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Nowadays, materials scientific data come from lab experiments, simulations, individual archives, 
enterprise and internet in all scales and formats. The data flood has outpaced our capability 
to process, manage, analyze, and provide intelligent services. Extracting valuable  information 
from the huge data ocean is necessary for improving the quality of domain services. The most 
acute information management challenges today stem from organizations relying on amounts of 
diverse, interrelated data sources, but having no way to manage the dataspaces in an  integrated, 
user-demand driven and services convenient way. Thus, we proposed the model of Virtual Data-
Space (VDS) in materials science field to organize multi-source and heterogeneous data resources 
and offer services on the data in place without losing context information. First, the concept 
and theoretical analysis are described for the model. Then the methods for construction of the 
model is proposed based on users’ interests. Furthermore, the dynamic evolution algorithm of 
VDS is analyzed using the user feedback mechanism. Finally, we showed its efficiency for intel-
ligent, real-time, on-demand services in the field of materials engineering.

Keywords: Intelligent services; Materials Scientific data; Semantic mapping; Big Data; evolu-
tionary algorithm

1 Introduction
As many industries and research labs handle increasing amount of data in materials science, big data (Toffler 
1980) is being considered as an important issue for materials engineering services. Extracting meaningful 
and valuable information from large-scale datasets is essential for providing new applications as well as 
improving the quality of existing services. Data management, reuse and collaboration in various sources pose 
new challenges to the field of materials science (Howe et al. 2008; Lynch 2008).

In recent years, along with the continuous accumulation of scientific data and the constantly changing 
of practical requirements, the “big data” management issues should be addressed in the aspect of domain 
scientific data. Materials scientific data comes from lab experiments, simulations, individual archives, enter-
prise and internet in all scales and formats. This data flood has outpaced our capability to process, analyze, 
store and understand these datasets. Materials science data possess the typical characteristics of big data.

1. Volume: Massive materials scientific data have been accumulated in the past several decades. 
This provides large amounts of available data, but makes it more difficult to rapidly obtain valu-
able information.

2. Variety: Materials scientific data are distributed in different sources and heterogeneous data 
are manifested in different formats, such as sheets, semi-structured XML, non-structured  
images, etc.

3. Velocity: Materials scientific data are constantly changing, especially the experimental data. 
Many of the data sources are very dynamic, and the number of data sources is also expanding.
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4. Veracity: Materials scientific data sources are of widely differing qualities, with significant 
 differences in accuracy and timeliness. Highly precise data are required in most of the 
 engineering services.

The problem we mainly focused is how to manage materials scientific data in an intelligent way for  
better services based on users’ requirements. The issues addressed for meeting the user demands in data 
 services include: extract valuable data from variety resources and remove the redundant data; represent 
data information by mining the complex relationships in datasets; compose data queries using specific 
domain terminology; adapt changing requirements of the users in data organization. Thus it is difficult to 
meet these demands for data services using traditional technology. A new service model is required in this 
circumstance.

The main objective of this paper is to present the modelling and construction method for Virtual DataSpaces 
(VDS) for managing big data and providing data services in the field of materials engineering. The concept of 
VDS is proposed (Hu et al. 2016), which is different from the traditional data management technology. VDS 
is not only developed from dataspace (Franklin, Halevy & Maier 2005) but also represents an innovation in 
the deepening of it. As a new mode of data organization, VDS not only illustrates a new modelling method 
to organise and process the big data but also presents a new evolution method to manage the continually 
changing data, services, and user demands. VDS faces the complex data management and dynamic service 
demand in the field of materials engineering. The process and algorithm of VDS construction is based on 
the user feedback. Finally, the effectiveness of the model is verified by the case description of a materials 
science domain application and the comparisons of different models are also shown. VDS has its own char-
acteristics, such as the modelling ideology of “data first”, the subject related, the domain knowledge model, 
the emphasis of “services”, the support of data-associated mapping and dynamic evolution, the real-time and 
on-demand service, etc. Therefore, the new mode “VDS” is suitable for effectively managing big data and 
dynamically providing intelligent services in materials engineering.

In addition to the introduction section, there are six sections in this paper. The rest of this paper is organ-
ised as follows. In Section 2, the previous work about big data management and intelligent services is intro-
duced, and the related research about dataspace is investigated. In Section 3, the modelling theory and 
construction method of VDS is described. In Section 4, the evolution process of VDS is elaborated and 
analysed. In Section 5, the analysis and comparison between VDS and other models is discussed, and the 
application case of an intelligent service in the field of materials engineering is proposed. Finally, the conclu-
sion and further work is presented in Section 6.

