the results of the feature-based algorithms. In Figure 10, 
we show the accuracies obtained by the five algorithms evaluated considering four different 
feature sets. For all machine learning algorithms, we note that the best feature set for this task 
is composed of the 1,000 observations of the time series (i.e., raw data), outperforming the 
wavenumbers as proposed by González Jiménez et al. (2019) in their evaluation with similar 

Figure 9 Overview of the 
varying approaches, feature 
sets, and supervised learning 
algorithms covered in the 
experimental evaluation.

Figure 10 Accuracy of feature-
based classifiers for the 
species prediction.
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MIRS data. Using raw data, Logistic Regression (LR) and SVM are the most accurate classifiers, 
with 93% and 92% of correct predictions, respectively. Besides the performance, it is essential 
to note an advantage of this feature set: the lack of an additional step for feature extraction 
as required by other methods. On the other hand, the use of features provided by Catch-22 
obtained the worst results, varying from 58% (LR) to 72% (RF) of accuracy.

The feature-based is a well-known approach that allows the use of traditional machine learning 
algorithms. However, interval and convolution-based classifiers are well-suited approaches for 
time-series data that still need to be evaluated in the mosquito prediction, as performed in this 
work. In Figure 11, we show the results obtained by both approaches. For the interval-based 
methods, CIF achieved the best result with 90% of accuracy, being surpassed by the best results 
obtained by feature-based algorithms, while the convolution-based method Rocket achieved a 
competitive result of 93%.

Finally, the results of the fourth approach are shown in Figure 12. InceptionTime was the most 
accurate with 97%, followed by ResNet with 96%. Such algorithms presented the best results 
among all approaches. On the other hand, Time-CNN is outperformed by simple algorithms 
such as Rocket and Logistic Regression, requiring more time and costly hardware (i.e., GPU) for 
model training.

Table 1 shows a ranking with the 15 best results for better comparison between the approaches, 
in which we note deep learning and convolutional based methods at the top.

In Figure 13, we show the error distribution between the classes AA (Anopheles arabiensis) and 
AG (Anopheles gambiae) carried out by the best algorithm from each approach. The normalized 
confusion matrix of InceptionTime illustrated in Figure 13d) demonstrates the superior results 
of this algorithm with predictions close to perfect for both species.

4.3. AGE PREDICTION

The ability of female mosquitoes to transmit diseases such as malaria or yellow fever is age 
dependent. Due to the incubation period of the parasites and pathogens that mosquitoes 
transmit, only older mosquitoes are potential vectors of diseases (Dowell, Noutcha & Michel 
2011). Thus, predicting the age of malarial mosquitoes holds significant importance in the 
ongoing efforts to control mosquitoes. Besides, younger mosquitoes are often more susceptible 
to insecticides, making them prime targets for control interventions. For age prediction, we 

Figure 11 Accuracy results 
of interval and convolution-
based classifiers for the 
species prediction.

Figure 12 Accuracy of deep 
learning classifiers for the 
species prediction.
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train our models to distinguish the mosquitos’ age using mid-infrared spectroscopy data in 
three ranges of values: 1–4, 5–10, and 11–17 days.

In Figure 14, we show the results obtained by feature-based algorithms. As well as for species 
prediction, using raw data as a feature set provided the best results. However, the most accurate 
classifier for species prediction (Logistic Regression) did not prove adequate for age prediction. 
Specifically, the XGBoost algorithm achieved the best result with 75% accuracy, followed by 
Random Forest (72%), while Logistic Regression shows results close to 50%. Comparatively, we 
note that age prediction is a more challenging task than species identification.

Table 1 Ranking of algorithms 
from different categories for 
the task of species prediction.

