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ABSTRACT
Two distinct modes of data governance have emerged in accessing and reusing viral 
data pertaining to COVID-19: an unrestricted model, espoused by data repositories 
part of the International Nucleotide Sequence Database Collaboration and a regulated 
model promoted by the Global Initiative on Sharing All Influenza data. In this paper, 
we focus on publications mentioning either infrastructure in the period between 
January 2020 and January 2023, thus capturing a period of acute response to the 
COVID-19 pandemic. Through a variety of bibliometric and network science methods, 
we compare the extent to which either data infrastructure facilitated collaboration 
from different countries around the globe to understand how data reuse can enhance 
forms of diversity between institutions, countries, and funding groups. Our findings 
reveal disparities in representation and usage between the two data infrastructures. 
We conclude that both approaches offer useful lessons, with the unrestricted model 
providing insights into complex data linkage and the regulated model demonstrating 
the importance of global representation.
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1 INTRODUCTION
To date, no other scientific data has been shared as widely as the genetic information on the 
SARS-CoV-2 virus responsible for the 2019 pandemic. This phenomenon has led some scholars, 
such as Leach (2021), to argue that, alongside the COVID-19 pandemic, we are witnessing 
another kind of outbreak, where the act of sharing data has evolved into active participation 
in Open Science, giving rise to an ‘open data pandemic’. While the notions of Open Data (OD) 
and Open Science (OS) have been topics of discourse among scientists, philosophers, and 
policymakers for well over two decades, they have gained unprecedented prominence during 
the COVID-19 crisis both within and outside of science. This surge in interest and application 
reflects a broader call for increased transparency, inclusivity and accountability in data-centric 
research (Burgelman et al. 2019). This push towards openness has led to numerous national 
and international policies implementing infrastructures, principles and resources in a top-down 
fashion, which is not always aligned with what specific groups of actors understand responsible 
OD or OS to be (Leonelli 2023).

This study focuses on the contrasting repertoires (Ankeny and Leonelli 2016) of data governance 
that have arisen in accessing and reusing viral data concerning SARS-CoV-2. So far, at least two 
distinct models have emerged: the unrestricted model endorsed by data repositories within 
the International Nucleotide Sequence Database Collaboration (INSDC RRID:SCR_011967) 
and the regulated model promoted by the Global Initiative on Sharing All Influenza data 
(GISAID RRID:SCR_018251).1 The former encourages free access to data with no constraints, 
emphasising interpretable and rapid dissemination, while the latter maintains free data access 
but implements certain constraints and rules around data usage to address issues of credit 
attribution and exploitation. A notable global health concern amidst these models is the 
challenge of equity and inclusion within the research landscape. The barriers and limitations 
that researchers from low-resourced environments and less-visible research locations face, 
including problems with receiving due credit for their contributions and participating in 
subsequent research and development (Bezuidenhout and Chakauya 2018), have prompted 
the development of governance strategies along the lines implemented by GISAID (Khare et 
al. 2021). Yet, in the midst of these endeavours to ensure inclusivity and fairness, GISAID’s 
regulated data model became a point of contention, drawing repeated criticisms from the 
INDSC during the height of the pandemic for not being open enough and thereby not supporting 
response efforts as well as the emergency required (EBI 2021; Enserink and Cohen 2023).

The study is presented as follows: First, we provide an account of the two data infrastructures 
and their principles of sound data management. We then go on to compare the characteristics 
of bibliometric indicators, access patterns, publishers, key terms, viral variants, research 
collaborations and funding dynamics for GISAID and each of the repositories that make 
up the INSDC—The European Nucleotide Archive (ENA), National Center for Biotechnology 
Information (NCBI) and the DNA Data Bank of Japan (DDBJ). Our analysis is grounded on data 
from Digital Science’s Dimensions.ai literature database which mentions either repository in 
the period between January 2020 and January 2023. We conclude with a reflection on what 
these two modes of data governance have achieved in terms of their representativeness and 
interpretations of openness.

2 BACKGROUND: TWO MODELS OF GOVERNANCE FOR COVID-19 
DATA
2.1 GISAID: A REGULATED ACCESS MODEL OF OPEN DATA GOVERNANCE

The GISAID Epi-Flu database was launched in 2008, on the anniversary of the Spanish influenza, 
to foster the sharing of influenza genomic data securely and responsibly. Data sharing was 
immediately conceptualised not as straightforward ‘opening up’ of the data by placing them 
online without restrictions to access and re-use, but rather as an alternative to the public sharing 
model, whereby users agree to authenticate their academic identity and not to republish or link 
GISAID genomes without permission from the data producer. GISAID acts as a mediator and 
enforcer of such rules, granting access solely to users who credibly profess to adopt them, and 

1 Note that our discussion is not meant to be comprehensive of all possible forms of data governance in this 
domain. Rather, we take these two cases as exemplifying significant and widespread models of data sharing, 
which are worth comparing to further enhance existing understandings of best data management practice.
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thereby acting as a guarantor for the effectiveness of the sharing agreement entered by data 
contributors. This arrangement stems from the recognition that some researchers—commonly 
located in low-resourced environments—are reluctant to share data due to fears of better-
equipped researchers building on such work without due acknowledgment (Bezuidenhout and 
Chakauya 2018; Elbe and Buckland-Merrett 2017). This model proved successful in facilitating 
better credit attribution to contributing scientists in relation to influenza research and, since 
its launch, GISAID has played an essential role supporting data sharing among the WHO 
Collaborating Centers and National influenza Centers in response to the bi-annual influenza 
vaccine virus recommendations by the WHO Global influenza Surveillance and Response System 
(GISRS). It is no surprise, therefore, that GISAID was swiftly redeployed, in early 2020, to include 
SARS-CoV-2 data through the EpiCov database, which stores, analyses and builds evolutionary 
trees of SARS CoV-2 genome sequences and hosts several daily updates of visualisations (Khare 
et al. 2021). GISAID is now the leading open access database for SARS-CoV-2, with over 15 
million genomes sequenced by February 2023.The Epi-CoV database provides 11 tools to 
explore SARS-CoV-2 sequence data; these include Audacity—global phylogeny of hCoV-19 as 
a downloadable newick tree file; CoVizue—near real-time visualisation of SARS-CoV-2 genetic 
variation; and a collection of thirty-two analysis figures updated daily.

GISAID has played a key role in supporting the identification and study of variant evolution, 
lineages and spread in real-time during the first three years of the pandemic; and, at the time 
of writing, it still features as a key data provider for a wide variety of consortia, initiatives and 
projects devoted to the analysis of COVID-19 variants of interest (some of which listed on this 
page: https://gisaid.org/collaborations/enabled-by-hcov-19-data-from-gisaid/). Accordingly, 
GISAID is funded by a wide consortium of public and private bodies, including the Federal 
Republic of Germany, who first backed the project at its main site in Geneva, as well as public-
health and academic institutions in Argentina, Brazil, China, Republic of the Congo, Ethiopia, 
Indonesia, Malaysia, Russia, Senegal, Singapore, South Africa and many other countries, as well 
as several donors and partners garnered under the label of ‘Friends of GISAID’.

The GISAID model has fostered information exchange among groups that differ considerably 
in their geo-political locations, funding levels, material resources and social characteristics, 
thereby expanding the range of data sources shared online (Shu and McCauley 2017). At the 
same time, GISAID has been frequently scrutinised as limiting the extent to which data can 
be accessed and linked, thereby negatively affecting the insight, pace and breadth of future 
research—leading to backlash from hundreds of leading researchers concerned about the 
urgency of an effective pandemic response (EBI 2021). During the height of the pandemic, 
questions were also raised regarding the quality and integrity of metadata coming from the 
GISAID platform (Gozashti and Corbett-Detig 2021), as well as epistemic importance being 
placed on the lag in submissions times at the global scale (Kalia et al. 2021). Some scientists 
called for a complete opening of genomic data sharing for SARS-CoV-2 (Van Noorden 2021), 
stating that GISAID’s policy may be ‘open data’, but it does not make the data easily shareable or 
useable (Yehudi et al. 2022). These critiques have run alongside controversy around who retains 
ownership of the data stored in GISAID, and how reliably its governance is actually managed. 
During past viral outbreaks, GISAID has been involved in legal disputes between the Swiss 
Institute of Bioinformatics (SIB) over monetary funds of the infrastructure (Greenemeier 2009), 
events which led to a spokeswoman at GISAID asserting that the SIB had misappropriated the 
database on grounds of data ownership (Butler 2009). Recent allegations also emerged around 
GISAID refusing to share data with researchers who, despite complying with its policies, had 
been critical of them (Enserink and Cohen 2023). Though worth mentioning here given their 
heated and prominent nature, this paper does not concern itself with these debates, focusing 
instead on the ways in which GISAID data have been accessed and used.

