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ABSTRACT 

Because of the development of modern-day satellites and other data acquisition systems, global climate research 
often involves overwhelming volume and complexity of high dimensional datasets. As a data preprocessing and 
analysis method, the clustering method is playing a more and more important role in these researches. In this 
paper, we propose a spatial clustering algorithm that, to some extent, cures the problem of dimensionality in 
high dimensional clustering. The similarity measure of our algorithm is based on the number of top-k nearest 
neighbors that two grids share. The neighbors of each grid are computed based on the time series associated 
with each grid, and computing the nearest neighbor of an object is the most time consuming step. According to 
Tobler's "First Law of Geography," we add a spatial window constraint upon each grid to restrict the number of 
grids considered and greatly improve the efficiency of our algorithm. We apply this algorithm to a 100-year 
global climate dataset and partition the global surface into sub areas under various spatial granularities. 
Experiments indicate that our spatial clustering algorithm works well. 
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1 INTRODUCTION 

Because of the development of modern-day satellites and other data acquisition systems, the amount of spatial 
data being collected is increasing exponentially. Global climate research often involves overwhelming volume 
and complexity of high dimensional datasets. The complexity of the data contained in databases means that it is 
not possible for humans to completely analyze the data being collected. Data mining techniques have been used 
to discover unknown information, searching for unexpected results and correlations.  

Clustering, according to Han, Kamber, and Tung (2001), is the method that groups similar objects into classes. It 
is an important component of spatial data mining, which can generalize data into a higher conceptual level and 
is of great importance in spatial data preprocessing. Spatial clustering is quite useful in many applications: it can 
be used in the identification of areas of similar land usage in an earth observation database or in merging regions 
with similar weather patterns, and so on (Han, et al., 2001). 

So far, although many clustering methods have been used for spatial data, many of which claim that their 
methods are spatial clustering methods (Kolatch, 2001), few of them treat the spatial dimensions carefully and 
find good quality clusters (e.g., clusters of different sizes, shapes, and densities in noisy, high dimensional data). 
According to Ertoz, Steinbach, and Kumar (2002), this is because most of them use direct similarity (e.g., 
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K-means, DBSCAN), and they employ a new definition of similarity based on the shared nearest neighbors 
(Jarvis, & Patrick, 1973). This new algorithm can find clusters of different sizes, shapes, and densities in noisy, 
high dimensional data, but its run-time complexity of our algorithm is O(n2), where n is the number of points if 
a similarity matrix is constructed. 

To reduce the complexity of the algorithm, we employ Tobler's "First Law of Geography" and add a spatial 
window constraint upon each point to restrict the number of other points to be considered as neighbors. The 
following experiments show that this optimization greatly improves the efficiency of the algorithm and keeps 
the quality in an acceptable state. 

The rest of the paper is organized as follows. Section 2 presents the related work on spatial clustering. Section 3 
introduces Tobler's "First Law of Geography" and its optimization. The algorithm is elaborated in section 4, and 
the experimental results are shown in Section 5. Section 6 is the conclusion. 

2 RELATED WORK 

2.1 Shared Nearest Neighbor 

It is known that climate data is of high dimension and most of the similarity measures do work well in such a 
high dimensional datasets. For example, consider the five-dimensional climate data points shown in Table 1. It 
is not hard to judge that there is higher similarity between P3 and P4 than between P1 and P2 because there are 
three shared attributes between the former pair and none between the latter pair. 

Table 1. Datasets with five attributes 

Point A1 A2 A3 A4 A5 
P1 3 0 0 0 0 
P2 0 0 0 0 4 
P3 3 1 2 3 0 
P5 0 1 2 3 4 

In high dimensional data sets, the traditional Euclidean notion of density, which is the number of points per unit 
volume, is meaningless. To see this, consider that as the number of dimensions increases, the volume increases 
rapidly, and unless the number of points grows exponentially with the number of dimensions, the density tends 
to 0. Thus, as dimensionality increases, it becomes increasing difficult to use a traditional density based 
clustering method, such as the one used in DBSCAN, which identifies core points as points in high density 
regions and noise points as points in low density regions. 

