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The majority of restoration strategies in the wake of large-scale disasters have focused 
on short-term emergency response solutions. Few consider medium- to long-term restora-
tion strategies to reconnect urban areas to national supply chain interdependent critical 
infrastructure systems (SCICI). These SCICI promote the effective flow of goods, services, 
and information vital to the economic vitality of an urban environment. To re-establish the  
connectivity that has been broken during a disaster between the different SCICI, relationships 
between these systems must be identified, formulated, and added to a common framework 
to form a system-level restoration plan. To accomplish this goal, a considerable collection of 
SCICI data is necessary. The aim of this paper is to review what data are required for model 
construction, the accessibility of these data, and their integration with each other. While a 
review of publically available data reveals a dearth of real-time data to assist modeling long-
term recovery following an extreme event, a significant amount of static data does exist and  
these data can be used to model the complex interdependencies needed. For the sake of 
illustration, a particular SCICI (transportation) is used to highlight the challenges of determining 
the interdependencies and creating models capable of describing the complexity of an urban 
environment with the data publically available. Integration of such data as is derived from 
public domain sources is readily achieved in a geospatial environment, after all geospatial 
infrastructure data are the most abundant data source and while significant quantities of 
data can be acquired through public sources, a significant effort is still required to gather, 
develop, and integrate these data from multiple sources to build a complete model. Therefore, 
while continued availability of high quality, public information is essential for modeling efforts 
in academic as well as government communities, a more streamlined approach to a real-time 
acquisition and integration of these data is essential.
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1 Introduction
Critical infrastructure systems provide the backbone for socioeconomic vitality and security of urban areas. 
These systems are defined by the US Department of Homeland Security (DHS) as follows: 

Critical infrastructure are the assets, systems, and networks, whether physical or virtual, so vital to 
the United States that their incapacitation or destruction would have a debilitating effect on security, 
national economic security, national public health or safety, or any combination thereof (DHS, 2014). 

A supply chain interdependent critical infrastructure system (SCICI) is composed of many systems, including 
but not limited to: transportation, power, communications, and water, which are interdisciplinary in nature. 
In addition, these SCICI exhibit complex interdependencies that must be captured to create models that are 
representative of the true system conditions. 

Effective modeling of critical infrastructure restoration must incorporate ideas and tools from a wide spec-
trum of research areas including: simulation-based optimization, structural engineering, human behavior 
modeling, geographic information systems (GIS), and supply chain management. In general, recent disaster 
management studies use either a qualitative (Carlson & Doyle, 1999; Haimes 2005; Amin & Wollenberg, 
2005) or quantitative methodology (MacKenzie et al., 2014; Adams & Stewart, 2014). These efforts fail to 
capture full system complexity by not combining qualitative and quantitative methodologies and ignoring 
the interdependencies that lead to emergent behaviors. In addition, the majority of restoration strategies 
in the wake of large-scale disasters have focused on short-term emergency rescue and recovery method-
ologies (Holguín-Veras and Jaller, 2011; Hale and Moberg, 2005; Widener and Horner, 2011). Few consider 
medium- to long-term restoration strategies that reconnect urban areas to the national SCICI. The medium- 
to long-term restoration of these systems requires longer time lines and larger financial investments than 
short-term emergency response, and so a methodology specific for these phases is necessary. 

A survey paper by Altay and Green (2006) found that of 110 articles relating to disaster operations man-
agement research, 43.6% relate to the mitigation phase, 21.8% focus on preparedness, 23.6% relate to 
response, and only 10.9% are related to recovery (12 articles). Further, most previous studies focus only on 
a single aspect of one system within the SCICI (Shinozuka et al., 2007; Ouyang and Dueñas-Osorio, 2011; 
Rosato et al., 2008), or on emergency response processes (Bruneau et al., 2003; Vugrin et al., 2010; Reed  
et al., 2009). A review of disaster recovery studies categorized by disaster management lifecycle do not build 
a comprehensive framework that identifies the data required to build such a model but assume that the data 
are available (Altay and Green, 2006; Alvarez et al., 2014; Kondaveti and Ganz, 2009; Feng and Weng, 2005; 
Miller-Hooks et al., 2012). Operations research-style quantitative research typically focuses on game theory 
or inventory/sourcing models (MacKenzie, et al., 2014).