2 Related Work
2.1 Big Data
Both theoretical and practical studies on big data management have got increasingly attention given the 
background of new challenges. Several important characteristics about big data have been enumerated and 
the platform requirement challenges for big data architecture have been described (Wang et al. 2011). An 
overview of the research issues and achievements in the field of big data analysis has been provided and 
the multidimensional data analysis problems about big data have been discussed (Cuzzocrea, Song & Davis 
2011). A new algorithm with the help of a semantic graph for the more efficiently and intelligently process-
ing big data has been proposed (Qu 2012). However, because the semantics of big data are only described 
with RDFs, it has limited semantic representation ability. Active data (Simonet, Fedak & Ripeanu 2012) as a 
programming model has been proposed to alleviate the complexity of the data lifecycle and automatically 
improve the expressiveness of data management applications. However, this model does not consider the 
semantic association characteristics and does not form a refined ideology about dynamic evolution.

The formalisation of a time window selection strategy along with a literature review is presented (Ballings, 
Poel 2012). This study analysed the improvement in churn-model performance by extending the customer 
event history from one to sixteen years and uses logistic regression, classification trees and bagging in com-
bination with classification trees. Using a time window could substantially decrease data-related burdens, 
such as data storage, preparation and analysis. This is particularly valuable when decreasing computational 
complexity is paramount. A new method to create necessary summary information by reducing the dimen-
sion of a coalition transaction data is proposed (Lee, Lee & Sohn 2013) to develop a behaviour-scoring model 
and contribute big data analysis for a coalition loyalty program. For addressing the problem of big data 
analysis in the new business intelligence era (Kwon, Sim 2013), evaluated the causality between the data set 
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characteristics as independent variables and the performance metrics as dependent variables using a mul-
tiple regression method. These methods and ideas about big data processing provide a guide for our work.

2.2 Intelligent Service
An intelligent service refers to a service that automatically recognises the explicit or implicit user demands 
and then meets those demands proactively, efficiently, safely and accurately. The prerequisites for an intel-
ligent service software environment include a standard information infrastructure, a data accumulation 
that can be efficiently used, the opening and sharing about data services, and quality assurance about data 
legitimacy. Related research about intelligent service environments has developed to a certain extent in 
recent years. Intelligent service environments might become increasingly important with the development 
of big data in the future.

A novel Artificial Neural Network (ANN)-based service selection (ANNSS) algorithm (Cai et al.2009) was 
proposed to overcome the shortcomings of blindness and randomness in traditional service selection algo-
rithms. The novel algorithm chooses exactly the most appropriate service in a ubiquitous web services envi-
ronment. An intelligent service-integrated platform (Yeh, Chen & Chen 2011) has also been proposed. It 
employs the software agent as the framework to construct an integrated information system mechanism 
for preventing monetary loss due to the information gap. It also employs radio frequency identification 
(RFID) technology to realise the smart shelf as the trigger point for the retrieval of commodity messages. 
This framework might help enhance the performance of sales outlets and improve customer service while 
addressing the time effect issue with a popular commodity.

A solution for the converged context management framework has been presented (Baladron 2012). This 
framework takes advantage of the features of intelligence and convergence in next-generation networks. At 
the same time, it allows the seamless integration, monitoring, and control for heterogeneous sensors and 
devices under a single context-aware service layer. This layer is centred on a context intelligence module that 
combines clustering algorithms and semantics to learn from the users’ usage histories, and takes advantage 
of this information to infer missing or high-level context data. Finally, it provides personalised services to 
end users using a context-aware method. The mobile agent based on a distributed geographic information 
service system has been created using the intelligent service chain construction technology (Liu, Zhang & 
Li 2012). A web-based intelligent self-diagnosis medical system (Pyung-Jin, Heon & Ungmo 2009) has been 
presented to go beyond finding the name a disease by suggesting synthetic preventive health care methods 
based on analysing lifestyle, food and nutrition. These technical methods and service architectures for intel-
ligent services have a reference value for our research.

2.3 Dataspace
Researchers are trying to seek a new technology to address the new challenges of big data management and 
the intelligent service environment. Since the proposal of the concept of “dataspace” (Franklin, Halevy & 
Maier 2005) as a new mode of data service, researchers have designed wide variety of dataspace models and 
have proposed several prototype systems that are consistent with their respective needs.