An alternative to direct similarity is to define the similarity between a pair of points in terms of their shared 
nearest neighbors. That is, the similarity between two points is “confirmed” by their common (shared) nearest 
neighbors. If point P1 is close to point P2 and if they are both close to a set of points S, then we can say that P1 
and P2 are close with greater confidence because their similarity is “confirmed” by the points in set S. The 
shared nearest neighbor approach was first introduced by Jarvis and Patrick (1973). A similar idea was later 
presented in ROCK (Guha, Rastogi, & Shim, 1999).  
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In the Jarvis-Patrick scheme, a shared nearest neighbor (SNN) graph is constructed from the similarity matrix as 
follows. A link is created between a pair of points, p and q, if and only if p and q have each other in their 
k-nearest neighbor lists. This process is called k-nearest neighbor sparsification. The weights of the links 
between two points in the SNN graph can either be simply the number of nearest neighbors the two points share 
or can take the ordering of the nearest neighbors into account, specifically, if p and q are two points. 

Then, the strength of the link between p and q, i.e., their similarity, is defined by the following equation: 

))()((),( jNNiNNSizejiSimilarity ∩=  

In the above equation, NN(i) and NN(j) are, respectively, the nearest neighbor lists of p and q. At this point, 
clusters can be obtained by removing all edges with weights (similarities) less than a user specified threshold 
and taking all the connected components as clusters (Jarvis & Patrick, 1973). We will refer to this as 
Jarvis-Patrick clustering. 

2.2 SNN Algorithm 

Some researchers provide a shared k nearest neighbors-based algorithm as in Ertoz, et al. (2002). The algorithm 
uses shared nearest neighbors to redefine the neighbor and density and run a DBSCAN clustering algorithm on 
those definitions. The structure of the algorithm is as follows:   

1. Compute the similarity matrix.  
2. Sparsify the similarity matrix by keeping only the k most nearest neighbors. (Construct the KNN 

graphic) 
3. Construct the shared nearest neighbor graph from the KNN graphic. (Construct the SNN graphic) 
4. Find the SNN density of each point. Using user specified parameters, Eps, find the number points that 

have an SNN similarity of Eps or greater to each point. This is the SNN density of the point. 
5. Find the core points. Using a user specified parameter, MinPts, find the core points, i.e., all points that 

have an SNN density greater than MinPts. 
6. Form clusters from the core points. If two core points are within a radius, Eps, of each other, then they 

are placed in the same cluster. 
7. Discard all noise points. All non-core points that are not within a radius of Eps of a core point are 

discarded. 
8. Assign all non-noise, non-core points to clusters. We can do this by assigning such points to the nearest 

core point. (Note that steps 4-8 are DBSCAN.) 

We can see that the algorithm consists of two parts: first, construction of an SNN graphic and second, running a 
DBSCAN clustering on the SNN graphic. As each of the points has no more than k neighbors, the DBSCAN has 
a basic time complexity of O(k*n) .On the other hand, to find the nearest neighbors of every point, the algorithm 
has to calculate every other point in the dataset and keep the top-k nearest point as the nearest neighbor. It means 
that the algorithm has to maintain an n*n distance matrix and generally it will take about O(n2) time to construct 
such a matrix. But only an n*k matrix is saved, and most of the computation is wasted considering that n is 
much larger than k. So what has happen to the wasted computation, or what makes the few top-k nearest 
neighbors saved useful to construct the SNN graphic in a geospatial environment? 
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3  TOBLER’S FIRST LAW 

Tobler’s First Law tells us the answers to the above questions: everything is related to everything else, but near 
things are more related than distant things (Miller, 2004). Spatial autocorrelation is a measure of the correlation 
among spatial objects. As a result, we prefer to believe a continuous region with similar non-spatial attributes 
that we are interested in is generated under the same mechanism. To discover the relationship between the top-k 
nearest neighbors saved and spatial autocorrelation, we do a test using a box to describe the continuous region 
and the centralization index to tell how those points in a continuous region are similar to a core point. 

Definition 1: window of a core point. 

We define a threshold R and if the distance between a point and the core point is smaller than R, then we say the 
point is close to the core point. The window of a core point is the area where every point in it is close to the core 
point. 

Definition 2: coverage of a core point. 

As the top-k nearest neighbors means that they are similar to the core point, those points described as being in 
the window of a core point means that they are close to the core point. The coverage of a core point describes 
how those close points are similar to the core point.  