To map restoration strategies of the SCICI in the aftermath of a disaster one must first build a comprehen-
sive framework that realistically models the SCICI in a normal environment. This requires a large amount of 
data be integrated across many disciplines. One tool that is useful for this research is geographic information 
systems (GIS) technology. GIS can be used to examine the interdependency among critical infrastructure 
systems (Sinton, 1992; Ramachandran et al., 2015a) or depict geographic correlations within critical infra-
structure elements (Burrough, 1990; Goodchild and Haining 2004; Greene, 2002; Ramachandran et al., 
2015b). But a multi-dimensional approach to this modeling has yet to be considered (Mitchell, 2005; Zeiler, 
2010; Openshaw, 1994).

 Models required for planning the restoration of SCICI systems must capture real-world complexities and 
use real-time data to be useful to decision-makers. Geospatial data plays a key role in SCICI restoration; thus, 
there exists the need to understand accessibility issues and inherent uncertainties associated with such data. 
While federal, state, and local entities routinely use GIS technology with subsets of SCICI data in disaster 
planning activities, using these data to map infrastructure elements, their interdependencies, and their res-
toration in the aftermath of an extreme event has seldom been done (Fletcher, 2002). As an important first 
step, this article documents the use of publically available data for the creation of complex SCICI models.

2 Method
The emphasis in modeling critical infrastructure systems has been on developing methodologies and 
algorithms, rather than on incorporating real-world data. Most studies have taken a one-dimensional 
approach wherein it is either assumed that the required data is hypothetically complete and available, 
or synthetic data is generated for analyses when needed. It is difficult to understand all the complex 
interactions that exist between infrastructure elements and systems based on such approaches. In this 
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study, the transportation infrastructure system within SCICI is used as an example to illustrate its com-
plex interactions with other SCICI systems and categorize, integrate, and analyze the data required to 
properly model this system. The transportation (logistics) infrastructure system presented here includes 
the transport mode (road, rail, air, and water) infrastructure, the freight that is moved through these 
modes, and the storage of that freight.

As with any system that forms a component of the larger SCICI system, a model of this component system 
must be created with the understanding that it be integrated into a larger SCICI modeling framework. The 
construction of a restoration model of any element of SCICI damaged due to a large-scale disaster can be 
divided into five work-flow phases: acquisition and integration of data, SCICI system modeling, SCICI inter-
dependency determinations, hazard damage simulation, and restoration modeling. A work-flow diagram for 
the transportation infrastructure system is shown in Figure 1. Each phase requires different types of input 
data, typically in diverse formats (including non-digital formats) and stored in different databases on differ-
ent computers. While this presents a challenge to the modeling effort, the identification and integration of 
these data are essential for creating realistic SCICI system models.

The acquisition and integration of data phase incorporates all data necessary to make a realistic model 
of the pre-disaster SCICI system for the region under consideration. For the transportation infrastructure 
system this would consist of: (1) freight data - storage/distribution facilities data, modes of transport and 
their capacity, and flow data, and (2) infrastructure data – with respect to the capacity the infrastructure 
can sustain and the location of each infrastructure element. Typically these data are not readily available in 
digital databases, may be proprietary, and/or come from multiple sources, making its integration daunting.

The SCICI system modeling phase combines the data from the previous phase to construct a model of the 
SCICI system and how it operates to perform the tasks necessary to accomplish the overall SCICI goals. The 
transportation infrastructure system model incorporates the freight data, system capacities, and the avail-
able transportation network from the acquisition and how it works together to move goods throughout the 
region being considered.

In the SCICI interdependency determinations phase, the interdependencies are mapped between SCICI sys-
tems both internally and to the external regional, national, and global supply chain elements. This is crucial 
to any restoration efforts. Through these interdependencies it becomes possible to detect critical points of 
failure that can cause a cascade effect damaging many elements upon the failure of a single element.

