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ABSTRACT 
 
 A critical overview of the current doubtful practice on presentation of correlated data in the physics literature and 
in the scientific and technological databases is presented.  The simple rules to calculate the rounding thresholds to 
preserve the positive definiteness of the covariance and correlation matrices as well as the rounding thresholds for 
the components of the mean vector to keep them inside the “non-rounded” scatter region are formulated. Evidence 
that in the multivariate case there are severe limitations on the applicability of the linear differential law of 
uncertainty propagation is presented. The explicit relation of the number of input random variables I, the number of 
output variables D, and the order T of Taylor polynomials sufficient to preserve the self-consistent numerical 
presentation of the mean value of the vector function and its covariance matrix under nonlinear differential 
propagation procedure is obtained. It is stressed that the rounding thresholds for the safe rounding of correlated 
data impose the severe requirements on the storage and exchange formats of the correlated data that could not be 
met in the traditional publications on the paper but could be realized in the electronic media. 
 
Keywords: Uncertainty Propagation Laws, Safe rounding of correlated data, Data quality, Measurement 
uncertainty 
 
 
1     INTRODUCTION 
 
 Eleven years ago the famous ISO Guide to Expression of Uncertainty in Measurement (GUM) [1], [2], [3] 
appeared as the first official international document to focus metrologists and all practitioners working with 
measured data on the creation of an exhaustive and internationally acceptable standard on the expression of 
uncertainty in measurement.  Unfortunately the ISO GUM is applicable only to the case of one measurand and is 
self-contradictory in some places because of this limitation. Existing international and national standards on the 
numerical expression of the estimates of physical quantities also are relatively well elaborated only for one 
measurand. 
 
 Historically, metrologists move slowly in creating the long awaited guidelines and standards for numerical 
presentations of the results on jointly measured quantities in scientific and technical documents1. The absence of 
common procedures on the “expression of uncertainties” for multivariate cases leads to a proliferation of bad 
practices of presenting incorrect numbers in scientific and technical publications, in scientific and technological 
databases, and even in the authoritative numerical resources recommended by ICSU and CODATA (see examples 
of old and recent discussions of that “doubtful practice” in [9], [11], [12], [13], [14],[15], [29]).  
 
 Additional critical notes will be presented in the sections to follow.  In some cases (unfortunately too often) the 
absence of presentation standards makes it impossible to compare the results of different measurements of the same 
set of quantities, even qualitatively.  
 
 Let us recall that for the correct numerical expression of the estimate of some random quantity one needs, at least, 
the following data structure: mean values and their confidence region (or scatter region). For a scalar quantity the 
mean value and one standard deviation interval are necessary. For a random vector, we need a mean vector and 

                                                 
1

It should be noted that some activity to improve the ISO GUM was started just after its first release (see [4]). Set of contemporary, informative, 
and instructive documents were created by SSfM group [5], [6]. 
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multi-dimensional scatter region defined by the joint probability distribution. For example, for the m-dimensional 
normal distribution, the confidence region is the m-dimensional ellipsoid defined by the m×m covariance matrix. 
For m = 2, the corresponding data structure is: 
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To work with the above structure correctly in computations and data exchanges, one cannot use procedures 
developed and standardized for the case of “one measurand.” Indeed, forat any admissible data transformations, we 
will have to trace the boundedness of the scatter region and inter-linkage of the transformed mean vector and the 
transformed scatter region. The end of the rounded mean vector should belong to the non-rounded scatter region. 
The simplest transformation that may destroy the correct result is independent rounding of the mean vector 
components and the matrix elements of the covariance matrix. 
 
The above “quality requirements” are self evident; nevertheless, we have many examples from the scientific 
literature presenting results of measurements, computation, and data exchange procedures for which these 
requirements are badly violated: (i) experts report only mean vector components with corresponding “standard 
deviations” but not the correlation matrix, (ii) often estimates are “over-rounded” in such a way that the rounded 
matrix is non-positive semi-definite, and (iii) the end of the over-rounded mean vector is outside of the non-rounded 
(original) scatter region for many “standard deviations.” 
 
To elucidate the above statements, let us consider a simple example of how one can destroy correct estimates by 
unjustified implementation of the procedures recommended only for the scalar case. We rotate the estimates (ζ, η) of 
a two-dimensional vector to obtain vector (x, y) by rotation by the angle π/4: 
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In this example, the calculations are produced with sufficient stipulated numerical accuracy. It is easy to see that the 
standard rounding rules recommended for the statistically independent quantities are not applicable in this case. If 
the correlation coefficients are to be rounded as recommended in ISO GUM, “ . . . Correlation coefficients should be 
given with three digit accuracy if their absolute values are near unity,” one will get a degenerate correlation matrix. 
 