2.2 INSDC: AN UNRESTRICTED ACCESS MODEL OF OPEN DATA GOVERNANCE

The fully open model promoted by the International Nucleotide Sequence Database Collaboration 
(INSDC) has its origins in the first nucleotide sequence database, dating back to the development 
of the Data Library at the European Molecular Biology Laboratory (EMBL RRID:SCR_004473) in 
1982 Heidelberg, Germany. Soon after its development, the database collaborated with GenBank 
(RRID:SCR_002760) at the Los Alamos Science Laboratory, USA (Arita 2021) and finally with the 
DNA data bank of Japan (DDBJ RRID:SCR_002359) in 1987 (Fukuda et al. 2021), resulting in what 
Bernasconi et al. (2021) call a ‘political integration of sequences’.

https://gisaid.org/collaborations/enabled-by-hcov-19-data-from-gisaid/
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By 2002, the governing board of the INSDC had published a data sharing policy which permitted 
free and unrestricted access to all data in the triad of repositories. The policy makes all data 
records immediately available to all users, commercial sectors included, without any licensing 
stipulations, access restrictions, or monetary charges (Karsch-Mizrachi et al. 2018). Internally, 
all data shared with either node of the INSDC would be mirrored into the other repositories. 
The INSDC’s policies of unrestrictive data sharing follow in the steps of the Bermuda Principles 
of 1996, which established the norm of full and immediate data sharing for genomic 
information within biology (Maxson Jones et al. 2018); at the same time, they precede the 
institutionalisation of the Open Access Movement in academic publishing and institutes such 
as Open Data Institute (ODI RRID:SCR_021681), effectively making it an avant-garde institution 
in the broader context of Open Science (Arita 2021).

After four decades of operation, INSDC has displayed a remarkable constancy, with superficial 
changes largely limited to institutional rebranding. For example, the EMBL Data Library has 
metamorphosed into the European Nucleotide Archive (ENA RRID:SCR_006515), now under the 
aegis of the European Bioinformatics Institute in Cambridge Hinxton, while GenBank falls under 
the purview of the National Center for Biotechnology Information (NCBI RRID:SCR_006472) in 
Bethesda, USA. Amidst the urgency of the COVID-19 pandemic, the INSDC’s well-established 
data infrastructures offered critical support for data submission, harmonisation, and the 
ability to publicly access sequence data with a range of new and old tools and portals. For the 
NCBI, these included: Genebank for annotated sequences of RNA and DNA data; RefSeq for 
tasks ranging from genome annotations to mutation and polymorphism evaluations, as well 
as the development of the NCBI virus data dashboard and the NCBI Covid Hub (Berasconi et 
al. 2021). Additionally, in April 2020, the European Commission, through the auspices of the 
European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) and Elixir 
(a 23-country node network in Europe dedicated to openly sharing life science data), launched 
another platform for sharing scientific information of relevance to the biological study of 
COVID-19: the COVID-19 Data Portal (CV19-DP RRID:SCR_018337) (Harrison et al. 2021). This data 
infrastructure hosts a diverse array of genetic, epidemiological, socio-economic and literature 
data, encouraging data linkage and cross-analysis (Saravanan et al. 2022). Notably, CV19-DP 
features a modular design that allows for the rapid development of nation-specific customised 
interfaces; examples include versions for Spain, Sweden and Poland. However, the primary 
portal remains the principal access point. One of the overarching aims of CV19-DP is to expedite 
scientific research by enhancing data interoperability across various bioinformatics platforms, 
such as ENA, UniProt (RRID:SCR_002380), PDBe (RRID:SCR_004312), EMDB (RRID:SCR_003207), 
Expression Atlas (RRID:SCR_007989), and Europe PMC (RRID:SCR_005901). To achieve this, the 
portal deploys a high-level Application Programming Interface (API) and supports direct bulk 
downloads, ensuring minimal user tracking for transparent and efficient data dissemination.

CV19-DP provides two primary data visualisation tools. The first is an open-source phylogenetic 
tree that displays COVID-19 sequences, constituting 98% of the reference SARS-CoV-2 genome, 
including PANGO lineages stratified by World Health Organization (WHO) regions. The second 
is CoVeo, a proprietary browser that performs systematic analysis of raw sequence data, 
providing visual and summary analyses for various regions, particularly focused on Variants of 
Concern (VOCs) and Variants of Interest (VOIs) (Rahman et al. 2023). The interface of CV19-DP 
was later adapted for the Pathogens Hub by the European Nucleotide Archive (ENA), launched 
in July 2023. This hub is a curated repository founded on the UK’s Health and Safety Executive’s 
list of approved biological agents, as well as the WHO’s global priority pathogens list. Although 
other interfaces exist within the INDSC, such as NCBI Virus (RRID:SCR_018253) and the EBI 
SARS-CoV-2 data hub, the CV19-DP has assumed a significant role. It notably hosted an open 
letter advocating for the unreserved sharing of SARS-CoV-2 resources and urging submissions 
to one of the INSDC databases. While the letter did not explicitly name GISAID, it was widely 
interpreted as a critique of GISAID’s data governance and vision.

2.3 PRINCIPLES OF SOUND DATA MANAGEMENT

For CV19-DP, and the rest of the cadre in the INSDC, sound data management is predicated 
on the FAIR data principles, which espouse the findability, accessibility, interoperability, and 
reusability of research data (Wilkinson et al. 2016). This was justified by the ENA with regards 
to the publication of CV19-DP where they state



5Sheehan et al.  
Data Science Journal  
DOI: 10.5334/dsj-2024-
029

…unrestricted access to data plays a critical role in the rapid coronavirus research 
necessary to respond to this global health crisis…. Ensuring open science and 
unrestricted international collaborations is of key importance, and it is recognised that 
these datasets must be shared openly and meet FAIR standards (Harrison et al. 2021).

The FAIR principles are also found on the NCBI Covid-19 Data Submissions page, where they state 
a benefit of submitting data to them is to ‘follow FAIR data-sharing principles’. The principles of 
FAIR have been embraced by a number of different research areas; this is demonstrated by 
the growing body of literature on FAIR data sharing (Bezuidenhout 2020; European Commission 
2022; Goble et al. 2021; Leonelli 2022; Stall et al. 2019; Wise et al. 2019) and the cross fertilisation 
to principles in other scientific practices, such as software (Barker et al. 2022; Hasselbring et 
al. 2020; Hong et al. 2022; Katz et al. 2021; Lamprecht et al. 2020). While this framework is 
designed to promote transparency and data sharing, it remains subject to interpretation and 
implementation by individual data repositories, with potential variations in compliance and 
enforcement across different contexts (Boeckhout et al. 2018; Tacconelli et al. 2022) and a 
prioritisation of machine readability over human inclusivity (Sterner and Elliot 2022).

GISAID’s approach to sound data management is also arguably compatible with FAIR principles 
but places a higher premium on regulating data flows and interactions between users and the 
infrastructure, as exemplified by its database access agreement. The EpiFlu™ Database Access 
Agreement is a mechanism designed to facilitate the sharing of influenza gene sequence 
data among researchers and public health professionals worldwide. This agreement outlines 
the terms under which users may provide data to the database, as well as the rights and 
obligations of authorised users with respect to that data. In particular, the agreement grants 
GISAID and authorised users a non-exclusive, worldwide, royalty-free and irrevocable license to 
use, modify, display, and distribute the data submitted by users for research and intervention 
development purposes, provided they acknowledge the originating and submitting laboratories 
as the source of the data. Moreover, the agreement establishes certain restrictions on data 
access and distribution to ensure that users are acting in the best interests of public health. 
For example, users are not permitted to access or use the database in connection with any 
other database related to influenza gene sequences, nor are they allowed to distribute data 
to any third party other than authorised users. Users are also required to make best efforts 
to collaborate with representatives of the originating laboratory responsible for obtaining the 
specimen(s) and involve them in such analyses and further research using such data. Although 
this agreement is established to promote collaboration between scientists, a recent publication 
in Science exposed GISAID as having different tiers of access which aren’t defined in the 
agreement (Enserink and Cohen 2023).2

The differences in the interpretation and implementation of sound data management by GISAID 
and INDSC illustrate the pluralistic nature of data governance and highlight the need for critical 
reflection on the normative foundations and ethical implications of data sharing practice. Even 
though both data infrastructures share common epistemic goals, cognitive-cultural resources, 
and knowledge forms on complex biological systems, they create distinct digital artifacts as a 
result of different policies and values (Elliot 2022). A review of metadata by Bernasconi et al. 
(2021) concludes that, while GISAID’s partially closed model is likely to attract international 
collaboration from under-resourced countries, it fails to provide features of data provenance 
such as persistent URLs to samples or publications. The urgency to better understand the 
epistemic role of these infrastructures—and those to come after it—is underscored by the 
work of Chen et al. (2022) and Brito et al. (2022), who identified that countries in lower income 
groups often lack efficient genomic surveillance capabilities, not due to being able to access the 
data infrastructure but due to socioeconomic factors, such as inadequate infrastructure, low 
national GDP and meagre medical funding per capita.