ALGORITHM APPROACH ACCURACY

InceptionTime Deep learning 0.97

ResNet Deep learning 0.96

FCN Deep learning 0.94

Rocket Convolution-based 0.93

LR (raw data) Feature-based 0.93

MiniRocket Convolution-based 0.92

Time-CNN Deep learning 0.92

SVM (raw data) Feature-based 0.92

CIF Interval-based 0.90

XGB (raw data) Feature-based 0.90

TSF Interval-based 0.86

RF (raw data) Feature-based 0.86

DrCIF Interval-based 0.85

KNN (raw data) Feature-based 0.82

RF (Catch-22 + wavenumbers) Feature-based 0.81

Figure 13 Confusion matrix 
obtained by the best 
classifier of each approach 
(i.e., feature-based, interval-
based, convolution-based, 
and deep learning) for species 
classification.
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Figure 15 illustrates the results of interval and convolution-based methods. For age prediction, 
we noted that the interval-based method CIF slightly outperformed the results of rivals with 
76% accuracy.

As well as for species prediction, the deep learning algorithm InceptionTime achieved the 
best result among the approaches, achieving 83% accuracy. Figure 16 shows a performance 
comparison among the deep learning methods. Interestingly, although InceptionTime 
achieved the best result, the other deep learning algorithms showed results inferior to interval 
and convolution-based methods.

In the ranking shown in Table 2 with the best 15 algorithms for age prediction, we note only 
InceptionTime as a deep learning approach at the top, followed by algorithms from the interval, 
convolution, and feature-based approaches.

In Figure 17, we show the normalized confusion matrix of the best algorithm from each 
approach. In these results, we can note that although XGB (raw data) and CIF achieved similar 
accuracies of 75% and 76%, respectively, the algorithms make different mistakes. For example, 
both algorithms concentrate most of their errors in predicting the age of younger insects (i.e., 
1–4 days). However, XGB makes more wrong predictions for insects comprising 5–10 days, 
while CIF makes mistakes for the 11–17 days range. For InceptionTime, the errors vary from 
0.15 to 0.18 for all age grades, being an adequate algorithm for age prediction.

Figure 14 Accuracy of feature-
based classifiers for the age 
prediction.

Figure 15 Accuracy results 
of interval and convolution-
based classifiers for the age 
prediction.

Figure 16 Accuracy of deep 
learning classifiers for the age 
prediction.
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5. DISCUSSION
In the previous section, we analyzed the results of algorithms from different approaches. From 
this analysis, we can conclude that time series mining classifiers such as InceptionTime, Rocket, 
and CIF outperformed the traditional machine learning approach previously evaluated in the 
literature, such as an SVM model induced with specific wavenumbers from the spectroscopy 
data as features. However, it is essential to understand the limitations of each approach for 
their employment in practice. Therefore, we discuss the advantages and limitations of each 
approach to guide this choice.

ALGORITHM APPROACH ACCURACY

InceptionTime Deep learning 0.83

CIF Interval-based 0.76

Rocket Convolution-based 0.75

XGB (raw data) Feature-based 0.75

MiniRocket Convolution-based 0.74

TSF Interval-based 0.74

ResNet Deep learning 0.73

RF (raw data) Feature-based 0.72

FCN Deep learning 0.67

RF (Wavenumbers) Feature-based 0.67

Time-CNN Deep learning 0.66

DrCIF Interval-based 0.66

XGB (Catch-22 + wavenumbers) Feature-based 0.66

RF (Catch-22 + wavenumbers) Feature-based 0.64

KNN (raw data) Feature-based 0.63

Table 2 Ranking of algorithms 
from different categories for 
the task of age prediction.

Figure 17 Confusion matrix 
obtained by the best classifier 
of each approach (i.e., 
feature-based, interval-based, 
convolution-based, and deep 
learning-based) for species 
classification.
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FEATURE-BASED APPROACH

The main advantages of this approach are the interpretability and flexibility. In some problems, 
the time-series shape of raw data can be well-defined according to the class (e.g., with peaks 
and valleys located in specific regions), helping to visually understand the classification result 
provided by a similarity-based algorithm as the nearest neighbor. However, the difference 
between the shapes of time series from different species is subtle for MIRS data, as illustrated 
in Figure 3. In this case, analyzing specific wavenumbers or the information extracted by the 
Catch-22 can support understanding the data and results. Regarding flexibility, the features 
can be used to train virtually any machine learning algorithm, such as Naive Bayes, Decision 
Trees, and Artificial Neural Networks. The limitation of this approach is that its performance 
heavily relies on selecting and engineering relevant features, which can be time-consuming 
and dependent on a domain expert. Moreover, most cases involve manually executing an 
additional step in the learning process. For example, the selection of 17 wavenumbers provided 
by González Jiménez et al. (2019) was performed through the careful analysis of chemistry and 
ecologist experts.

