
A DISTRIBUTED COOPERATIVE TECHNOLOGY FOR SPATIAL GRID

COMPUTING
Chenyu Li*, Kunqing Xie, Xiujun Ma, Cuo Cai, and Yanfeng Sun

Department of Intelligence Science, National Laboratory on Machine Perception, Peking University, Beijing,
100871, China
Email: shiningli@gmail.com, {kunqing, maxj, ccai, sunyf}@cis.pku.edu.cn

ABSTRACT

Grid computing for resources sharing and distributed computing has been researched widely in the past. As for
distributed spatial datasets, the current centralized administrative scheme may become the system performance
bottleneck. This paper presents a distributed cooperative grid computing technology to facilitate complex
spatial applications by collaboration among distributed spatial resources. A hierarchical spatial index and
communication protocol has been designed for the collaboration, which enables a dynamical choice for the best
quality nodes for specified subtasks, synchronized execution, and compensation for a failure to execute a
subtask. Also, we present an approach for dynamic resource allocation and distributed transaction mechanics to
ensure consistency.

Keywords: Grid computing, Spatial application, Distributed spatial computing, Transaction mechanism

1 INTRODUCTION

Grid computing refers to a new form of distributed computing, massively distributed and highly volatile systems
for sharing large amounts of resources, including data resources and computational resources (Wehrle, Miquel,
& Tchounikine, 2005). Currently, among the systems that feature most prominently in the grid domain are user
applications running on top (or at the edge) of the Internet allowing a large group of users to interact and share
resources. Most popular are file or content sharing applications that achieve high availability of files and
network capacity, such as DataGrid, Napster, and SETI@home (Koszek & Sandrasegaran, 2005). However,
little has been done on collaboration a large number of autonomous computational nodes to perform
complicated applications, which is important for users to make the most of distributed resources throughout the
Internet (Alameh, 2003).

Deferring to the requirement of data collection and management, spatial data is always deposited in locationally
distributed nodes, which are usually administrated under spatial databases. On the other hand, spatial
applications are always computation-intensive and data-intensive and distributed spatial data manipulating is
well organized and of high performance (Dyo & Mascolo, 2005).

Taking the specialties of spatial application into account, a grid-computing model is necessary for centralization
in spatial data sharing and functional cooperation (Andrews, Sherwin, & Banister, 2003). First, a decentralized
architecture not only eliminates the limitation of a single point of failure and scalability, but it also enhances the
system’s robustness and availability as nodes increase. Second, spatial data resources and computational
resources are enriched when more nodes are participating, thus improving system performance. Finally, nodes
may communicate with each other directly, not mediated by a central server, which greatly promotes system

Data Science Journal, Volume 6, Supplement, 2 December 2007

S889

efficiency.

This paper focuses on distributed spatial data manipulation issues and describes our implementation of a grid-
based distributed spatial cooperative system, which parses a user submitted global spatial query to subtasks
identified by the distributed spatial index and then dynamically passes them to appropriate nodes, cooperatively
accomplishing complicated spatial tasks.

The remainder of this paper is organized as follows. Section 2 describes the distributed spatial cooperative
computing system architecture. Section 3 discusses some issues of the grid execution model. Section 4 presents
the implementation of the distributed spatial cooperative computing system prototype based on JXTA platform.
Section 5 gives the conclusion to this paper.

2 SYSTEM ARCHITECTURE AND WORKING FLOW

Figure 1. The architecture of a distributed cooperative computing system

Figure 1 illustrates the architecture of a node participating in the distributed cooperative computing system. The
system is composed of identical nodes that intercommunicate via a grid network sub layer. A user interface is
also implemented to manage a request from the user and eventually return a reply. Each node holds a local
database of data resources and distributed spatial indices, which maintain distributed information of data
resources and cooperative nodes in the system, along with a transfer data cache for bundle data transfer.
However, the core module of the node is the executing engine, which consists of four components:

 Global query parser

Queries are submitted using a user interface and handled first by the global query parser. In this process, the
global query parser checks the request’s range to locate appropriate resources, generating an Equivalence
Distributed Program (further mentioned as EDP), which contains several ordered local subtasks mapped from
the global SQL statement and functionally equivalent to it. Then the EDP passes to the query manager for
execution.