The hazard damage simulation phase gathers information related to the critical points and determines 
how potential hazards might affect these weak points in the SCICI. This allows for the testing of restoration 
modeling before the onset of a large-scale disaster. In the event of a disaster, the actual damage itself would 
be the input data for the restoration optimization model rather than simulated damage.

Finally in the restoration modeling phase scheduling and work flows are created to return the SCICI system 
back to the pre-event capabilities. Optimization techniques are applied here to develop plans that allow for 
the reassembly of the transportation system in a relatively efficient manner. In the case of the transportation 
system at hand, this would involve both reconnecting the transportation modes and restoring the capacity 
of those connections to pre-event levels.

Figure 1: Schematic work flow pattern for transportation infrastructure system restoration modeling.
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After identifying the data required to model the SCICI systems it is necessary to acquire these data. Given 
the amount of data that must be collected there are several challenges. Table 1 shows data requirements for 
mapping the transportation system of SCICI and also identifies several difficulties in acquiring these data. 
Transportation is restricted to the transportation of physical goods (as opposed to information, services, 
electricity, or the like). This is accomplished through one or more modes of transportation (air, rail, pipeline, 
water, or road). Hence, the data required for these different transportation modes include, but is not limited 
to: capacity, location, and freight forwarding capabilities. Further, much of the data required to model the 
transportation of goods is owned by private companies who are generally unwilling to share such informa-
tion. As a result, acquiring the necessary datasets or resources can be time-consuming and introduce many 
uncertainties. To account for this, no proprietary data is represented in the following discussion of the dif-
ferent data types.

2.1 Freight/Freight Flow Data
Freight data include information about commodities shipped, their weight, manufactured goods versus raw 
materials, and the value of materials that are transported. In addition, the mode of transportation (rail, road, 
air, water, or pipeline) used to ship the goods and the holding capacities of each mode for a given area are 
included in these data. Freight flow data are typically measured in tons of goods transported and recorded 
as tons/commodity/mode by the National Transportation Atlas (NTAD, 2010). The primary source for freight 
data is the Commodity Flow Survey (CFS) of 2013 (U.S. Census Bureau, 2013). It is a public database that con-
tains information on domestic interstate freight. Data are fed into this database through a variety of sources, 
but the primary problem with these data is their resolution and completeness (LeBeau, 2006). Data gaps 
can, in part, be removed by estimating values for a commodity using a gravity model of spatial interactions, 
which can be used as a method for determining facility locations (Holguin-Veras and Jaller, 2011; Nan Liu 
and Vilain, 2004; Peréz Lespier et al., 2015). Origins, destinations, and modes also require estimation due to 
the gaps in freight data. In general, these data provide enough information to form estimates for missing 
data (Transportation Research Board, 2003). More accurate data likely exists, but it is proprietary in nature. 
Since most freight transportation companies are privately owned; the modes used, commodities shipped, 
routing (including transshipment facilities), and tonnage are either under-reported or the data is not avail-
able to the public. In these cases it is necessary to estimate the missing data based on the publically available 
data. The data regarding commodities passing through a state are generally available, and from this informa-
tion the flow of commodities through a particular area can be estimated. The tonnage transported can be a 
major factor in assigning priorities within restoration models (e.g. the greater the tonnage transported, the 
higher the priority that mode of transport has during the restoration process). 