The numerical presentations of the (x, y) components, which seem redundant for statistically independent x and y 
estimates, are correct indeed. The independent rounding by standard rules will move the end of the (x, y) vector out 
of the image of the initial scatter region. For example, after the first rounding step, we get the deviation: 
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To characterize this deviation quantitatively, we can use the quadratic form 2χ . The confidence region in terms of 
(Δx, Δy) is defined by the condition: 
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Inserting values of the relative deviations at the first step we get: 
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This value for  2χ  corresponds to deviation of the (x, y) vector out of the scatter region by more than three standard 
uncertainties. If rounding is performed up to one digit to the right of decimal point, as is recommended by all 
textbooks: (1.845 ± 0.100, 1.155 ± 0.100) ⇒ (1.8 ± 0.1, 1.2 ± 0.1), then  

2χ (−0.045, 0.045) = 2025 >> 1, ⇒ deviation is more than for 30 standard uncertainties. 
 
In many analogous cases authors give estimates of the vector components and their uncertainties only, without any 
information about correlations. It is easy to see from the above calculations that this can completely destroy the 
results of the measurement (estimation). 
 
2    RECENT EXAMPLES OF CORRELATED DATA PRESENTATION   
 
In what follows we will need multiple references to some instructive statements from the basic metrology document 
— the ISO GUM. To simplify reading we will quote some statements here. 

0.1 When reporting the result of a measurement of a physical quantity, it is obligatory that some 
quantitative indication of the quality of the result be given so that those who use it can assess its 
reliability. Without such an indication, measurement results cannot be compared, either among 
themselves or with reference values given in a specification or standard. It is therefore necessary that 
there be a readily implemented, easily understood, and generally accepted procedure for 
characterizing the quality of a result of a measurement, that is, for evaluating and expressing its 
uncertainty. . . . 
0.4 The ideal method for evaluating and expressing the uncertainty of the result of a measurement 
should be: 
universal: the method should be applicable to all kinds of measurements and to all types of input data 
used in measurements. 
The actual quantity used to express uncertainty should be: 
internally consistent: it should be directly derivable from the components that contribute to it, as well 
as independent of how these components are grouped and of the decomposition of the components 
into subcomponents; 
transferable: it should be possible to use directly the uncertainty evaluated for one result as a 
component in evaluating the uncertainty of another measurement in which the first result is 
used.                                                                                                      . . . . (ISO GUM [1], p. vii) 

 
It was expected that detailed deployment of these general requirements would focus efforts of practitioners 
indifferent scientific and technical areas on the creation of the standard methodology of measurements and 
expression the results in traditional and electronic forms. An example of such recommendations from Section 7 
“Reporting uncertainty” of ISO GUM is as follows: 

7.1.4 Although in practice the amount of information necessary to document a measurement result 
depends on its intended use, the basic principle of what is required remains unchanged: when 
reporting the result of a measurement and its uncertainty, it is preferable to err on the side of 
providing too much information rather than too little. For example, one should 

a) describe clearly the methods used to calculate the measurement result and the uncertainty from 
the experimental observations and input data; 
b) list all uncertainty components and document fully how they were evaluated; 
c) present data analysis in such a way that each of its important steps can be readily followed and 
the calculation of the reported results can be independently repeated if necessary; 
d) give all corrections and constants used in the analysis and their sources. (ISO GUM [1], p. 25) 

 
A test of the foregoing list is to ask oneself: “Have I provided enough information in a sufficiently clear manner that 
my result can be updated in the future if new information or data become available?”                                                                               

 
In spite of broad discussions of the ISO GUM in international and national metrology bodies over the past ten years, 
we still have no commonly accepted methodology on the numerical presentations of the estimates of the multivariate 
random quantities in publications and in databases, even on the level of the existing ISO GUM requirements 0.0.1–
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0.0.4, 7.1.4. Presumably this is because the ISO GUM is a first generation document, especially in recommendations 
concerning the expression of the results on several jointly measured quantities: 

7.2.5 If a measurement determines simultaneously more than one measurand, that is, if it provides two 
or more output estimates yi  (see H.2, H.3, and H.4), then, in addition to giving yi and uc(yi), give the 
covariance matrix element u(y1, yj) or the element r(yi, yj) of the correlation coefficient matrix (C.3.6, 
note 2) (and preferably both). 
7.2.6 The numerical values of the estimates y and its standard uncertainty uc(y) or expanded 
uncertainty U should not be given with an excessive number of digits. It usually suffices to quote 
uc(y) [as well as the standard uncertainty u (xi) of the input estimates xi] to at most two significant 
digits, although in some cases it may be necessary to retain additional digits to avoid round-off errors 
in subsequent calculations. . . . 
. . . Output and input estimates should be rounded to be consistent with their uncertainties; for 
example, if y = 10.05762 Ω with uc(y) = 27mΩ, y should be rounded to 10.058 Ω. Correlation 
coefficients should  be given  with three-digit accuracy if their absolute values are near unity. (ISO 
GUM [1], р. 26-27) 

 
The above example with rotation of the two dimensional random vector clearly shows that clause 7.2.6 need to be 
reconsidered and probably reformulated. 
 