That is 
neighbors)nearest k - topsaved (the

neighbors)nearest k - topsaved (the window)in the (points   coverage ∩
=  

Using the coverage we can test how the windows contain most of the top-k nearest neighbors. Figure 1 shows 
the average coverage of a core point with different window sizes. We can see that as the window grow bigger, it 
contain more than 90% of the top-k nearest neighbors, which will determine the result of the original clustering 
algorithm. It means that the spatial data follow Tobler's "First Law of Geography," and we can utilize the spatial 
autocorrelation to reduce the computation of the top-k nearest neighbors. In this way we can reduce the running 
time of the original algorithm while keep a satisfactory result. 
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Figure 1.  Average coverage with different data. gl means globle dataset, sh means south hemisphere, sa means 
south America, au means Australia. 

4 ALGORITHMS 

With the restriction of the window, the algorithm narrows down the search space for finding the top-k nearest 
neighbors. Using grids to store the climate data will let the algorithm find the window of a point in a constant 
time. The improve algorithm is described as follows: 

1. Store climate data in grids format 
2. For every point in the datasets, compute the similarity with every point in the window via a given R. 
3. Construct the shared nearest neighbor graph from the KNN graphic. (Construct the SNN graphic) 
4. Find the SNN density of each point. Using a user specified parameter, Eps, find the number points that 

have an SNN similarity of Eps or greater to each point. This is the SNN density of the point. 
5. Find the core points. Using a user specified parameter, MinPts, find the core points, i.e., all points that 

have an SNN density greater than MinPts. 
6. Form clusters from the core points. If two core points are within a radius, Eps, of each other, then they 

are placed in the same cluster. 
7. Discard all noise points. All non-core points that are not within a radius of Eps of a core point are 

discarded. 
8. Assign all non-noise, non-core points to clusters. We can do this by assigning such points to the nearest 

core point. (Note that steps 4-8 are DBSCAN) 
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For every point in the datasets, it takes constant time to find its top-k nearest neighbors, so the running time of 
constructing the SNN graphic is O(R2n). As we have discussed in section 2.2, the DBSCAN has a basic time 
complexity of O(k*n), so the running time of the algorithm is O(R2n+kn). Generally, to get a satisfactory result, 
the R should be big enough to cover more than 95% of the top-k nearest neighbors. This means that R2>>k, so 
we can say that the running time of the algorithm is O(R2n). 

5 DATA AND EXPERIMENT 

The Climate Research Unit, UK, offers the dataset “CRU TS 2.0,” which gives a detailed description of the data. 
It contains a set of 102 years of global climate data, and it is a 0.5 degree grid dataset with five variables: cloud 
cover percentage, diurnal temperature range, precipitation, temperature, vapor and pressure, covering global 
land surface and measured on a monthly basis from the year 1901 (Mitchell, 2003).  

In our experiment, we treat the temperature of every month as the attribute value of a dimension. This means 
that it is has 1224 dimensions. As each cell is of 0.5 0.5×o o , we have 720 360× cells but with many cells with 
null value. The clustering result is illustrated in Figure 5, when there are 190 clusters left (including many 
isolated islands). 

 

Figure 2. The left part is the original clustering result, and the right part is the improve clustering result  

 

Table 2. The statistical data of the clustering 

 Number of clusters Number of core points Number of outer 
The Original SNN Clustering  16901 316 13732 
The Improved SNN Clustering 19099 335 10805 
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Figure 3. Running time of the original SNN clustering versus the improved one. 

We can see from Figure 2 and Table 2 that the improved clustering algorithm can arrive at almost the same 
result as the original SNN algorithm. However, Figure 3 tells us that the improved algorithm reduces the 
running time from O(n2) to O(R2n). 

6 CONCLUSION 

In this paper, we have proposed an improved efficient high dimensional spatial clustering method based on 
Tobler's "First Law of Geography." We managed to reduce the relatively high time complexity of the SNN 
method to O(R2n), which is widely acceptable as a scalable complexity. By carefully choosing the R value, our 
algorithm can produce good quality and will generate spatial clusters that are continuous in space. Compared 
with algorithms that only consider attributes space, such as k-mean, our algorithm ignores outliers and noise and 
produces clusters that have a smoother boundary. 
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