2.2 Transportation Infrastructure Capacity Data
Infrastructure capacity data incorporates holding capacities of infrastructure facilities that aid freight flow 
such as cargo hubs. When considering hubs that store goods and commodities, the multimodal nature of 
modern cargo transportation systems is important. Goods may arrive by river or sea, be stored in a water-
hub, be picked up by a truck and subsequently stored in a road-hub. There are four main types of hubs 
considered here: Water-hubs, Rail-hubs, Road-hubs, and Air-hubs. 1) Water-Hubs form the largest and most 
diversified hubs in the transportation system. They facilitate transportation services for many types of prod-
ucts via barge or ship. They are also multimodal hubs that act as transfer points for many types of products 
from water modes to other modes such as rail, pipeline, air, or truck. An inherent problem with the data 
associated with water-hubs is that a variety of information unique to that hub is needed. 2) Rail-Hubs are 
most commonly rail freight yards. These hubs require a great deal of space for multiple tracks and are there-
fore most likely to be located on greenfield sites within or near major industrial zones. Rail-hubs generally 
have very large holding capacities and also act as multimodal hubs. 3) Road-Hubs usually store freight which 
is very diverse and bulky. They also act as multimodal hubs, shipping and receiving goods from road, rail, 
air, and water. Road-hubs are generally located just off major interstates to reduce transportation time.  
4) Air-Hubs are located at airports connected to major road networks that allow for the rapid flow of people 
or cargo. These constitute the smallest hub connection due to the relatively high costs involved with air 
transport.

The data required for these hubs include freight handling data (what equipment is required for loading), 
information about the facilities required to accommodate ships, trucks and trains (berths, loading bays 
and freight yards respectively), total capacity data according to type of goods they can store (cold storage, 
hot storage, hazardous material etc.), and freight flow. Most of the transportation data for road and rail is 
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Category Data Description Data Metric Ownership Data Challenges

Freight Data

Commodity Freight Food, Paper, Wine, etc. Tons Public
Static data; 
Generalized data; 
Proprietary data

Manufactured Goods Electronics, Machinery, Textiles, etc. Tons Private/
Public

Raw Materials Coal, Iron Ore, Bauxite, etc. Tons Private/
Public

Freight Flow Data

Road Transport Goods transported over roads Tons Private/
Public

Inconsistency 
Estimation required 
Public/Private ownership

Rail Transport Goods transported on rail Tons Private

Air Transport Goods transported by air Tons Private

Water Transport Goods transported by water Tons Private/
Public

Pipeline Transport Goods transported through pipeline Tons Private/
Public

Infrastructure Capacity Data

Road-Hub Bulk, General Cargo, Containers, etc. Tons Private Varied amount of data 
needed 
Different capabilities of 
hubs 
Interdependency of data

Rail-Hub Bulk, Intermodal, Shunting, etc. Tons Private

Water-Hub Rail Car Storage, Dry Storage, Liquid 
Storage

Tons/
Bushels

Private

Infrastructure Location Data (Geospatial Data)

Hub Location Number of hubs in the area Number Private

Ever changing data;
Use of Software;
Static data

Utility Location Location of all utilities that aid 
freight flow

Number Private/
Public

Road/ Bridge Location Location of all roads and bridges Number Public

Airport Location Location of air infrastructure Number Private

Pipeline Location Location of pipelines and pumping 
stations

Number Private

River Location Location of docks and storage areas Number Private

Rail Location Location of all rail infrastructure Number Private

Restoration Data

Number of People Number of people need and avail-
able

Number Private/
Public

Different temporal fac-
tors
Vast amount of data
Scalability
Ownership of data

Travel Time Time required for teams to arrive in 
area

Hours/
Days

Private/
Public

Skill Set Skills necessary for each repair job Qualitative Private/
Public

Mode Substitution Mode substitutions facilitating 
freight flow

Mode Private/
Public

Task Management Assignment and management of 
repair tasks

Qualitative Private/
Public

Equipment Necessary Materials require for restoration Tons/
Pieces

Private/
Public

Hazard Risk and Vulnerability Data

Historic Data Previous hazards that have caused 
damage

Text Private/
Public Inconsistency

Generalized data
Proprietary data

Fragility Data Vulnerability of element to hazard Percentage Public

Damage Estimation Severity and extent of damage from 
simulation

Percentage Public

Table 1: Data Requirements for Transportation Sector (modified from Long et al., 2013).
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obtained from National Transportation Atlas Database (NTAD, 2010) or the CFS of the U.S. Census Bureau 
(2013) which are public resources. 