2 Given these controversies, this paper does not aim to take a strong position on whether GISAID, in fact, 
complies with the FAIR principles, which would require a different kind of analysis and empirical evidence 
(including checks on the extent to which GISAID data have been accessible in practice). Rather, we focus on the 
GISAID governance mode as articulated by the infrastructure itself, according to which data are accessible upon 
request and in compliance with the GISAID license agreement; findable on the GISAID database; interoperable 
as long as users declare prospective purposes and delimit the degree to which GISAID data are integrated with 
other data sources; and reusable as long as the provenance of data is clearly acknowledged and the prospective 
use serves public health goals.
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Building on prior work on data sharing strategies and understandings of openness between 
these two systems of data governance (Leonelli 2022; Leonelli 2023), our aim in this paper is 
to provide an empirical examination of a crucial process of relevant data journeys (Leonelli and 
Tempini 2020), specifically the transfer of SARS-CoV-2 genetic data from the collection stage to 
the analytical stage. These data movements often cross institutional and international borders, 
thereby posing challenges to conventional scientific divisions of labour, disciplinary boundaries 
and epistemic hierarchies. Despite the inherent challenges in identifying and reconstructing 
these journeys, they present valuable units of analysis for mapping and comparing the diverse 
practices and circumstances involved in the mobilisation and utilisation of data (Leonelli 
2016a; Leonelli and Williamson 2023). At the heart of our inquiry lies the research question 
of how data infrastructures function as entities that mediate the interplay between data and 
research practices, thereby affecting the processes and outcomes of data exchange. To answer 
this, our methodology entails a synthesis of quantitative methods, such as data collection, 
frequentist statistics, and network analysis, and is informed by critical data studies debates 
on the governance and inclusivity of data infrastructures (Beaulieu et al. 2013; Borgman 2017; 
Borgman and Bourne 2022; Curry 2022; Fecher 2018; Kitchin 2014; Kitchin & McArdle 2016; 
Leonelli 2016b; Wilson et al. 2022).

3 DATA AND METHODS
To explore collaborative research patterns across each data repository, our study draws on an 
analysis of collaboration in published articles and other bibliometric indicators. Bibliometrics as 
a meta-science methodology has been widely used to study the impact of COVID-19 on the 
research landscapes (Acciai et al. 2022; Benach et al. 2022; Chahrour et al. 2020; Mohabab et al. 
2020; Sofi-Mahmudi et al. 2023; Wang and Tian 2021; Yinka Akintunde et al. 2021; Zhang et al. 
2022; Zhong and Lin 2022). Although bibliometrics was established in the 1950’s, bibliometrics 
is increasing in usage across academic disciplines, and has become a central methodology to 
explore trends in international and national collaboration, thematic clustering of keywords and 
topics, and structural patterns of networks dynamics (Donthu et al. 2021; Subramanyam 1983). 
By focusing on collaboration between institutions, countries and researchers, bibliometrics are 
able to better explore the involvement of actors involved in COVID-19 research. One caveat 
of this methodology is that it only captures a partial picture of research collaboration, with 
little information being placed on practices or informal collaborations; therefore, it should not 
be understood as the entire landscape (Leonelli 2022). In recent years, a number of online 
databases, such as Web Of Science (RRID:SCR_022706) and Dimensions.ai (RRID:SCR_021977), 
have become easily accessible in providing a systematic collection of multi-disciplinary 
publications, and a number of software packages, such as VosViewer (RRID:SCR_023516), 
Bibliometrix (RRID:SCR_023744) and Gephi (RRID:SCR_004293), have made the analysis of such 
data more achievable (Moral-Muñoz et al. 2020).

Each corpus was analysed using common bibliometric indicators, collaboration and equity 
measurements and network analysis. To begin, we considered indicators which are grounded 
in the existing bibliometric literature, such as total number of publications, average citations 
per publication, total citations, average Altmetric score, accessibility options (Open or Closed 
Access), publishers’ landscape and co-occurrence of key terms within publications. The results 
of these were plotted as line graphs or tree maps for each dataset. After this, we extended 
our statistical framework to include a bar chart of the distribution of variants between each 
dataset—aligning our approach with many bibliometric studies that focus on phenomena-
specific metrics. We then deployed two measurements to understand the author and income 
collaborations between countries. The first is based on inter and intra-regional collaborations 
and the second identifies collaboration in relation to income groups classified by the World Bank.

Lastly, we explored the relational dynamics among publications by engaging in bibliographic 
coupling and social network analysis (SNA). We employed the standard formulation of 
bibliographic coupling as introduced by Kessler in 1963:

 =  × TB A A

Here, B is the bibliographic coupling matrix and A is the bipartite network adjacency matrix. 
Each row and column in A corresponds to a node, which may represent entities such as 
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publication data, countries, academic institutions and funders. The elements aij in the 
adjacency matrix A represent the number of bibliographic couplings between article i and 
article j. We used two common SNA metrics to plot the structural impacts of the network: 
degree and betweenness, where degree is the number of associations a particular node has, 
and betweenness represents the number of occurrences a node acts as a bridge between one 
node to another (Newman 2005). All analysis was conducted using an R Project for Statistical 
Computing (RRID:SCR_001905). The project, along with the code and data to reproduce the 
analysis, have been made openly available on Zenodo (10.5281/zenodo.8399189).

3.1 DATA COLLECTION AND FILTERING

In bibliometric analyses, delineating precise search strategies and choosing a source of truth 
database is of paramount importance to capture a comprehensive dataset. Within the genomic 
data repositories landscape, GISAID and the INSDC groups exhibit divergent data citation 
protocols. Crucially, GISAID enforces a stringent requirement whereby members must cite 
and formally solicit permission from data depositors prior to any publication endeavours. This 
procedural characteristic facilitates a streamlined search strategy for GISAID data. Specifically, 
by employing the terms ‘Global initiative on sharing all influenza data’, ‘GISAID’ or ‘EpiCov’ in 
conjunction with a curated set of COVID-19-centric keywords. Conversely, the INSDC groups, 
devoid of such stipulations, present a slightly more intricate search matrix. Though there is 
an absence of a formal citation requirement, it is a common observation that published 
outputs frequently reference the PRJ accession code associated with a sequence or directly 
name the data repository. Consequently, the search query for the INSDC groups necessitates 
the integration of terms such as ‘ENA’, ‘The Covid-19 Data Portal’, ‘NCBI Virus’, and ‘NiH’ with 
additional accession codes, such as ‘PRJ’. A full table of search queries can be found in Table 1. 
In order to ensure the data queried was relevant to the study of SARS-CoV-2 and not any other 
influenza or pathogen disease, the following inclusion criteria are applied: A Covid-19 related 
term had to be in the full text; the study had to be an academic article; the article was published 
between January 2020 and January 2023; and all types of methods and disciplines are allowed.

Using these search queries and filters, we chose to use the Dimensions Analytics API (Herzog 
et al. 2020; Hook et al. 2018) as our source of truth to build collections for each repository. 
Established in 2018 by Digital Science, the Dimensions Analytics API provides one of the largest 
sources of publication data (Adams et al. 2018; Bode et al. 2018; Visser et al. 2021). Our initial 
search returned the following number of publications for each repository: GISAD (n = 14,092), 
NCBI (n = 12,751), ENA (n = 13,491), DDBJ (n = 508). However, as Guerrero-Bote et al. (2021) 
point out, the validity of Dimensions data can often be less reliable than Scopus—as it depends 
on machine learning curated data and fields such as research affiliations often contain missing 
entries and may contain duplicates based on preprints. For these reasons, we further filter our 

REPOSITORY SEARCH QUERY COVID-19 
RELATED 
TERMS

ADDITIONAL FILTERS

GISAID ‘GISAID’ OR ‘EpiCoV’ OR ‘Global 
initiative on sharing all influenza 
data’

•	 ‘sars-cov-2’

•	 ‘covid’

•	 ‘covid-19’

•	 ‘coronavirus’

•	 ‘HCov-19’

•	 Publication type must be a 
scientific article.

•	 Articles between January 1st 
2020 and January 1st 2023.

•	 Articles can be from any 
discipline or methodology.

•	 Remove duplicates of DOI’s.

•	 Remove articles where 
country affiliation is not 
documented.

NCBI ‘NCBI Virus’ OR ‘genebank’ OR 
‘National Center for Biotechnology 
Information’ OR ‘Accession: PRJ’ 
OR ‘International Nucleotide 
Sequence Database Collaboration’

ENA ‘The Covid-19 Data Portal’ OR 
‘European Nucleotide Archive’ 
OR ‘ENA’ OR ‘Accession: PRJ’ 
OR ‘International Nucleotide 
Sequence Database Collaboration’

DDBJ ‘DDBJ’ OR ‘DNA Data Bank 
of Japan’ OR ‘Accession: PRJ’ 
OR ‘International Nucleotide 
Sequence Database Collaboration’

Table 1 Workflow for 
Dimensions.ai searches on 
publications referencing major 
SARS-CoV-2 data repositories.

https://doi.org/10.5281/zenodo.8399189


8Sheehan et al.  
Data Science Journal  
DOI: 10.5334/dsj-2024-
029

data to remove any duplicates of publication.ids or titles, and, for our network analysis, we 
remove any entries where country or institution affiliation is not documented. After this filtering, 
the size of our final dataset for each repository is: GISAD (n = 11,945), NCBI (n = 10,685), ENA 
(n = 9728), DDBJ (n = 325). Similarity between each corpus’s publication id, shown in Figure 1, 
identifies that each repository has a mostly unique corpus of data. The biggest overlap between 
corpuses was between GISAID and NCBI, narrowly followed by the ENA and NCBI. There was a 
significantly low similarity of articles mentioning all three INSDC members.