 Query manager

Data Science Journal, Volume 6, Supplement, 2 December 2007

S890

When an EDP arrives, the query manager combines it with a node state to form the executing sequence.
Subtasks in the executing sequence may be relevant to resources disposed locally or globally in the system. In
the former case, the subtask will be processed straightforwardly by the query manager; in the latter case, the
query manager will dynamically search for the best quality node in the system to process the query. Also, the
query manager may be involved in other nodes’ query tasks.

 Communication manager

Communications between nodes are frequent, including node information exchange, executing instruction
sending and response, and other control messages. The communication manager provides an abstract layer
beyond the grid network to facilitate communication among the nodes. However, regarding the large amount
and diversity of spatial data, data transfer between nodes is specially dealt with by the data transfer manager.

 Data transfer manager

In principle, data transfer should be avoided, but there are still some circumstances in which it is inevitable, such
as delivering result data to the corresponding node. A data transfer manager is designed to directly pass data
between databases of specific nodes.

3 DISTRIBUTED SPATIAL COOPERATIVE COMPUTING TECHNOLOGY

3.1 Distributed Hierarchical Spatial Indexes

Hierarchical spatial indexes are designed for efficient location of spatial resources and low control cost. First,
the global range is divided into partitions, whose sizes are carefully calculated to ensure that there are neither
too many nor too few nodes in one partition (Nam & Sussman, 2005).

Nodes in one partition hold the partition’s neighbors’ routing information, so a request can be routed to a
destination partition swiftly by a greedy method (Fernandes de Mello & Senger, 2006). By partitioning the
global range, complicated consistency maintenance and unnecessary message exchange are eliminated, as there
is only a small amount of routing information to record among the partitions.

As in the partition, every node holds the same partition index, which is the combination of all partition nodes’
spatial resource indices. Thus spatial resources can be located quickly by accessing any node in the selected
partition. The cost of refreshing partition indexes in nodes is not too high because the number of nodes in one
partition is limited.

3.2 Parse Global Query

A prerequisite for distributed computing is that tasks can be split into subtasks, which can be processed
independently. As for spatial applications, the critical process in distribution is to map one global SQL statement
into several subtasks according to spatial data resource distribution.

A distributed spatial data management system should deposit data independently and redundantly. However,
data distribution and redundancy creates more complexity; spatial data, which are logically integrated, may be
divided into tiles distributed in separated nodes. Therefore the global parsing process needs to access distributed
spatial indices for locating resources.

The output of global parsing is an EDP file, that, when executing is equivalent to the global query. One critical

Data Science Journal, Volume 6, Supplement, 2 December 2007

S891

property of the EDP file is that there may be no definite candidate nodes for each subtask; however, appropriate
nodes will be elected dynamically to perform specified operations during execution.

Then the EDP file will be passed to the query manager, which will combine it with related nodes’ states to
execute content and sequence. After the query manager checks out tasks for it to achieve and then execute them,
another important task is searching for the best quality node for a subsequent task. By communicating with all
candidate nodes listed in the EDP file, the most appropriate node is chosen, and then the execution content and
sequence are delivered to it. Thus the execution progresses.

Figure 2. Parsing and executing spatial processing tasks

3.3 Cooperating Messages and Communication Mechanism

Nodes intercommunicate by cooperating messages and thus cooperate and accomplish spatial application tasks.
Messages are sent directly to the destination (may be routed by other nodes), without needing to go through
intermediate nodes such as the central controller or message server. This direct method thoroughly decreases
network communication and accordingly reduces the possibility of congestion.

There are six types of message designed for communication. They are:

1) Start: This is a notification that a node is sending a start signal to ask successive nodes whether they are
prepared for a subtask execution.

2) Start response: The successive node that has completed the preconditions check notifies the predecessor
whether it is ready to execute subtask. If the response is yes, then the successive node also puts its quality
characteristics into the response message.

3) Execution: After receiving the ready start response message from the successors, the predecessor picks out
the best one and sends the execution content and sequence to it to start execution of the subtask.

4) Failed: When a subtask execution fails, the node quits the execution and sends a failure notification to its
predecessor, which may start another candidate in compensation.

Data Science Journal, Volume 6, Supplement, 2 December 2007

S892

5) Commit: When the last node in the execution sequence finishes the last activity, it sends a commit
notification to all the predecessors to release computing resources. Until a commit or an abort message is
received, nodes participating in the current task are not permitted to quit.