From the perspective of data, the essence of a dataspace is a collection of big data. Dataspace technology 
could be used in a wide range of areas, such as Personal Information Management (PIM), organising and 
processing scientific or engineering data, social network, and so on. The model research is the basis of data-
space construction. With the different domain features, there might be different data models to describe 
and organise the complex data for different service requirements. The primary existing dataspace models 
are as follows:

(1)  iDM (iMeMex Data Model) 
   The iDM is the dedicated data model of the iMeMex system (Dittrich, Salles 2006). It organises 

and expresses all of the personal data resources in the form of a resource view and a resource 
view class. The iDM is the first dataspace model that is able to describe heterogeneous personal 
data resources in a unified form. However, this model uses a new query language, iQL, which 
based on XPath and a SQL-like query language. For ordinary users, it is difficult to get started 
quickly.

(2) UDM (Unified Data Model)
   UDM is a data model that is suitable for desktop search systems (Pradhan 2007). UDM adopts 

the database/information retrieval (DB/IR) integration approach that is able to dive into data 
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items to retrieve the desktop dataspace. However, its new query language TALZBRA is very 
complex, and this model does not support shortcut queries.

(3) Probabilistic Semantic Data Model (P-DM)
   P-DM is a dataspace model completely based on probability (Saema, Dong & Halevy 2009). 

P-DM uses the probabilistic mediate schema (Saema, Dong & Halevy 2008) and probabilistic 
semantic mapping to achieve the semantic integration of heterogeneous data sources. This 
model addresses the problem of uncertainty (Dong, Halevy & Yu 2009; Singh, Jain 2011) in 
 different levels of dataspace and supports the top-k query response that could improve the 
quality of queries. However, its schema matching probability is not very accurate, and the 
model is difficult to extend.

(4) Domain Model
   The Domain Model is a dataspace model that is similar to the ontology method (Dong, Halevy 

2005; Dong, Halevy & Madhavan 2005). It supports a simple semantic query operation, 
but the mapping between the domain model and the data sources needs to be constructed 
 manually.

(5) CoreSpace Model & TaskSpace Model
   The CoreSpace Model and the TaskSpace Model are the core parts of the personal dataspace 

management system, OrientSpace (Li, Meng 2008; Li, Meng 2009; Li, Meng & Kou 2009), 
which automatically constructs a personal dataspace. This system considers the behaviour 
characteristics of the subject, and highlights the effect of subject characteristics on the 
 dataspace. However, an in-depth discussion about the inconsistency and the optimisation of 
the weight calculation is needed.

(6) Triple Model
   The Triple Model is a flexible data model (Zhong, Liu & Qian 2008) that is similar to the RDF 

and expresses heterogeneous data in the form of triples. This model represents the hier-
archy of file resources through a graph model, thus it can express the heterogeneous data 
simply and flexibly in dataspace. However, the Triple Model does not support path expres-
sion queries, does not consider uncertainty, and queries by Subject Predicate Object (SPO) 
are difficult.

In addition to the above six models, there are some other dataspace models, such as the resource space 
model (RSM) (Zhuge 2004), the PAD model (Dong et. al 2009), etc. They provide the related theoretical basis 
for dataspace research.

Researchers have developed several prototype systems based on the model research about dataspace. 
The prototype of iMeMex supports a keyword query, a structured query and a path query, but does not sup-
port a semantic query (Blunschi 2007). Semex (Dong, Halevy 2005) is a prototype system that supports a 
neighbouring keyword query based on the domain model and global relational view, but it lacks a full-text 
index about the text content and unduly depends on the model. OrientSpace (Li, Meng 2008; Li, Meng & 
Zhang 2008) is a personal dataspace prototype system that supports the “pay-as-you-go” method. It supports 
incremental optimisation of the data service by constantly changing based on user behaviour analysis. These 
prototype systems are all personal dataspaces, and are not very similar to the scientific dataspace in the field 
of engineering application.

PAYGO (Madhavan et al. 2007) supports automatic pattern matching and similarity clustering analyses 
that support automatic evolution based on user feedback, but it lacks a detailed description. UDI (Saema, 
Dong & Halevy 2008) supports the mode merge and automatic evolution, but its assumption is too simple 
and restricts the scope of application. Roomba (Jeffery, Franklin & Halevy 2008) is the first dataspace sys-
tem that genuinely emphasises evolution. It introduces a user feedback mechanism, stores the data using 
generic triples, and adopts the method of instance-based string similarity matching. Quarry (Howe 2008) 
materialised data to generic triples and realised data integration using the global mode, but it occupies a 
large amount of storage space.