2.3 Geospatial Data 
Geospatial datasets contains the location information associated with various types of data and as such 
forms the base into which other data are integrated. The geospatial data include the locations of hubs, 
warehouses, utilities, infrastructure, and all other objects or materials that could be damaged and in need 
of repair or replacement from the impact of a large-scale disaster. Most of these data are available or can 
be derived from geospatial-centered websites like The National Map (TNM) of the U.S. Geological Survey. A 
shortfall of these data is their static nature. Most geospatial data are updated yearly or over the course of 
several years, so as new warehouses and hubs are built, the geospatial data will not convey these new sites 
until the next update cycle. Also, the extraction of these data from such geospatially located sources as 
orthoimagery can be quite time consuming and require specialized personnel for the process. The advan-
tage of these data is their free availability, large area coverage, and accurate overview of ground features. 
Figure 2 illustrates some SCICI element examples for the St. Louis, Missouri region.

2.4 Restoration Data
Restoration data are records containing information on rebuilding or recovery activity rates. These data 
include the number of skilled workers available for restoration activities, raw material stockpiles, necessary 
equipment accessibility, the time required for teams to assemble within a given area, and collaborations 
between invested agencies: federal, state, and local. These data come, in part, from personal interviews with 
people experienced in disaster reconstruction and from published agency reports on restoration activities. 
Typically these data are not available in electronic format and, for the most part, integrating these can be 
time consuming. Much of these data are specific to the type of disaster experienced. Nevertheless, elements 
are often generalizable and can be used in developing restoration estimates for most damage estimates. 

2.5 Hazard Data
The damage experienced by the transportation sector will, of course, depend on such variables as the type 
of disaster, its severity, duration, the vulnerability of the infrastructure, and the like. The actual damage 
experienced must ultimately be input data into any reconstruction optimization model, nevertheless, for 
the purpose of testing such a model a damage estimate can be simulated. Such a simulation requires hazard 
risk evaluation data as well as SCICI survivability estimates. Much progress with such simulations has already 
been made by FEMA (2003) and can be accessed in the HAZUS-MH software which provides simulations of 
some network vulnerabilities to different hazards

2.6 Role of GIS in Data Acquisition and Integration
GIS offers tools that make the acquisition and integration of SCICI system data more tractable. Data layers 
from The National Map of the U.S. Geological Survey include orthoimagery, elevation, hydrography, trans-
portation, place names, and land cover, and can be downloaded directly into a GIS database (Sugarbaker 
and Carswell, 2011). The orthoimagery serves as an excellent, if rather memory-extensive, base map from 
which to hang existing data sets and to extract further SCICI data. The orthoimagery projection is used as the 
default coordinate system into which all other data will be projected. Anything that is visible in the orthoim-
agery can be extracted by digitization as new SCICI data features (e.g., the locations of culverts, cell towers, 
electric power lines, bridges, pumping stations, etc.). Further analyses of the orthoimagery also provide the 
ability to estimate capacity of these infrastructure elements as well (e.g., number of road lanes, number of 
rail tracks, dock lengths, electric line voltages, etc.). In addition, many local and regional government agen-
cies (state departments of transportation, state departments of commerce, city utility districts, etc.) have 
data that can be integrated into a GIS database. To create the transportation system network, GIS is used to 
represent real-world features that are populated by discrete identifiable objects to build network analysis 
models based on graph theory representing transportation elements as vertices and edges. 

2.7 SCICI Interdependencies
One of the main characteristics of SCICI elements is the multiplicity of interdependencies between them. 
For example, a water pumping station, in order to function, requires electricity to run the pumps, communi-
cation to control how much water needs moved, water lines through which the water will move, and roads 
to access the station. In any attempt to return functionality to a pumping station after a large-scale disaster, 
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it is necessary to know the local interdependencies such as which electrical lines ran into the power station, 
what roads access it, what cell tower communicates with it, and through which lines water moves into and 
out of the station. Less obvious, but equally important, it is necessary to understand that these connected 
elements are interdependent on far field elements such as which power station feeds electricity to the sector 
of the pumping station, which substations transform the power into usable voltages, what communication 
path moves from the controller to the pumping station, what bridges are available to move material and 
manpower to the pumping station for repair, where are there any damaged water lines between this pump-
ing station and those before and after it. The main contribution in the acquisition of all these data and their 
integration into a GIS is the ultimate ability to map out these interdependencies through the SCICI model.