4 RESULTS
4.1 BIBLIOMETRIC INDICATORS

Notwithstanding the comparatively reduced aggregate of publications in the GISAID repository 
relative to the comprehensive corpus of the INSDC, GISAID manifests a superior metric in several 
key bibliometric indicators such as average citations per month, total monthly citations, and 
average Altmetric scores as seen in Figure 2. This discrepancy is largely attributable to GISAID’s 
recurrent citation in seminal works delineating the initial virological properties of SARS-CoV-2 
(Wölfel et al. 2020; Walls et al. 2020; Wang et al. 2020; Zhu et al. 2020) and discussions of its 
phylogenetic origins (Andersen et al. 2020; Holshue et al. 2020; Zhou et al. 2020), as well as 
foundational studies on therapeutic and vaccine protocols (Hoffmann et al. 2020; Polack et al. 
2020; Wölfel et al. 2020).

In the context of the INSDC consortium, the total number of publications across all databases 
stands at n = 20,059, which is 59% more than GISAID with n = 11,945. Among the INSDC 
constituents, DDBJ records the most modest performance across all bibliometric impact 
measures. However, the DDBJ makes a perk in the Altmetric graph, this spike reflects both the 
low number of publications mentioning the DDBJ but also the high alt metric score of Amendola 
et al.’s (2021) early work on evidence of SARS-CoV-2 RNA from a swab in Italy December 2019. 
Conversely, despite possessing a fewer number of articles than NCBI, the ENA surpasses all 
other INSDC members impact factors, facilitated in part by pivotal contributions to the PRIDE 
database resource (Perez-Riverol et al. 2022) and the Ensembl 2021 project.

In Figure 3, for all GISAID, NCBI, ENA and DDBJ repositories, Gold Open Access (OA) emerges 
as the predominant access modality, registering a prevalence of 43%, 47%, 39% and 71%, 
respectively. In GISAID, subsequent access modalities adhere to a conventional OA hierarchy, 
featuring Green (32%), Bronze (12%), Hybrid (8%) and Closed (5%) categories. ENA diverges 
the most, with Closed (25%) being the second leading access type, followed by Green (18%), 
Hybrid (11%) and lastly Bronze (8%). For the NCBI access types, Green (20%), Closed (16%), 

Figure 1 Corpus similarity 
across major SARS-CoV-2 
repositories: Similarity of 
publication corpuses across 
major SARS-CoV-2 repositories 
(January 2020–January 
2023). Each oval represents 
a repository’s corpus with 
GISAID (red), ENA (green), 
NCBI (blue) and DDJB (purple). 
The total number of unique 
publications are labelled for 
each overlapping circle as 
well as the percentage of the 
entire corpus.
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Figure 3 Publication access 
types across major SARS-
CoV-2 repositories. This 
treemap quantifies the 
distribution of open access 
(OA)—Gold, Green, Bronze 
and Hybrid—and closed 
access publications across 
The DNA Data Bank of Japan 
(DDBJ), National Center for 
Biotechnology Information 
(NCBI), European Nucleotide 
Archive (ENA) and Global 
Initiative on Sharing All 
Influenza Data (GISAID). Each 
rectangle’s area is proportional 
to the frequency of publications 
within that category. Databases 
are delineated by white borders 
and labelled at their centres 
in italicised black text. Within 
each database, access types 
are labelled in white text.

Figure 2 Temporal trends in 
scholarly metrics across major 
SARS-CoV-2 repositories. 
This line graph illustrates 
longitudinal variations in key 
bibliometric indicators: (1) 
Total Number of Publications 
(top left), (2) Average 
Citations per Publication (top 
right), (3) Average Altmetric 
Score (bottom left) and (4) 
Cumulative Citation Count 
(bottom right). Data points 
span from January 2020 to 
January 2023. The DNA Data 
Bank of Japan (DDBJ), National 
Center for Biotechnology 
Information (NCBI), European 
Nucleotide Archive (ENA), and 
Global Initiative on Sharing All 
Influenza Data (GISAID) are 
represented by red, purple, 
green and aqua blue lines, 
respectively.
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Bronze (8%) and Hybrid (8%) trail Gold. The case of DDBJ is a similar pattern, with Green (20%), 
Closed (15%), Bronze (5%) and Hybrid (8%).

For NCBI, in Figure 4, publishers in terms of prominence are Elsevier (19%), Springer Nature 
(16%), MDPI (12%), Cold Spring Harbor Laboratory (11%) and Frontiers (8%). In the same 
figure, ENA exhibits a similar trend with Springer Nature (27%), Elsevier (20%), MDPI (8%), Cold 
Spring Harbor Laboratory (8%) and Frontiers (5%). In the case of DDBJ, the leading publisher 
instead is Centre for Disease Control and Prevention (41%), followed by Springer Nature (14%), 
Elsevier (9%), Oxford University Press (6%) and MDPI (6%). GISAID demonstrates a preference 
for Elsevier (20%), trailed by Cold Spring Harbor Laboratory (20%), Springer Nature (12%), MDPI 
(9%) and Research Square Platform LLC (5%). All other publishers were less than five percent.

4.2 VARIANT AND KEYWORD DISTRIBUTION

For all repositories, the World Health Organization (WHO) nomenclature exhibited a more 
pervasive mention as opposed to the Pango lineage classifications as shown in Figure 5. In 
the ENA corpus, variant denominations predominantly adhere to the WHO taxonomy, with 
the following distribution: Alpha (145), Beta (145), Delta (142), Gamma (54) and Kappa (20). 
Conversely, the Pango lineage descriptors manifest with a diminished frequency: P.2 (75), 
B.1.1.7 (49), B.1.617.2 (32), B.1.351 (23) and B.1.1.529 (21). GISAID encapsulates the largest 
share of variant mentions. Predominantly, WHO nomenclature appears more regularly, with 
leading variants being Omicron (2093), Delta (1879), Alpha (1098), Beta (795) and Gamma 
(606). For GISAID, Pango lineages appear with B.1.1.7 (832), B.1.351 (506), B.1.617.2 (514), P.1 
(400) and B.1.1.529 (367). The NCBI encompasses the most substantial proportion of variant 
mentions among the INSDC repositories. The paramount WHO classifications are Alpha, Beta, 
Delta, Omicron and Gamma with frequencies of 274, 263, 252, 239 and 136, respectively; for 
Pango lineages, they are B.1.1.7 (86), P.1 (77), B.1.351 (65), B.1.617.2 (60) and B.1.1.529 (34).

Figure 4 Publisher landscape 
across major SARS-CoV-2 
repositories. This treemap 
quantifies the distribution 
of publishers across The 
DNA Data Bank of Japan 
(DDBJ), National Center for 
Biotechnology Information 
(NCBI), European Nucleotide 
Archive (ENA) and Global 
Initiative on Sharing All 
Influenza Data (GISAID). 
Each rectangle’s area is 
proportional to the frequency 
of publications within that 
category. Databases are 
delineated by white borders 
and labelled at their centres 
in italicised black text. Within 
each database, publishers are 
labelled in white text.
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Figure 6 shows that the keyword distribution of Medical Subject Headings (MeSH) terms 
convergence on analogous themes across the repositories, encompassing gender dichotomies 
(female and male), species delineations (animals, human, mice), age categorizations (adult), 
data types (RNA, genomics, genome), and facets of pandemics and viral evolution (pandemics, 
viral, spike glycoprotein, phylogeny). An idiosyncratic characteristic of GISAID is its heightened 
frequency of therapeutic-centric terminologies (vaccines, mutations, neutralising antibodies). In 
juxtaposition, other INSDC repositories underscore methodological lexemes such as databases 
and computational biology. Subsidiaries of INSDC spotlight repository-specific keywords: for 
instance, the ENA emphasises Climate Change, while the DNA Data Bank of Japan (DDBJ) 
accentuates infections, pneumonia and, not surprisingly, Japan. Within the confines of GISAID 
and NCBI, the uppermost 15 keywords converge on a centrality of 14. In contrast, DDBJ and 
ENA oscillate between a centrality range of 5–12.5. Within the network framework of GISAID, 
the highest betweenness centrality is attributed to ‘adult’ and ‘neutralizing’. Conversely, for 
NCBI, ‘computational biology’ and ‘mice’ emerge preeminent, for ENA it’s ‘databases’ and 
‘male’, and for DDBJ, ‘humans’ and ‘animals’ occupy this distinction.