6) Abort: This is a notification to abort the whole task execution. When receiving an abort notification, all the
executing nodes will quit activities after rollback.

Execution content and sequence specifies tasks and orders and, with the messages introduced above, constitutes
the foundation of node collaboration. Nodes use execution content and sequence to obtain the execution
information of complicated spatial tasks and use messages to communicate, thus making it possible to
accomplish spatial tasks.

3.4 Node Collaboration and Compensation

Once a spatial executing sequence is generated, a number of nodes are allocated to be in charge of initiating,
controlling, and monitoring the specified subtask.

Figure 3 illustrates the collaboration process of a sequential execution among nodes. Ei and Ej are two sequential
subtasks of a spatial executing sequence. Supposed that node ei1 has executed the specified subtask Ei
successfully. If no exceptions or errors occur, the successor will perform a normal execution process as follows:

Figure 3. Engines in the collaboration and compensation process

1. Node ei1
checks the executing sequence to get the direct successor of subtask Ei. If no successor subtask (e.g.

Ei
is the last subtask of the sequence) is provided, it will send a commit message to all other nodes

participating in the sequential execution and return results to the user. Currently, the direct successor is Ej.
The node ei1

searches all nodes that delegate Ej
and generates the candidate nodes list (Step 1 of Figure 3).

2. Then node ei1
picks out the best quality node ej1 to execute the specified subtask of Ej

and sends a start
message to inquire of ej1

whether it is able to execute the specified subtask of Ej
(Step 2 of Figure 3).

3. After receiving the start message, node ej1
checks system resources (e.g., usage of storage, CPU and

Memory) to decide whether to accept the executing request. The decision will be encapsulated in a
start_response message and sent back to node ei1. Here, we suppose that ej1

accepts the request. (Step 3 of
Figure 3).

Data Science Journal, Volume 6, Supplement, 2 December 2007

S893

4. When node ei1
receives the start_response message, it will send an execution message to node ej1. The

execution message includes execution content and sequence (Step 4 of Figure 3).

5. When node ej1
gets an execution message, it begins to execute the specified subtask (Step 5 of Figure 3).

After it finishes executing and gets a result, it repeats the process from 1 to 5 and passes the execution
content and sequence to other node (s).

Also, an alternative participant approach for failure handling of the sequential execution is provided. During the
sequential execution, one node chooses the appropriate participant node based on its state and keeps others in a
candidate list. If the chosen participant fails, the node can choose another candidate node from the list. Then the
whole composition goes on. In many situations, this saves an expensive rollback or abort. In the worst
circumstance, where all the candidate nodes for a critical subtask fail, it does allow the whole execution to abort.

When the errors or exceptions occur, the executing node will launch the compensation process. Compensation
follows the principle that the predecessor node, which allocates a successor node to run, is responsible for the
compensation process when the successors fail. The compensation process is as follows.

As the continuance of the normal execution process (see Figure 3), we suppose that node ej1 encounters a
failure.

6. Node ej1
detects the failure and sends the failed message to the predecessor ei1

(Step 6 of Figure 3).

7. After receiving the failed message, node ei1
checks the candidate list of subtask Ej. Here, we suppose node

ej2
is the second best quality node. Then node ei1

will allocate ej2 responsibility to execute the specified
subtask of Ej. The allocation procedure is similar to the process from 1 to 3 mentioned above.

8. The compensation process from 6 to 7 will be repeated until one node compensates it successfully or the
candidate list is empty.

The result of the compensation process is either a success or a failure. In a successful compensation, the whole
sequence will be executed as normal; otherwise, the execution of the whole sequence will be aborted, and an
abort message will be sent to the nodes.

3.5 Distributed Transaction Mechanics

A two-phase commit protocol is chosen for transaction control. Each subtask in the executing sequence is
assigned a state, which may be one of waiting, abort, failed, ready, commit, and executing.

When executing, each node examines its subtask. If successfully executed, the subtask is assigned ready,
replacing executing. When the last subtask of the executing sequence is assigned ready, that node sends a
commit message to all the nodes involved in current task. When a commit message arrives, nodes alter their
state to commit and commit transaction.

If the execution has failed, the failing node alters its state to abort and rollbacks the transaction; also, all other
nodes will be notified through an abort message. Nodes receiving an abort message set their state to abort and
then rollback the transaction and quit.