3 Results
The modeling techniques presented here make use of the high resolution imagery provided by The National 
Map to identify both the location of system elements and their proximity to one another. This spatial infor-
mation identifies the interfaces between the systems and captures the interrelationships that give rise to 
complex responses. The interrelationships are driven by the system specific information, in the case of the 
transportation infrastructure system this is the freight and infrastructure data.

Figure 2: Orthoimagery, hydrography (National Hydrography Dataset, NHD) and rail data for St. Louis, Mis-
souri region from The National Map of the U.S. Geological Survey. Road data are from the Missouri Depart-
ment of Transportation. Data from the U.S. Geological Survey and the Missouri Department of Transporta-
tion are in the public domain and freely available for download. Other elements (communications, electric 
power) are derived from the public domain orthoimagery.
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In order to test the efficacy of the integration of these data into the proposed modeling techniques, the 
St. Louis, Missouri metropolitan region was chosen as a test area. This area is covered by 2268 orthoimagery 
tiles from The National Map with cell-lengths ranging from 0.15 m to 0.6 m. These tiles constitute the base 
map onto which other data layers are projected. Considerable transportation data (particularly roads and 
rail lines) are available from state (in this case, Missouri and Illinois) departments of transportation. Much 
of the rest of the data are extracted from orthoimagery by heads-up digitization or other sources as shown 
in Table 2.

Many of the features that need to be digitized have a three-dimensional structure (e.g. cell tower, electric 
poles, etc.). To reduce the effects of parallax, features extracted from the orthoimagery are preferentially 
digitized at their base (for example, where a pole and its shadow meet). It should be noted, however, that 
since these data are extracted from the orthoimagery, only elements that are visible from the air can be digi-
tized. Some elements (such as sewer lines and water mains) can be interpolated based on surface features 
in high-resolution orthoimagery (man-hole covers or fire hydrants), whereas others (buried telephone lines, 
electric lines and fiber optic cable, and gas mains) are best obtained from other sources which are often 
more difficult to obtain. In addition, where high resolution imagery is not available (typically outside of 
urban settings) the level of detail would correspondingly decrease.

In spite of there being relatively few SCICI databases available to the general public that can be used for 
realistic models of disaster restoration, a considerable amount of infrastructure data can be gleaned from 
public sources, as shown in Figure 3 for South St. Louis, Missouri. This indicates that a large amount of 
data applicable to SCICI systems is available from public datasets alone. To date, 640 Gigabytes of data have 
been acquired for review. While this is rather large for real-time processing and model manipulation, the 
size of the data needed to describe actual infrastructure elements such as bridges, culverts, road networks, 
electric grid, communication networks, dams, locks, rail networks, water facilities and docks for the St. Louis 
metroplex is less than 100 Megabytes. This presents a complicated tangle of infrastructure elements, but 
with preprocessing it can now be fit into a model that will begin to piece together the interdependencies 

Title Description Source Restrictions Data Processing

Geospatial Data Several layers of TNM data serve 
as the base to all data integration 
processes: orthoimagery, elevation, 
hydrograph, place-names and  
land use

The National Map of 
the U.S. Geological 
Survey

Open access/
public data

None

Infrastructure Data Infrastructure data such as  
airports, electric grid, bridges, 
overpasses, tunnels, culverts,  
dams, docks, pumping stations. . .