CopyCat (Ives 2009) embodies a more interactive data integration approach based on the SCP (Smart 
Copy and Paste) model. This prototype supports system optimisation by automatically learning based on 
user feedback. Similar to CopyCat, Octopus (Cafarelia, Halevy & Khoussainova 2009) is a dataspace proto-
type system that includes a variety of functions, such as searching, information extraction, data cleaning, 
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data integration, etc. It supports keyword search and provides the “best-effort” operation based on query 
relevance ranking. These two prototype systems both do not distinguish the different stages of the lifecycle, 
but rather try to seamlessly integrate all of the stages of dataspace.

The Self-Organising Maps (SOM) (Guerrero 2012) method was used to screen the level of satisfaction of 
dialysis patients in the NephroCare network, which belongs to Fresenius Medical Care (FME), a global pro-
vider of dialysis services. SOM is a neural network model for clustering and projecting high-dimensional data 
into a low-dimensional space, and it could support the identification of potential improvements for specific 
patient groups by analysing data provided by a questionnaire. This method could preserve the topological 
relationships of original high-dimensional dataspace; therefore, its idea is a good inspiration for dataspace 
construction.

The above dataspace prototypes have more or less satisfied the specific demands of big data processing, 
such as semantic integration, pay-as-you-go, schema mapping, etc. However, most of them are limited by 
the coarse-grained architecture research and model construction, and rarely consider the issue of demand-
oriented dynamic evolution in the modelling process of the dataspace. Meanwhile, these prototypes do 
not provide the data service features in the field of materials. Based on this previous work, we propose the 
concept and method of Virtual DataSpace (VDS) (Liu 2012). This technology could convert physical data into 
virtualisation processing, achieve the dynamic evolution of data and realise the individualised on-demand 
service based on data associate modelling. It is necessary to deeply research the modelling process and 
the evolutionary algorithm of VDS for big data processing and intelligent services in the field of materials 
engineering.

3 Virtual Dataspace Model
3.1 VDS Definition
VDS is a new scientific data service mode that faces the domain demands of an engineering expert system, 
especially the materials application demands. It can be defined as follows.

VDS denotes the sets of data, services and their relationships with the subject of user requirements 
by supporting virtualisation processing and dynamic evolution. VDS is composed of four-tuples, VDS =  
(SUR, DS, DRS, SS). SUR is the subject of user requirements, which mainly refers to the demands of user; 
DS is the data resource set; DRS is the data relationship set among the data resources; SS is the service 
resource set.

According to the definition of VDS, VDS means the collection of data resources and services that 
relate to the specific subject. It uses virtualisation technology and the dynamic (Saleheen, Lai 2013) 
evolution method to expand the data resources and service resources in accordance with the actual 
needs of subjects. From the basic structure on the relationships of subjects, data sets, and services in 
VDS (Figure 1), it is noted that the “subject” is also the user who uses the “virtual data” for their specific 
needs.

Considering a specific data item, VDS also could be described as an m-dimensional vector. VDS =  
(V1, V2, . . . , Vm), where Vi is an n-dimensional vector, Vi = (Pi1, Pi2, . . ., Pin) and Pij is an instance of a triple (subject, 
data set, service). Thus, VDS is an m*n-dimensional space as in Eq. (1).

Figure 1: The basic structure of the relationships between subject, data sets, and services in VDS.
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Describe the relationship of data, services and subjects in VDS as an m*n-dimensional matrix as in Eq. (2).
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Rij is a Boolean value. Consider the data, services and subjects as the basic element items, represented as  
Ek. When a correlation exists between two element items, for example, Ei is related to Ej, thus Rij is assigned 
to 1; otherwise it is 0. The total number of relationships is m*n.

Around a particular subject such as “the automobile manufacturers need high hardness material for car 
board”, according to the associated construction of this subject, the subject-specific VDS is obtained as in 
Eq. (3).
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Assume that the number of Rij, which is equal to 1, is N, then obtain the subject-related VDS as an N-dimensional 
vector, VDSsub = (P1, P2, . . ., PN), thus, VDSsub is an m*n-dimensional space as in Eq. (4).
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Because VDSsub is around the same subject, sub1 = sub2 = . . . = subN. Accordingly, one could obtain the 
data and services that are of interest to the particular users, i.e., obtain a particular VDS based on the 
requirement of the subject. Therefore, VDSsub also could be considered as a subset of VDS.