4.3 AUTHOR COLLABORATION

As Table 2 shows, within the GISAID repository, the year 2020 manifested a marked inclination 
towards collaborative endeavours, evidenced by a significant number of papers with either 2–5, 
5–10, and 10–20 authors juxtaposed against a modest 64 single-authored papers. By 2021, a 
proliferation in contributions was observed, most prominently in the 10–20 author category, 
amassing a noteworthy 1207 papers. However, by 2022, while the papers in the 10–20 author 
bracket peaked at 1254, those exceeding 50 authors witnessed a slight decrement to 60. In 
terms of hyper authorship, GISAID featured a decent share of 50–100 authors and was the 
leading year-on-year growth of 100–250 authors. Although GISAID didn’t have any papers with 
between 250–500 authors, they beat every member of the INSDC in the extreme authorship 
categories with leading representation every year for 500–1000 and 1000–5000.

Figure 5 Frequency 
distribution of viral variants 
mentioned in abstracts 
across major SARS-CoV-2 
repositories. This bar chart 
represents the frequency of 
mentions for specific viral 
variants and lineages in the 
dataset’s abstracts. WHO labels 
(e.g., alpha, beta) and Pango 
lineages (e.g., b.1.1.7, b.1.351) 
are accounted for. Each bar 
corresponds to a distinct 
variant or lineage, ordered 
in descending frequency of 
mentions. The x-axis quantifies 
the number of abstracts 
mentioning each variant 
and the y-axis identifies the 
respective variants and lineages.
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The ENA database, in 2020, registered most of its papers within the 2–5 author cohort, with 
420 contributions. This was contrasted by 72 papers in the single author category and 29 in the 
50+. An intriguing surge was witnessed in 2021, particularly with a staggering 1219 in the 2–5 
authored contributions and related increases in all other categories. In 2022, the surge continued 
but at a slower rate, with the most significant increase being the jump in single author papers 

Figure 6 Co-occurrence 
network of top MeSH terms 
across major SARS-CoV-2 
repositories. This graph depicts 
a co-occurrence network of 
the top 15 Medical Subject 
Headings (MeSH) terms within 
the given dataset, represented 
as nodes. Edges between 
nodes are weighted by the 
frequency of co-occurring 
terms across publications, and 
edge thickness scales with 
weight; edges with weight 
below a threshold of 5 are 
excluded for clarity. Node 
size is dictated by the node’s 
degree and colour is mapped 
to betweenness centrality.

NUMBER OF AUTHORS

1 2–5 5–10 10–20 20–50 50–
100

100–
250

250–
500

500–
1000

1000–
5000

Repo Year Number of Papers

GISAID 2020 64 609 548 511 275 25 4 0 3 1

GISAID 2021 93 911 1062 1207 634 60 7 0 5 1

GISAID 2022 95 916 1135 1254 672 45 12 0 2 1

ENA 2020 72 420 304 178 104 18 9 1 1 0

ENA 2021 275 1219 608 410 198 28 14 0 1 1

ENA 2022 407 1347 875 525 180 30 12 4 0 1

NCBI 2020 80 613 546 288 114 14 3 0 0 0

NCBI 2021 126 1032 965 542 209 27 5 0 3 0

NCBI 2022 113 1189 1258 718 210 21 4 0 0 0

DDBJ 2020 15 49 36 16 3 0 0 0 0 0

DDBJ 2021 10 22 19 17 1 0 0 0 0 0

DDBJ 2022 6 32 23 23 7 0 1 0 0 0

Table 2 Number of papers 
per number of authors 
across major SARS-CoV-2 
repositories. This table 
displays the cumulative 
number of papers per number 
of authors for each repository 
between 2020 and 2022.
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to 407. The ENA trumped GISAID in the 50–100 author per paper and had the best year-on-year 
representation for the hyper authorship categories between the INSDC members. For the NCBI 
repository, the data from 2020 underscores a dominant trend towards collaborative work, with 
613 papers in the 2–5 author bracket and 546 in the 5–10 author segment. This collaborative 
proclivity augmented in 2021, especially within the 2–5 author category, which culminated 
in 1032 papers. In 2022, all categories up to 50 authors continued to rise. NCBI displayed 
marginally less than the ENA in the 50–100 authorship category and marginally less than GISAID 
in the 100–250 authorship category but failed to represent continuous improvement in hyper 
authorship categories on a yearly basis. Lastly, the DDBJ repository, in 2020, was most prolific 
in the 2–5 author segment, recording 49 papers. The subsequent year, 2021, saw relatively 
modest numbers, with the 2–5 author category, still leading but with less papers. However, 2022 
registered a marginal upswing, particularly in the 2–5 and 10–20 author categories. By 2023, the 
repository only had one paper with a hype authorship of 50+ across all years.

4.4 GEOGRAPHICAL AND INCOME COLLABORATION

Figure 7 shows the ENA was the only repository to have a higher share of multi-region 
collaborations than single region, with 13,819 beating 15,269. Countries with the leading 
number of documents were United States, United Kingdom, Germany, China, Australia, 
Spain, Italy, India, France, Canada, Netherlands, Japan, Switzerland, Brazil, Sweden, South 
Africa, Belgium, Austria, Denmark and Norway. Countries with a higher ratio of multi-region 
collaborations were South Africa, Canada, Australia, Sweden, Brazil, United Kingdom, Belgium, 
Denmark, Japan, United States, Norway, Spain, Austria and the Netherlands. Countries in the 
ENA with a large proportion of single region collaborations were China, Italy, France and India. 
Germany had a relatively equal ratio between the two collaborations.

Figure 7 Distribution of 
single- and multi-region 
collaborations in scholarly 
publications by top 20 
countries across major 
SARS-CoV-2 repositories. This 
stacked bar chart portrays the 
extent of single-region and 
multi-region collaborations 
in scholarly documents for 
the top 20 countries based 
on publication volume. The 
x-axis indicates the number 
of documents associated 
with each country, and the 
y-axis lists the countries in 
descending order of total 
documents. The colours in 
each bar segment represent 
the type of collaboration: 
single-region or multi-region.
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For GISAID, single region collaborations were the most frequent, with a total of 21,432 over 13,476 
multi-region collaborations with the total number of documented coming from United States, 
China, United Kingdom, India, France, Italy, Germany, Brazil, Japan, Canada, Spain Australia, 
South Africa, Switzerland, Netherlands, Belgium, Singapore, Bangladesh, Israel and Saudi Arabia. 
The countries with the most amount of multi-regional collaboration were South Africa, United 
Kingdom, Brazil and Bangladesh, all of which had more multi-regional collaborations than single-
region. Following this, Switzerland, Singapore and Australia had roughly equal share between 
the two collaborations categories. Countries with the highest single region collaboration were 
France, China, Spain, India, Italy and Germany, all of which had over double the amount of single 
regional collaborations over multi-regional collaborations. Netherlands, Saudi Arabia, Canada, 
Japan, Israel and United States had between 40–10% more single regional collaborations.

For NCBI, the split between single region and multi-region collaboration was less than GISAID, with 
15,440 and 10,742, respectively. The leading countries with the greatest number of documents 
were United States, China, United Kingdom, India, France, Italy, Germany, Brazil, Japan, Canada, 
Spain, Australia, South Africa, Switzerland, Netherlands, Belgium, Singapore, Bangladesh, Israel 
and Saudi Arabia. Countries with the highest multi-regional collaboration were Brazil, South 
Africa, Saudi Arabia, Australia, Bangladesh and United Kingdom. Countries with the highest 
single-regional collaborations were China, India, Italy, Germany, Canada, Japan and France. The 
rest of the countries had a relatively equal ratio of single and multi-region collaborations.

DDBJ had the lowest number of total articles and had greater share of single region (451) 
collaborations over multi region (214). The leading countries collaborating on documents were 
Japan, United States, China, India, United Kingdom, Australia, Germany, Italy, Brazil, France, South 
Africa, Spain, Thailand, Malaysia, Canada, Indonesia, Switzerland, Tanzania, Denmark, Austria, 
Lebanon, Netherlands, Nigeria and Norway. Lebanon had the entirety of its collaborations based 
as multi-region, with the Netherlands, South Africa and the United Kingdom following them 
with higher proportions of multi-region collaboration. China, Brazil, Thailand, Malaysia, Germany, 
Spain, Japan, Australia, Switzerland, France, India, United States, Denmark and Canada all had 
over 40% more single regional collaborations, with the rest of the countries having a tied split.