Extrapolate from  
The National Map

Open access/
public data

Digitization

Transportation Data Road and rail lines State departments  
of transportation

Varies from 
state to state

Re-projection to 
desired coordinates

Communication Data Cell Towers Federal 
Communications 
Commission

Open access/
public data

Re-projection to 
desired coordinates

Supply Chain Data Rates of flow of commodities U.S. Department 
of Commerce and 
Private Industry 
sources

Public/Private Integration with 
geospatial data

Restoration Data Rate and manner in which supply 
chain elements are repaired after a 
large-scale disaster

Federal, State and 
Local Governments

Open access/
public data

Integration with 
geospatial data

Hazard Data The nature of destruction of specific 
supply chain elements by any  
large-scale disaster

Federal, State and 
Local Governments

Open access/
public data

Integration with 
geospatial data

Table 2: Data acquired and integrated for SCICI modeling for St. Louis metro area.
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of the SCICI which is crucial to their restoration in the wake of a large scale disaster. A small example of one  
part of this database is presented in Table 3.

However, even with this rich source of SCICI data, severe limitations still remain. One of these is that 
orthoimagery data must, by its very nature, be considered a static data source. It is a picture of the SCICI 
environment at the time of the flyovers, and these are not updated until the next flight cycle occurs which 
is generally between 3 to 5 years. Changes made to SCICI between data cycles cannot be incorporated into 
the model by this method. 

Also, the labor intensive digitization on such a massive scale of infrastructure elements introduces 
many human errors into the data including features that are missed, erroneously added, misinter-
preted, or digitized inaccurately. While this is potentially serious in individual cases, the sheer quantity 
of the data should permit the proper interdependencies to emerge; which is the ultimate objective. 
Again like the damage assessment simulation, the input of the infrastructure, once the techniques for 
mapping of the interdependencies is complete, will be input by individual communities. As electrical 
grids, water distribution systems, gas lines, etc., become more ‘smart’, (Amin and Wollenberg, 2005; 
Gao et al., 2012; Gungor et al., 2011) data can be fed directly into the model from sensors, giving a 
dynamic, real-time dimension to the analysis.

4 Conclusion and Future Work
Integrating hazard, human intervention, restoration, geospatial, freight flow, and infrastructure data for 
each SCICI element helps create a complex model of SCICI. This complexity arises not from the data itself, 
but in the interaction of SCICI processes which these data map (for example, an electric pole is not complex, 
but what happens to a water pumping station, a warehouse refrigeration unit, and several traffic lights 
if that pole were to be destroyed can lead to complexity). While separately these processes are compli-
cated, in essence it is their interaction and interdependence that generates nonlinear behavior (complexity).  

Figure 3: SCICI elements for a section of southern St. Louis, Missouri. Upper left map shows infrastructure 
in the St. Louis metropolitan area, inset black box shows the expanded area in the larger low  
right box.
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However, all SCICI elements have a common property: they all have complex components which interact 
with each other. The larger the scale of the SCICI, the more complex its systems, and the more it starts to 
display unexpected and nonlinear behavior. It is this behavior that can lead to cascading failures throughout 
many of the SCICI elements when a single unit fails. A major goal for modeling and optimization techniques 
is to see such failures in the system and rapidly repair and even improve complex infrastructure.

This research addresses a gap that exists in literature associated with the acquisition and integration of 
the different types of data which must be brought together in order to build complex and robust models 
of supply chain systems. Geospatial infrastructure data is the most abundant of these data, and while much 
of it is acquirable through public sources, a serious effort is required to gather, develop and integrate these 
data. Continued availability of public geospatial data is of paramount importance because no single utility 
or private firm has access to the various sources of data necessary to model supply chains that feed their 
own function. Further, much of the modeling is done in academic communities outside government circles 
which preclude access to restricted or classified data.

The bulk of the freight flow transportation data are proprietary, this requires that reasonable assumptions 
be made regarding data that are not accessible. Nevertheless, this research suggests that there is sufficient 
data available in public domain to create a realistic model of the transportation system, and that this model 
is scalable to the other elements of SCICI.

Future work will increase the quantity and diversity of real-world data to expand through the other SCICI 
elements. Mapping the interdependency between SCICI elements is essential to the construction of supply 
chain modelling. These interdependencies are important due to the complexity of the systems. Further, 
sophisticated modelling and optimization techniques need to be created to explore the efficiency of restora-
tion schema. 
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