Based on the above theoretical analysis, the working process of VDS could be divided into three 
main stages (Figure 2). (1) In the initialisation phase, users have not accessed the data, thus there are 
no associated relationships between data and subjects. (2) In the use phase, gradually establish the 
associations between users and the data of interest along with the accessing and manipulating of data 
by the subjects. (3) In the evolution phase, join the users with their data of interest to form a dedi-
cated space that also could be automatically optimised according to changes in the users’ interests and 
requirements.

3.2 VDS Model Construction
The construction of VDS model mainly includes three steps, build semantic data view, establish user require-
ment model and match schema automatically.

The construction of the global semantic data view (Qin, Atluri 2009) is the primary condition of realising 
the automatic mapping between the local data sources and the global model. The global semantic view 
could be defined as, GSV = (Cs, Rs, Is, As, Rus), where Cs represents the domain core concept sets. Rs denotes 
the semantic relationship sets of domain concepts, i.e., Rs = C1*C2*. . .*Cn. Is are the instance sets. As denotes 
the axiom sets about the domain concepts and relationships. Rus represents the Horn rule sets, which sup-
port the discovery of domain implicit knowledge by rule-based reasoning.

To further increase the expression strength of an associated relationship between core concepts, we also 
include a certain number of constraint axioms into the global semantic view. The constraint axioms can 
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Figure 2: The working principle of VDS in different stages.

be classified as two types: the value constraint, which constrains the range of attribute, and the cardinality 
constraint, which constrains the quantity of value.

In addition, OWL DL (Sirin 2007) is also a good ontology description language that has a stronger semantic 
expression and reasoning function. Therefore, its constraint axioms also could be used to describe the global 
semantic view.

Considering the “subject” as the core concept of VDS, it is important for both the “data” and the “service”. 
Thus, subject mainly refers to the user requirement. It is necessary to analyse the relationship between sub-
ject and the other elements in VDS, we find complex relationships among subjects and users. The user maps 
to different subjects according to his/her demands, whereas a specific subject could be applied to different 
users. Data items and services are organized by subjects in VDS. This management is evolved according to 
different requirements and using behaviour.

User Requirement Model (Figure 3) is defined as a set of four-tuples, URM = (CI, RI, WI, TI), where CI 

denotes the core concept sets that the subject is interested in, CI = Ckey + Ctemp, where Ckey defines the key-
note requirement and Ctemp denotes the temporary requirement. RI denotes the associated relationship 
of core concepts. WI denotes the weight value of concept, i.e., the interesting degree of the subject for a 
core concept. TI denotes the update time of WI.

The schema mappings are built automatically among data items, data sources and global semantic view. It is 
constructed by a semantic query, which reinforced the relationships between semantic concept items. Ontology 
similarity is used in this method to achieve automatic schema mapping. This measurement could be defined as,
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Figure 3: The user requirement model of VDS.

where C1 and C2 are the semantic concept items. C1i denotes the sub-concept in C1 and C2j denotes the  
sub-concept in C2. If the attributes or the instances of concepts c1 and c2 are the same, the concepts c1 and c2 
are the same. If the sub-concept (i.e., subclass) or parent concept (i.e., super class) of concepts c1 and c2 are 
similar, then the concepts c1 and c2 are similar. If all of the sub-concepts or brother concepts of c1 are similar 
with the concept c2, then the concepts c1 and c2 are similar.

Therefore this model only contains the data and services that are required by the subject. It adopts the 
manner of pay-as-you-go, thus the overhead of construction is quite small. This model is gradually improved 
along with the use of data by the subjects.

4 Model Evolution Based On Services
The changing demands in data services require the model evolution in VDS. The evolved model could help 
better adoption of VDS along with the service time and changing requirements. On one hand, the changes 
in services and user requirements from time to time lead to continuous changes in data items of VDS. On 
the other hand, the changes of semantic relationships and information in applications are changing due to 
the heterogeneous data sources.

The evolution of user requirements means the changes in interest areas of the subject that are embodied 
in the user feedback. The user feedback is mainly described as two parts. One is the feedback of the require-
ment model (i.e., the interest model), which supports the amendment of core concepts by subjects. Each 
subject could correct the interest model according to their own demands, and would not affect the use of 
VDS by other subjects. The other is the feedback of pattern matching results. It supports feedback correction 
for the results of pattern matching by subjects in the process of automatic matching and mapping between 
the local data source mode and the global mode.

In VDS, users feed their expectations and intentions to the system through the feedback instance. The user 
feedback instance could be described as follows.