From the data presented in Table 3, it is evident that collaborations between High-Income-to-
High-Income groups (HI-HI) dominate the submissions in GISAID, NCBI and ENA, with notable 
figures of 8504, 6599, and 11,199, respectively. DDBJ shows a significantly lower count of 151 in 
this category. In contrast, collaborations between Low-Middle-Income and Low-Income (LMI-
LI) groups are sparse across all repositories. Interestingly, collaborations involving Upper-Middle-
Income groups (UMI) with other income groups, such as Low-Income (LI) and Low-Middle-
Income (LMI), show varied results across databases. For instance, UMI-LMI collaborations are 
relatively higher in NCBI (349) compared to GISAID (269) and ENA (228), while DDBJ shows 
little representation in this category. Furthermore, an intriguing pattern observed in the other HI 
category, where each repository—apart from the DDBJ—leads the collaboration type in one way. 
Most interestingly, the ENA database exhibits a substantially higher number of collaborations 
in the HI-MIX category (3830) compared to both GISAID (2099) and NCBI (1754); GISAID led in 
the HI-UMI category (6494), followed by the ENA (5376) and the NCBI (4521). Both NCBI (2214) 
and GISAID had the same number of HI-LMI of 2161, followed by the ENA 1724. The DDBJ does 
feature as the greatest percentage (21.7%) but with significantly less collaborations.

INCOME COLLABORATION GISAID NCBI ENA DDBJ

HI-HI 7894 (41.3%) 6340 (41.5%) 10372 (47.7%) 151 (64.3%)

HI-LI 138 (0.72%) 113 (0.74%) 163 (0.8%) 6 (2.6%)

HI-LMI 2161 (11.3%) 2161 (14%) 1724 (8%) 51 (21.7%)

HI-MIX 2099 (11%) 1754 (11.2%) 3830 (24.7%) 14 (6%)

HI-UMI 6494 (34%) 4521 (30.3%) 5376 (26%) 49 (20.9%)

LMI-LI 4 (0.02%) 19 (0.15%) 21 (1%) 2 (0.9%)

UMI-LI 17 (0.09%) 16 (0.1%) 13 (0.06%) 12 (5.1%)

UMI-LMI 269 (1.41%) 349 (2.28%) 224 (1%) 0 (0%)

UMI-MIX 25 (0.13%) 14 (0.1%) 19 (0.09%) 0 (0%)

Table 3 Income collaboration 
across major SARS-CoV-2 
repositories. This table 
presents the share of income 
group (based on World Bank 
classifications) collaborations 
for each repository.
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4.5 NETWORKS

Table 4 provides a comprehensive network analysis of the various databases, detailing their 
network characteristics across different types: Authors, Country, Funder, and Institution. A 
salient observation from the table is the pronounced homogeneity in the funding network 
across the databases. Specifically, the nodes in this network span from 13 (DDBJ) to 17 (both 
ENA and NCBI), with GISAID closely trailing at 16. GISAID’s funding ecosystem, with a mean 
weighted degree of 2289, indicates a potential proclivity of funders towards research utilizing 
GISAID data. Nonetheless, the elevated clustering coefficient and density metrics for all 
databases underscore a robust collaboration among funders.

The country network also exhibited considerable homogeneity, albeit with more distinctive 
characteristics relative to the funding network. GISAID’s network emerged as the most 
expansive, boasting 159 nodes and 3220 edges. Most databases trended towards a singular 
community size, with DDBJ being an outlier with three communities. The apex clustering 
coefficients and density metrics were identified in the ENA network, registering at 0.71 and 0.29, 
respectively. The mean degree was highest for ENA at 43.54, while GISAID closely followed with 
40.50, and NCBI and DDBJ were relatively lower at 27.31 and 4.56, respectively.

The institutional network landscape revealed intriguing variances. Notably, the ENA dominated 
in terms of nodes (6898) and edges (763,790). The subsequent rankings were NCBI and GISAID 
with 6485 nodes (81,002 edges) and 6030 nodes (82,466 edges), respectively, while DDBJ 
lagged considerably at 418 nodes and 1095 edges. All databases manifested exceedingly low-
density metrics, with ENA leading at 0.3. The clustering coefficients mirrored this trend, with 
ENA outpacing GISAID and NCBI by a factor of three and DDBJ by two. An interesting revelation 
was NCBI’s network comprising the largest number of communities at 131, superseding GISAID, 
ENA and DDBJ, which had 125, 101 and 87 communities, respectively.

The ‘Authors’ category emerged as the predominant network across databases. GISAID’s network 
was the most extensive, with 85,387 nodes and 6,771,757 edges. NCBI and ENA followed with 
74,155 nodes (2,140,401 edges) and 69,717 nodes (8,583,776 edges), respectively, while DDBJ 
was significantly smaller with 21,152 nodes and 17,359 edges. Owing to their extremely large size, 
density metrics were exceedingly low across all databases, with DDBJ being a notable exception. 
The clustering coefficient was predominantly high, with ENA leading at 0.99, trailed by NCBI and 
DDBJ at 0.97 and 0.96, respectively. In terms of community counts, NCBI was predominant, with 
70,002, followed by ENA, GISAID and DDBJ with 6,179, 4,679 and 246, respectively. The community 
sizes (mean, median and minimum) across databases exhibited remarkable consistency.

For the ENA database, in terms of connectivity degree of the network, the leading countries 
were as follows: the United States (126), the United Kingdom (124), Germany (112), Canada 
(105), South Africa (103), France (102), India (102), Australia (100), Brazil (97), the Netherlands 
(96) and China (95). In relation to betweenness centrality, the United States stood out with a 
score of 758.18. This was followed by the United Kingdom (652.73), France (510.59), Canada 
(455.33) and South Africa (322.51).

In the GISAID database, the countries with the highest degrees of connection were the United 
States (125), the United Kingdom (126), France (109), Germany (108), Brazil (104), Switzerland 
(103), South Africa (101), Canada (96), Saudi Arabia (95), Japan (94) and Egypt (93). When 
evaluating betweenness centrality, the leading countries were Senegal (653.05), Sweden 
(601.17), Italy (561.47), Australia (541.90), Brazil (474.20), Canada (411.64) and Nigeria (377.70).

For the NCBI database, the foremost countries in terms of degree were the United States (118), 
the United Kingdom (108), Germany (97), France (86), Italy (83), India (82), Australia (81), China 
(79), Switzerland (77), Canada (73) and Spain (72). Regarding betweenness centrality, France 
held the highest score with 708.41, followed by Italy (711.71), South Africa (563.36), the United 
Kingdom (495.84) and Portugal (469.37). For the DDBJ, the leading countries in terms of degree 
were Japan (20), United Kingdom (19), United States (19), Italy (11), Sweden (10), Germany (10), 
Switzerland (10), Israel (9), Australia (9) and Croatia (8). Japan had the leading betweenness 
centrality score followed by United Kingdom, United States, China, Israel and Australia.

As shown in Figure 8, the predominant collaboration in the DDBJ network was between Japan 
and the United States, registering 94 instances, representing a significant majority. Subsequent 
collaborations included the United Kingdom and the United States (34), Australia and the 
United States (30), Japan and Norway (14), and Lebanon and the United Kingdom (14).
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Within the ENA database, the largest global reach of country collaboration was recorded, with 
collaborations involving the United States dominating the top seven positions, collaborating 
with China (33,298), Germany (22,125), the United Kingdom (20,314), Spain (16,911), Italy 
(16,750), France (14,899) and Japan (14,371). In the GISAID database, the United States also 
led country collaborations. But the top collaborative instances were far less: United Kingdom 
(3,393), Germany (2,745), China (2,021), Canada (1,680), Spain (1,599), Australia (1,373), Japan 
(862) and India (835). A similar trend was identified in the NCBI database, where the United 
States featured prominently in the top eight collaborative positions. Collaborative instances 
included the United Kingdom (3,393), Germany (2,745), China (2,021), Canada (1,680), Spain 
(1,599), Australia (1,373), Japan (862) and India (835).

In the analysis of funding networks in Figure 9, the principal funders for GISAID included ICRP, 
NIH, cOAlitionS, NSF, UKRI, DoD and US Federal funders, exhibiting 15 degrees of connection. 
Of these, UKRI demonstrated the most significant betweenness centrality. However, when 
considering the entire network, USDA held the highest betweenness centrality, valued at 57.5, 
with 12 degrees. The most substantial collaborations were observed between ICRP and US 
Federal Funders (2166 instances), followed by ICRP-NIH (2094) and NIH-US Federal Funders 
(2094). Subsequent significant collaborations were identified between cOAlitionS and ICRP 
(1433), EC & ERC (940), and UKRI (695). Within the NCBI network, the top funders in terms 
of connection degrees, totalling 16, were IRCP, NIH, cOAlitionS, UKRI and US Federal Funders. 
In this group, UKRI retained the highest betweenness centrality, registering 32.5. Overall, 

Figure 8 Country 
collaborations across major 
SARS-CoV-2 repositories. 
The figure provides a 
visual representation 
of global collaborations 
among countries. It plots a 
geographical map overlaid 
with collaboration lines 
between countries, where the 
colour of the lines represents 
the intensity or weight of the 
collaborations. Countries are 
color-coded based on their 
total number of publications.
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NOAA exhibited the leading betweenness centrality at 68.67 with 10 degrees. The primary 
collaborations were between ICRP and US Federal Funders (1755), NIH and US Federal Funders 
(1723), and ICRP and NIH (1720). Further collaborations included cOAlitionS with ICRP (711), EC 
& ERC (535) and US Federal Funders (390). For the ENA funding network, the dominant funders 
in terms of connection degrees, all at 16, were ICRP, NIG, cOAlitionS, AMRC, EC & ERC, NSF, 
UKRI, HRA, CDC and US Federal Funders. Among these, CDC displayed the highest betweenness 
centrality at 48.67, but in a broader context, NOAA, with 12 degrees, possessed a greater 
betweenness centrality of 67. The chief collaborations were with ICRP and US Federal Funders 
(1374), NIH and US Federal Funders (1317), and ICRP and NIH (1314). This was followed by 
collaborations involving cOAlitionS and ICRP (1113), EC & ERC (940) and UKRI (740). In the DDBJ 
network, the US Federal Funders emerged as the primary funding group, reflecting 14 degrees 
of connection. The maximum betweenness centrality was attributed to NSF, although it only 
had 10 degrees. Predominant collaborations were discerned between ICRP and US Federal 
Funders (44), ICRP and NIH (43), and NIH and US Federal Funders (43), followed by CDC and US 
Federal Funders (24). Additional collaborations involved cOAlitionS and ICRP (23), EC & ERC (19), 
US Federal Funders (14) and UKRI (12).