INTERVAL-BASED APPROACH

Such an approach is robust to noise and outliers since it discards most observations after 
selecting relevant and minor subsequences from the raw data. Once the intervals are defined, 
any machine learning algorithm can be trained using them, bringing flexibility to the approach. 
Optionally, we can extract features from the intervals to train a more robust classifier, as 
performed by CIF and DrCIF. An essential advantage of this approach is its efficiency and 
scalability in processing high-dimensional data, a usual characteristic of time series. A limitation 
of the interval-based approach is the loss of potentially relevant information during the interval 
selection phase and the influence of interval size, a parameter that requires careful attention.

CONVOLUTION-BASED APPROACH

Rocket achieves comparable accuracy to the state-of-the-art ensemble methods composed 
of three dozen classifiers, such as HIVE-COTE (Lines, Taylor & Bagnall 2018) or complex deep 
learning methods, with a fraction of processing time. However, since the algorithm uses 10,000 
random convolutional kernels in terms of length, weights, bias, dilation, and padding to capture 
relevant features, it is a non-deterministic solution, which could be considered a limitation of 
this approach regarding reproducibility and predictability. However, we show that MiniRocket 
provided similar results with a deterministic solution. We also point out that a limitation of this 
approach is the requirement for a lengthy time series, which is not an issue for MIRS data.

DEEP LEARNING-BASED APPROACH

The classification accuracy is the main advantage of the deep learning-based approach, 
mainly for InceptionTime, an algorithm adapted for time series data. However, deep learning 
algorithms such as FCN and Time-CNN performed inferiorly than simple feature-based 
algorithms. The unified framework of deep learning algorithms that perform both feature 
extraction and classification steps is advantageous, removing the need for manual feature 
engineering. This approach’s limitations are the need for a large amount of labeled data for 
training, lack of model interpretability, and time costs for model training. While models from 
alternative approaches were trained using CPU processing, the algorithms employed in this 
methodology necessitated GPU utilization for model training within an acceptable timeframe.

6. CONCLUSIONS
Estimating and monitoring mosquito species’ population and age are essential for assertive 
employment of control measures, such as using adequate adulticides and larvicides in a potential 
risk region ahead of outbreaks. Besides, this monitoring helps evaluate the effectiveness of 
current control methods. The current methods for accurate monitoring are costly and time-
consuming, such as those based on molecular analysis as PCR. In the last years, researchers 
have been investigating rapid and low-cost alternatives. Mid-infrared spectroscopy is the most 
recent and prominent technique, which generates time series data.
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The species and age identification using MIRS data depends on machine learning algorithms 
to recognize the complex relationships in the spectrum. Previous studies consider traditional 
machine learning algorithms that do not consider the particularities of time series data, such 
as temporal dependencies and correlations between features. This work comprehensively 
evaluates the state-of-the-art classification methods for time series data employed in the 
public health application of mosquito species identification and age prediction.

Our experiments considering algorithms from different time series mining approaches show 
that the deep learning algorithm InceptionTime is the most accurate method, able to identify 
97% of species correctly and predict the age of insects with 83% accuracy, outperforming the 
current results from the literature using traditional machine learning algorithms. Compared 
with complex deep learning methods, the convolution-based algorithm Rocket presents 
competitive results with a low computational cost. The results obtained by these algorithms 
outperform the state-of-the-art, which considers feature-based methods and convolutional 
neural networks. Thus, this research contributes to the field by highlighting the effectiveness of 
time series mining approaches for malaria vector control using spectroscopy.
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