4 SYSTEM IMPLEMENTATION

This paper has described the design and implementation of a grid-based distributed spatial cooperative

Data Science Journal, Volume 6, Supplement, 2 December 2007

S894

computing system, the main characteristics of which are:

• Global query parsing

The first step is to construct a query tree of the global query submitted, and then the query is equivalently
transformed to eliminate type conversion and I/O operation for a table scan. According to the optimized query
tree, the global query parser integrates node and tile distribution information from a spatial resource index to
generate an EDP file.

• Spatial index administration

Nodes register with the distributed spatial index and publish the spatial resources they delegate. The node index
maintains a set of registered nodes and their resources. When a node joins, it is first routed to a corresponding
partition according to its spatial resource range, and then it publishes its resource information through
cooperating messages and gains the updated partition index from any existent node. In contrast, when one of the
nodes attempts to quit, it should find another node as its surrogate to publish its quit information. However, the
distributed spatial index is an active index in the sense that it maintains live information about node availability.
To achieve this, it continuously interrogates registered nodes, ensuring that they are active.

• Query performance

Users can submit a global spatial query to any node in the system, which consequently locates correlative nodes
in terms of a distributed spatial index and then effectively performs the query via node collaboration and
compensation mechanics. A distributed query communication model is implemented based on JXTA. Nodes
intercommunicate between pipes using the virtual communication paradigm in JXTA networks
(http://www.jxta.org/).

• System monitoring

Each node holds a monitor that inspects all other nodes in the system to determine whether the system is busy or
if there are enough resources for scheming tasks. The monitor may publish its state information and discovery
about other nodes at time intervals designated by the user. Correspondingly, as a node joins or quits, it
automatically publishes its information to the system. Figure 4 illustrates the monitor view, which displays all
participants of a currently executing task, and users can further select one of these nodes to examine its detailed
information.

Data Science Journal, Volume 6, Supplement, 2 December 2007

S895

Figure 4. Node resource and state monitoring interface

• Data consistency:

This system supports spatial data duplication and backup. Further, a distributed transaction mechanics is
implemented to support spatial data consistency.

5 CONCLUSION

This paper presents a grid-based distributed spatial cooperative computing technology for spatial data
manipulation and distribution to accomplish complex spatial applications by collaborating spatial databases that
are distributed in different nodes. Important issues discussed in this paper are: distributed hierarchical spatial
indexes, global query mapping, node communicating and monitoring, and data consistency in distributed
systems. Also we describe a distributed cooperative computing system prototype implemented to demonstrate
the main principles of the approach. The mechanics of the grid avoids network congestion and single point of
failure, which are caused by a centralized execution model and therefore improves the availability and reliability
of spatial data and computing wealth.

6 ACKNOWLEDGEMENTS

This research is sponsored by the China National Advanced Science and Technology (863) Plan under Grant
SQ2006AA12Z214047 and the Beijing Science Foundation under Grant 4062019.

7 REFERENCES

Alameh, N. (2003) Chaining geographic information Web services. IEEE Internet Computing 7(5): 22-29.

Andrews, P., Sherwin, T., & Banister, B. (2003) A Centralized Data Access Model for Grid Computing.
Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies
(MSS’03).

Data Science Journal, Volume 6, Supplement, 2 December 2007

S896

Dyo, V. & Mascolo, C. (2005) Adaptive Distributed Indexing for Spatial Queries in Sensor Networks.
Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05).

Fernandes de Mello, R. & Senger, L. (2006) A Routing Load Balancing Policy for Grid Computing
Environments. Proceedings of the 20th International Conference on Advanced Information Networking and
Applications (AINA’06).

JXTA, The Project JXTA web site. Retrieved from the WWW September 12, 2007: http://www.jxta.org/.

Koszek, P. & Sandrasegaran, K. (2005) Grid Architecture Storage - Utilising Grid Computing for Dynamic Data
Storage. Proceedings of the Third International Conference on Information Technology and Applications
(ICITA’05).

Nam, B. & Sussman, A. (2005) Spatial Indexing of Distributed Multidimensional Datasets. IEEE International
Symposium on Cluster Computing and the Grid.

Wehrle, P., Miquel, M., & Tchounikine, A. (2005) A Model for Distributing and Querying a Data Warehouse on
a Computing Grid. Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems
(ICPADS'05).

Data Science Journal, Volume 6, Supplement, 2 December 2007

S897