Figure 9 Funder group 
collaborations across major 
SARS-CoV-2 repositories. This 
graph depicts a collaboration 
network of funder groups 
within the given dataset, 
represented as nodes. 
Edges between nodes are 
weighted by the frequency 
of co-occurring funders 
across publications. Node 
size is dictated by the node’s 
weighted degree.
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In the institutional network presented in Figure 10, the University of Oxford (826), followed by 
Imperial College London (668), University of Edinburgh (651), Harvard University (638), the Ministry 
of Health (596), University of Washington (570), University of Cambridge (537), University College 
London (504), London School of Hygiene and Tropical Medicine (501) and the Institut Pasteur 
(462), were the leading nodes for GISAID. In the same network, the University of Oxford again 
leads in the largest betweenness centrality with 604,373.83, followed by Harvard University, 
University of Hong Kong, University of Edinburgh and the Ministry of Health with 564,449.4, 
478,585.8, 435,489.2 and 405,605.17, respectively. The top five leading collaborations were 
between the Fred Hutchinson Cancer Centre and the University of Washington (141), KU Leuven 
and Rega Institute for Medical Research (116), Imperial College London and the University of 
Oxford (113), Howard Hughes Medical Institute and University of Washington (73), and the 
Institute of Microbiology and the University of Chinese Academy Science (73).

In contrast, the ENA platform showcases a broader scope of institutional collaborations. The 
Sun-Yat Institute (also referred to as Zhongshan University) emerges as the most connected 
with 2593 degree, followed by the University of Paris (2361), University of Oxford (2031), 
University College London (1987), Imperial College London (1894), Harvard University (1876), 
University of Cambridge (1811), University of Edinburgh (1738), Kings College London (1732) 
and Stanford University (1695). Institutions pivotal in the genesis of ENA, EMBL-EBI, namely 
the European Bioinformatics Institute and the European Molecular Biology Laboratory, also 
feature prominently, with the European Bioinformatics Institute receiving 1637 degree and 
the European Molecular Biology Laboratory with 1542. The leading institutes in terms of 

Figure 10 Institution group 
network across major SARS-
CoV-2 repositories. This 
graph depicts a collaboration 
network of the institutions 
within the given dataset, 
represented as nodes. 
Edges between nodes are 
weighted by the frequency 
of collaborating institutions 
across publications. Node 
size is dictated by the node’s 
weighted degree, and colour 
is mapped to betweenness 
centrality, following a viridis 
scale.
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betweenness centrality are University College London, University of Oxford, University of 
Cambridge, Harvard University and Sun Yat with 366,428.6, 363,747.68, 258,835.77, 244,949.02 
and 242,804.76, respectively. The leading collaboration between institutes was the British 
Medical Association and the Canadian Medical Association (80), followed by the University of 
Cambridge and the Wellcome Sanger Institute (75), Broad Institute and Harvard University 
(69), Imperial College London and University of Oxford (61) and the European Molecular Biology 
Laboratory and Heidelberg University (59). The European Molecular Biology Laboratory also 
had high collaborations with the German Cancer Research Center (51), while the European 
Bioinformatic Institute had substantial collaborations with the University of Cambridge (45), 
the Wellcome Sanger Institute (44) and University College London (37).

For the NCBI, the leading institutions in terms of degree were Harvard University (820), 
University of Cambridge (693), Wellcome Sanger Institute (498), University of Washington 
(496), Cornell University (487), Stanford University (477), University College London (476), 
National Center for Biotechnology Information (475) and the University of Melbourne (453). 
In terms of betweenness centrality, Harvard University overshadowed the rest with a score of 
724,458.49, followed by University of Oxford, University of Melbourne, Imperial College London 
and the University of California with 519,537.68, 346,122.59, 316,106.06 and 213,986.81, 
respectively. The leading institutions in terms of collaboration were the BGI Group (China) and 
the University of Chinese Academy of Science (80), Broad Institute and Harvard University (58), 
Harvard University and Massachusetts General Hospital (39), Brigham and Women’s Hospital 
and Harvard University (37), and Broad Institute and Massachusetts Institute of Technology. In 
the top twenty of collaborations, the NCBI themselves did not appear.

For the DDBJ, the leading institutes in terms of degree were Harvard University (49), National 
Institute of Infectious Diseases (48), University of Tokyo (32), Kyoto University (30), Broad 
Institute (26), Waseda University (24), Hokkaido University (23), Keio University (22), European 
Bioinformatics Institute (22) and Cornell University (22). In terms of betweenness centrality, 
the highest were Harvard, National Institute of Infectious Diseases, European Bioinformatics 
Institute, Kyoto University and Research Organization of Information and Systems with 
6304.96, 4225.42, 3541.08, 2943.33 and 2851.85, respectively.

5 DISCUSSION
A significant distinction between the two data governance models is observed in the variance 
of MeSH (Medical Subject Headings) keywords and the distribution of variants. GISAID possesses 
the most significant proportion of variant names within its corpus, lending credence to the notion 
that its primary objective is to monitor novel variants, assess genetic mutations, and evaluate 
vaccine immunity in relation to these variations. This is corroborated by the relative distribution 
of keywords in which GISAID shows a marked inclination towards public health applications 
and therapeutic-centric terminologies, while INSDC captures a wider spectrum of biological and 
epidemiological research domains, including substantive efforts in upstream research. Such 
distinctions manifest in the kind of data each model disseminates: GISAID predominantly shares 
RNA or protein data, which it provides in a ready-to-use format for immediate employment by 
public health officials, whereas the INSDC provides a broader spectrum of epidemiological data, 
encompassing a considerable quantity of raw reads and annotation data and providing more 
opportunities for linking the data to other existing resources.

This difference in audiences, and usage goes some way towards accounting for the difference 
in emphasis in the governance models preferred by the two infrastructures. While GISAID 
depends on the comprehensiveness of its respondents and participants to be able to provide 
as wide-ranging a picture of global mutation patters as possible, INSDC is more focused on 
facilitating linkage between datasets, thereby supporting discovery on a variety of novel 
aspects of SARS-CoV-2 behaviour and interactions with host organisms and environments. 
Openness in the sense of immediate, wide-ranging usability of data is therefore arguably more 
crucial to INDSC, while attention to which sources are captured and the extent to which they 
can represent the world-wide situation is of primary concern for GISAID.

The disproportionate size of the DDBJ corpus compared to NCBI or ENA can be understood in 
the context of a government mandate by the Ministry of Health, Labour and Welfare in Japan, 
which required all SARS-CoV-2 genomes to be registered with GISAID, not elsewhere (MHLW 
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2021). In turn, this meant sequences submitted to GISAID from Japan were not allowed to go 
into an INSDC repository due to licencing terms.

Even when taking this difference in emphasis into account, the results from the analysis above 
present a mixture of benefits and drawbacks to GISAID and the members of the INSDC in 
their capacity to support diverse research collaboration for the study of SARS-CoV-2, and thus 
deserves some critical reflection and contextualization.