The User Feedback Instance is a set of four-tuples, UFI = (AttV, RG, Exp, Prov), where AttV is a set of key-
value pairs that is composed of the attributes and the corresponding values, i.e., AttV = <atti, vi>, i ∈ [1,n]. 
RG denotes a set of associated relationships in the global model. Exp is a Boolean value, which supports 
determining whether the attribute key-value pairs “AttV” could meet the user expectations. Prov denotes 
the provenance of feedback that could be specified by the user and could be automatically obtained from 
the candidate matching.

For example, Prov1 = <‘huserSpecified’, MD>, where ‘huserSpecified’ denotes that AttV is specified by the 
subject. MD denotes that the attribute key-value pairs “AttV” is automatically obtained from the data source 
in the process of pattern matching. MD is a set of candidate mappings, which supports retrieving the AttV 
from heterogeneous data sources, i.e., MD = <m1, m2, . . . , mk>.
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Another example is UFI2 = ({<Type, ‘Nano Materials’>}, SPoSM, false, {m2}). This feedback instance means 
that the type of ‘Nano Materials’ could not meet the needs of “Service Performance of Structural Materials 
(SPoSM)” according to the candidate matching “m2”. Actually, this is a ‘nano-material’ rather than a ‘structural 
material’.

Table 1 illustrates the evolution algorithm of schema matching using the feedback instances. First, select 
a set of candidate mappings as input. Second, in the input mapping, automatically obtain the information 
about classes, attributes and relationships from the local mode and the global semantic view. Next, annotate 
the matching and mapping between the local data source mode and the global semantic view using the user 
feedback instances. Then, identify cases where matching or mapping does not meet the user requirement. 
Finally, construct the new mapping by correcting and merging the current mappings that meet the user 
requirement and return the refined mappings.

Overall, dynamic evolution is an important feature of VDS, which is different from the traditional approach 
of data management. Based on the research of the dynamic evolution mechanism, users could quickly 
acquire more efficient data management and the individualised intelligent services.

5 Experimental Results
5.1 Comparison with other models
As a new data logical organisation and data management method, VDS has its own characteristics. 
Table 2 illustrates the characteristics comparison between VDS and traditional data management 
methods.

Through comparison with the traditional modes, VDS has the following significant features: (1) complex 
association with multi-source and heterogeneous data; (2) virtualisation processing; (3) pay-as-you-go, incre-
mental improvements to the data model; and (4) on-demand service mode, dynamic evolution with the 
changes of user requirements. In short, VDS is a data service mode with the feature of “data first”, “schema-
later”, and “best-effort”.

Considering the big data management needs to quickly obtain the valuable information from the complex 
data, an intelligent service mainly involves getting the required knowledge with a high value density from 
the related data with a low value density. The technical characteristics of VDS could well satisfy the needs 
of big data processing and intelligent service. Therefore, VDS is a more optimised technical method, and is 
suitable for solving the various issues of intellectualised big data services.

Table 1: The evolution algorithm of schema matching using the feedback instances.

Algorithm. RefineMappings (Map Mi, UFI instan)

Inputs Map: A set of candidate mappings

             UFI: A set of user feedback instances

Outputs Map: A set of refined mappings

Begin

1      If (Mi ≠ null){

2            S_Map = Mi;

3            O_Map;

4            Foreach Ol ∈ S_Map {

5                  If (Ol ≠ null)

6                      {Add <Ol, OG> To O_Map}

7            }

8             AnnotateMappings(O_Map, UFI);

9             C_Map = CombineMappings(O_Map);

10           Return C_Map;

11         }

End
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Traditional database Semantic data integration VDS

Data object Data in relational database All data All data

Data mode Relational model  
(Schema-First)

Ontology model  
(Schema-First)

Multiple models (Schema-Later)

Data type Structured data (tables) Structured data,  
Semi-structured data,  
Non-structured data

Structured data, Semi-structured 
data, Non-structured data

Data source Single source, isomorphism Multi-source, heterogeneous Multi-source, heterogeneous

Data association Simple association, 
structural stability

Complex association, structure 
is relatively stable

Complex association, dynamic 
evolution

Semantic Without semantic Pre-established semantic 
information

Gradually improved semantic 
information

Quality of data 
access

Accurate and complete 
results

Accurate and complete results Currently optimal results (Best-
effort)

Construction 
and services

First building, after use (Pay-
before-you-go)

First building, after use  
(Pay-before-you-go)

Construction and optimisation 
with use (Pay-as-you-go)

Table 2: Characteristics comparison between VDS and traditional data management methods.