For a start, during the 2020–2022 pandemic years, the GISAID corpus has witnessed an increased 
frequency of publication, citation, and discussion compared to other INSDC members. This 
underscores GISAID’s instrumental role in forging early collaborative efforts between global 
researchers and institutions (Khare et al. 2021). However, when combining the output of all 
INSDC members, the cumulative publications significantly eclipse that of GISAID and demonstrate 
comparable citations and Altmetric scores. While there are indications of GISAID’s publication 
volume diminishing in 2023, both the ENA and NCBI are observing an upward trajectory in their 
publication count. The slow start exhibited by INSDC members may be attributable, in part, to the 
delayed release of COVID-19-specific data portals and services, like CV19DP and the NCBI SARS-
CoV-2 Data Dashboard, until 2021. Since their inception, these platforms have undergone iterative 
enhancements, encompassing new functionalities for data submission, retrieval and linkage 
(Rahman et al. 2023). Nevertheless, this growth should be approached circumspectly. The rising 
prevalence of both gold and green access classifications, coupled with the emergence of hyper 
authorship papers comprising 50+ authors within both GISAID and INSDC, illuminates a trajectory 
towards augmented collaboration and transparency in virological inquiries. At the same time, 
this highlights the conundrum where fully open repositories like ENA may simultaneously amplify 
the frequency of restricted access and solo authorship articles at the same time. This raises the 
question of whether the unrestricted data sharing paradigm, endorsed by INSDC members, 
inadvertently leans towards an object-oriented perspective on Open Science, where the sheer 
volume of outputs being shared may overshadow diversity and inclusivity (Leonelli 2023).

Beyond these emerging concerns around the meaning and implications of openness for 
research, our findings also point to the potential dangers of implementing openness in ways 
that inadvertently constructs new obstacles in the way of scientific collaboration. Both GISAID 
and INSDC exhibit high representation of data from high-income countries. Adding to this, 
the country collaboration networks show there is a distinct prominence of certain nations in 
the global bioinformatics landscape. The United States and the United Kingdom recurrently 
emerge as frontrunners in terms of connectivity degree across these platforms, situating them 
as key actors in the genomic surveillance landscape. Recurrent actors weren’t only limited to 
countries. The heterogeneity observed between the funding network for GISAID and INSDC, 
for instance, raises important questions about the extent to which funding sources influence 
the distribution and accessibility of research resources. The results similarly show institutional 
hierarchies and clustered collaborations across GISAID, ENA, NCBI and DDBJ platforms. 
Unsurprisingly, esteemed institutions like the University of Oxford, Harvard University and 
University College London consistently appear pivotal, either by connection degrees or 
betweenness centrality. Moreso, the general dominance of inter-regional partnerships—or, in 
the case of ENA, intra-regional connections mainly with high income countries—in research 
collaborations raises questions about the extent to which research data accumulated in 
centralised data infrastructures can truly be considered a global endeavour, or whether it is still 
largely driven by a select few countries, institutions, income groups and funders. These results 
raise concerns about the representation of data from low-income countries within both data 
governance models, which raises important questions about access to and sharing of scientific 
resources, as well as the potential for biases in data sampling based on incomplete data—
which align with emerging scholarship questioning the accessibility and equitable distribution 
of supposedly open scientific resources (Leonelli 2023; Ross-Hellauer et al. 2022; UNESCO 
Recommendations 2021). Efforts to improve data sharing and promote equity in scientific 
research are critical for ensuring that all populations, regardless of geography or economic 
status, have access to the best available information and resources for preventing and treating 
disease (Cousins et al. 2021; Pratt and Bull 2021; Staunton et al. 2021).

Characteristics of the lesser prominent collaborations between each repository offer revealing 
insights. For instance, in the GISAID country network Kenya, Nigeria, Senegal and South Africa 
make up a decent share of degree and betweenness centrality. This united front may in part be 
due to the federated effort by African nations to share data between themselves using GISAID 
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to keep their data secure (Tegally et al., 2022). This might suggest the GISAID model has been 
more effective in building trustworthiness among users from different resource environments 
to collaborate and engage in data generation (ODI 2019; Pickering et al. 2021). It also seems 
to reinforce claims by Bernasconi (2021) that a partially closed access model is preferred at a 
global scale for viral data sharing. In contrast to Bernasconi, however, our results also suggest 
that GISAID’s network topology appears less densely interconnected than that of the ENA or 
NCBI. ENA’s pronounced interconnectivity might suggest either the emergence of specialised 
research clusters or a propensity towards insular data exploration, as evidenced by their large 
growth in single author papers. Interestingly, data trends support the latter option, with ENA 
fostering broader multi-regional collaborations, potentially benefiting from its commitment to 
data interoperability. Placing emphasis on interoperability and usability by members of the INSDC 
may permit users of the infrastructure to explore their own research questions and methods 
more easily by linking together the wider variety of research data types. However, GISAID’s low 
density and high average path may positively reflect the controlled access to the repository’s 
data and the repository’s tendency to have much larger authorship per paper. These results 
warrant further exploration into the communities and segregated communities’ part of each 
repository. For a full list of pros and cons for each repository see Table 5.

BIBLIOMETRIC INDICATORS KEYWORD & VARIANT 
DISTRIBUTION

COUNTRY COLLABORATION REUSE NETWORKS

PRO CON PRO CON PRO CON PRO CON

GISAID Best 
performance 
in Altmetric 
and citation 
indicators.

Predominantly 
Open Access 
papers.

Reduced 
Aggregate 
of 
publications 
compared 
to the entire 
INSDC.

Focus on 
therapies and 
treatments.

Most number 
of mentioned 
variants for 
WHO and 
Pangleo

Highest 
weighted 
degree.

Highest 
single region 
collaboration.

Small share of 
low-income 
collaboration

High 
income only 
collaborations 
being the 
dominate 
collaboration.

Biggest density 
of Author 
and country 
collaboration.

Sparse 
Institutional 
collaboration.

ENA Best INSDC 
member in 
terms of 
impact factor 
metrics.

Primarily Open 
Access Papers.

Features 
highest 
closed 
access.

Focus on 
animal and 
sex studies 
and wider 
methods like 
computational 
biology.

Less 
mentions 
of variants 
compared to 
GISAID and 
NCBI.

Highest 
multi-region 
collaboration 
share

Highest High 
income MIX 
collaboration.

Small share of 
low-income 
collaboration

High 
income only 
collaborations 
being the 
dominate 
collaboration.

Highest density 
of institutional 
and funder 
collaboration

Greater author 
and country 
collaboration 
than NCBI

Shorter paths 
in comparison 
to NCBI and 
GISAID.

Smaller share 
of authors 
compared to 
GISAID.

NCBI Most number 
of articles 
from the 
INSDC group.

Primarily Open 
Access.

Focus on 
animal and 
sex studies 
and wider 
methods like 
computational 
biology.

Less 
mentions 
of variants 
compared to 
GISAID.

Highest High 
Income 
Lower-Middle-
Income 
collaboration

Leading 
collaborators 
from the 
most type of 
income group

Small share of 
low-income 
collaboration

High 
income only 
collaborations 
being the 
dominate 
collaboration.

Greater 
Institution 
collaboration 
than GISAID

Smaller 
Average Paths 
than GISAID

Smallest 
Author and 
country 
Collaboration 
size between 
GISAID and 
ENA

DDBJ Spike of very 
influential 
papers citing.

Predominantly 
gold open 
access.

Lowest 
number of 
publications

In general, 
lowest 
impact 
factor 
metrics.

Focus on 
internal 
studies on 
human 
population.

Least 
number of 
variants 
mentioned.

Lowest 
weighted 
degree and 
degree.

Small share of 
low-income 
collaboration

High 
income only 
collaborations 
being the 
dominate 
collaboration.

Table 5 List of pros and cons 
for the strategies adopted 
by each repository based on 
results.



6 CONCLUSION
Our bibliometric analysis highlights the strengths and limitations of the regulated and 
unrestricted approaches to open data governance embodied by GISAID and INSDC, 
respectively. These databases furnish valuable resources for scientific research, yet they 
diverge in their bibliometric indicators, country and income collaboration, and corpus 
networks. While data sharing initiatives advocating for complete openness, like members 
of the INSDC, highlight the advantages of immediate data access, they tend to overlook 
the sociocultural, institutional and infrastructural factors that affect data reuse. These 
factors include disparities in geo-political locations, power dynamics among research sites, 
expectations regarding intellectual property, funding availability and digital connectivity 
resources. GISAID’s partially open model offers an alternative approach that has drawn more 
diverse geo-political locations into its fold. However, despite this increased geographical 
representation, it does not necessarily translate into greater epistemic diversity within 
research topics. This can limit the breadth of scientific perspectives and inadvertently 
funnel research into narrow or pre-established trajectories. While the different user base of 
GISAID and INSDC can explain some of the discrepancies between these two systems, their 
respective approaches to openness arguably account for at least some of the attitudes and 
preferences of their users, including the greater emphasis on wide-ranging and exploratory 
biological research facilitated by INSDC.

Looking ahead, while our current analysis has placed significant emphasis on betweenness 
centrality measurements, future research could explore community segregation between 
institutions, thereby uncovering deeper insights into the inherent collaborative or insular 
behaviours of academic institutions in the context of data sharing. The landscape of data 
governance is rife with contention, especially concerning what constitutes responsible and 
ethical practices. Yet, both GISAID and INDSC, in INSDC respective ways, demonstrate and 
support effective modes of collaboration. Through critical reviews of such data repositories, we 
can ascertain the nuances and implications of their governing structures. Through empirical 
exploration and better understanding of these intricacies, the academic community stands 
a better chance to design robust and inclusive systems for data governance that truly foster 
global scientific collaboration.
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