Model 
comparison

iDM (ETH 
Zürich)

UDM 
(University of 
Washington)

P-DM 
(Stanford 
University)

T-DM 
(Carleton 
University)

CSM (Renmin 
University of 
China)

VDM (USTB)

Data source Centralised, 
heterogeneous 
data

Centralised, 
heterogeneous 
data

Distributed, 
heterogeneous 
data

Distributed, 
heterogeneous 
data

Centralised, 
heterogeneous 
data

Distributed, 
heterogeneous 
data

Model 
structure

Based on the 
graph

Based on the 
sort tree

Based on the 
probability 
mode

Based on the 
RDF

Based on the 
graph

Based on the 
ontology

Integration 
approach

Only database Database, 
information 
extraction

Data 
integration

RDF Association 
rules

Semantic 
integration

Applicable 
field

Personal 
Information 
Management 
(PIM)

Personal 
Information 
Management 
(PIM)

Not involved 
in the specific 
application 
areas

Not involved 
in the specific 
application 
areas

Personal 
Information 
Management 
(PIM)

The field of 
materials 
engineering

Uncertainty Does not 
support

Does not 
support

Support Does not 
support

Does not 
support

Support

Subject 
feature

Does not 
consider

Does not 
consider

Does not 
consider

Does not 
consider

Individual 
users as the 
core

Users in  
material field  
as the core

Applicability Good query 
performance, 
and support 
the semantic

Query interface Support the 
top-k sorting 
query results

The processing 
capability of 
query language 
is strong

Support the 
multi-faceted 
semantic 
queries

Diversified 
query strategy 
and strong 
semantic 
support

Table 3: The model comparison of dataspaces.

Although the current research about dataspace models has been studied, most of the applications are 
concentrated in the field of Personal Information Management (PIM). There are some generic models, but 
most did not give the application examples in specific areas. For the VDS proposed in this paper, we devel-
oped a “Materials Scientific Data Sharing Service Platform” based on the construction of a Materials Virtual 
DataSpace (MatVDS) to implement intelligent service applications in the field of materials engineering. 
Those with a focus on the field of materials engineering are very scarce. Table 3 illustrates the comparison 
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of dataspace models from various aspects such as the data source, the model internal principle, the inte-
gration method, the field of application, and so on. This comparison shows differences in the construction 
method and function of these models. Unlike the needs of personal data management, VDM is applied to 
the engineering field; therefore, it has a complex construction and implementation. VDM fully considers 
the user demands and emphasises the central position of the subject. Furthermore, VDM uses the ontol-
ogy as the realisation technology of the model; thus, it has a unique advantage in resolving the problem of 
semantic heterogeneity.

MatVDS has realised the automatic construction of a virtual dataspace for the application of materials 
engineering. Table 4 and Table 5 illustrate the comprehensive comparison of MatVDS and other data-
space systems in the process of automatic construction. The comparison shows that MatVDS focuses on 
complex and distributed data sources in the field of materials. The integration approach of MatVDS is 
more flexible. MatVDS supports the combination of automatic and manual, i.e., pre-completed part of 
the integration work before use; and gradually improves it using the method of “pay-as-you-go” in the use 
process. MatVDS provides a diversified query strategy, and the query service system is a better fit for the 
actual needs of the engineering field. The automatic construction of a dataspace system is difficult and 
complex. The process of pursuing automation inevitably results in the loss of accuracy to some degree. 
These losses are acceptable in MatVDS and future research will focus on how to improve the accuracy of 
automatic construction.

Evolution is the most important problem to be solved in dataspace research. It is also the main basis for 
measuring the practicability of dataspace systems. Table 6 illustrates the comparison of MatVDS and other 
dataspace systems from the aspect of evolution. Compared with other dataspace systems, MatVDS has two 
types of feedback mechanisms, and makes the user requirement the centre of focus; thus, VDS realised 
dynamic evolution in the process of schema matching and mapping.

5.2 Case study in Materials Scientific Data Services
A “Materials Scientific Data Sharing Service Platform” is constructed, as Materials Virtual DataSpace  
(MatVDS) (Figure 4) to implement intelligent service applications in the field of materials engineering. This 
platform integrated the massive, distributed and heterogeneous data resources under twelve  categories: 
material basis, non-ferrous & alloy materials, ferrous materials, composite materials, organic polymer 
 materials, inorganic non-metallic materials, information materials, energy materials, biomedical materials, 
natural materials & products, building materials, and road traffic materials.

Prototype 
system

User interest and 
behaviour

Load Query type Query 
result

MatVDS Consider the user interests 
and behaviour habits

Pre-integrated, and 
dynamic evolution

Keyword query, structured 
query, visualisation query

Union

OrientSpace Consider the behaviour 
characteristics and habits

Dynamic evolution Keyword query, structured 
query

Union

SEMEX Does not consider Run-time integration Keyword query, structured 
query

Merge

iMeMex Does not consider Run-time integration Keyword query, structured 
query

Union

PayGo Does not consider Run-time integration Keyword query Union

UDI Does not consider Run-time integration Structured query Merge

Roomba Does not consider Pre-integrated Keyword query, structured 
query

Merge

Quarry Does not consider Run-time integration Structured query Union

Cimple Does not consider Run-time integration Keyword query, structured 
query

Merge

CopyCat Does not consider Pre-integrated Visualisation query Union

Octopus Does not consider Pre-integrated Keyword query Merge

Table 5: The comparison of MatVDS and other dataspace systems in the use phase.
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Prototype system Use output Evolution method Evolution processing

MatVDS Sort results, browsing, 
sources

A variety of user feedback 
instances, explicit and implicit

Matching and mapping, the 
user requirement model

OrientSpace Sort results, browsing, 
sources

User behaviour, implicit Core dataspace, task space, 
associated information

SEMEX Results, browsing — —

iMeMex Results, browsing, sources — —

PayGo Sort results User feedback, explicit Sorting query results

UDI Sort results — —

Roomba Results User feedback, explicit Matching

Quarry Results, browsing User feedback, explicit Matching

Cimple Sort results, browsing User feedback, explicit Matching

CopyCat Results, sources User feedback, explicit Integration mode, mapping

Octopus Results User feedback, explicit Integration mode, mapping

Table 6: The evolutionary comparison of MatVDS and other dataspace systems.

Figure 4: The system architecture of MatVDS.

MatVDS has the characteristics of “Data as a Service, DaaS”, virtualisation processing, high-quality 
services, scalability, high reliability, and so on. It collected in total nearly 500,000 data resource items 
and continues to grow rapidly. The global semantic view of MatVDS has been built based on the domain 
core concepts and hierarchical structure in the field of materials engineering. This includes materials 
data from various perspectives, such as the materials categories, the basic features, the organisational 
structure, the chemical composition, the processing technology, the application  performance, and  
so on.

Relationships of the users, data services and subjects are described by MatVDS. A specific dataspace is 
built for every user according to their requirements, which includes user preferences, data of interest and 
semantic relations of big materials scientific data.
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The diversified and personalised intelligent services are achieved by the VDS model based on its evolu-
tion in the field of materials engineering (see Figure 5). Intelligent retrieval is the core and basis of these 
intellectualised data services. The flexible services are modularization in MatVDS based on the intelligent 
retrieval.

Because of the semantic extraction, relevant knowledge and data sets are provided to users that may inter-
ested in. For example, the Figure 6 shows the results of the semantic search for query “corrosion-resistance”. 
One result shows “GB/T 18982-2003”, which belongs to the ferrous materials category, and stored as a “pdf” 
file. The result of “X2CrTi12” belongs to the ferrous materials category, and stored in both semi-structured 
data XML files and non-structured data chart files. While the result of “EVA” belongs to the energy  materials 
category, which stored in databases as table files. “Furan resin” belongs to the organic polymer material  
category and stored as image files. Therefore, it proves that we could quickly and accurately acquire the 
relevant data services based on the domain knowledge.

Figure 6: The demand-oriented data service instance in MatVDS.

Figure 5: The collection of intelligent services in MatVDS.
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6 Conclusions and Future Work
This paper proposed the model of VDS for materials scientific big data management, sharing and services 
in the field of materials engineering. The conceptual model and theories are introduced for the dataspace 
model.

And the automatic construction is also described to implement the VDS model. The VDS could also be 
evolved automatically to adopt the changing requirements of the users and service demands. Comparisons 
with other dataspace models are shown in the experimental results. And MatVDS is implemented for sup-
porting intelligent services in materials engineering field. The results shows the efficiency of the model in 
applying intelligent services for the specific domain.

The future work of VDS includes improving the optimized method for automatic schema matching and 
mapping, developing better evolutionary algorithms for VDS evolution, and extending the scope of intel-
ligent services in the field of materials engineering.
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