2.1    Incorrect expression of the uncertainty of measurements in ISO GUM 
 
Our simple example with rotating the estimate of the two dimensional vector has shown that clause 7.2.6 of ISO 
GUM can be misleading. Moreover the application of the 7.2.6 recommendation for the rounding correlations in 
Example H.2 of section “Annex H: Examples” of ISO GUM clearly shows the failure of that recommendation. 
Indeed, in Tables H.3 and H.4, correlation matrices are represented with three decimal digits to the right of decimal 
point in accordance with 7.2.6 
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The eigenvalues of this matrix are [2.403 740 76, 0.596 712 77, −0.000 453 53]. This means that the correlation 
matrix is destroyed. The correct matrix calculated from the data in Table H.2 with 16 digits to the right of decimal 
point is 
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6318224850646136.09700845882768557.0000.1

 

 
The eigenvalues are all positive, as they should be by definition of the correlation matrix: 
2.403 564 371 235 8685, 0.596 435 606 493 034, 2.227 109 758 149 771×10−8. 
 
With our estimate of the safe rounding threshold (see further in this text) we can express this matrix in a more 
visible form: 
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Note. There is a logical inconsistency in the ISO GUM. On the one hand there is a warning in the text that it is 
applicable to one measurand only, but on the other hand, when describing recommendations of how to estimate the 
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uncertainty of the one random function which is dependent upon several random quantities we unavoidably meet the 
problem of the correct numerical expression for the estimates of the random vectors2. 
 
2.2    Experiment CERN-LEP-DELPHI in the European Physical Journal 
 
Abreu [19] has presented results of Tau topological branching ratios for the reactions: 

( ) ( ) ( )neutralshhBneutralshhBneutralshB −+−−+−−− →→→ 32,2, 331 τττ  
presented in [19] (see p. 636 and Table 6) these data can be collected into the following data structure: 
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in which the correlation matrix is the correlation matrix for the total uncertainties (combined statistical and 
systematic). In examples 2 and 3 above, we saw that independent rounding of correlation matrix elements is a very 
dangerous transformation especially when correlations are large (close to 1).  The total correlator in the publication 
under discussion is rounded up to two digits to the right of decimal point and over-rounding is suspected. 
 
In addition, in the text, the statistical and systematic uncertainties are quoted separately (4), but there are no 
descriptions of how they were combined to give the total uncertainties or how the correlation of the total 
uncertainties ([19] page 636) was obtained. Our attempts to make the relevant data presented in different places of 
the cited paper agree resulted in the following matrix (5). 
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Its eigenvalues are 1.993743788696688, 1.0056742957244327, and 0.0005819155788786556. In accordance with 
the safe rounding threshold [29] (see section 4), we can represent matrix (5) in a more visible form: 
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                                                                                       (6) 

 
It differs from that of presented in the paper and can not be rounded further. We have tried to obtain the correct 
numerical data from the authors of the cited paper but failed. It seems that the correct original data were lost forever. 
 
2.3  Experiment CLEO in the Physical Review 
 
In the paper by Anastassov [20] of the CLEO collaboration, the results of joint measurement of the five 
combinations of the τ-lepton branching ratios are presented. The “corrected” correlation matrix represented in the 
Erratum has the form: 
TABLE XII. Correlation coefficients between measurements of branching fractions. 

Cτ Be Bμ Bh Bμ /Bh Bh /Be 
Be 1 0.50 0.48 -0.42 -0.39 
Bμ  1 0.50 0.58 0.08 
Bh   1 0/07 0.53 
Bμ /Bh    1 0.45 

                                                 
2 Unfortunately the erroneous recommendation 7.2.6 of ISO GUM in part concerning the rounding correlations, as well as its application in 
example H.2 of Annex H: Examples, were not noticed by the metrology community. Both the recommendation and example H.2 are reproduced 
in other metrology documents [2], in the recent “best practice guide” review [7] (see p.20,) used in publications, monographs (see further 
examples in the subsections to follow), and in textbooks (see for example a recent textbook [18] p.128-129) 
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Bh /Be     1 
The eigenvalues of this matrix are: (2.1735, 1.7819, 1.0550, −0.0075, −0.0028), in sharp contradiction with the 
positive definiteness requirement. The accuracy of these data are clearly in question. 
 
2.4  Misinformation in the presentation of the fundamental physical constants in 
       Reviews of Modern Physics and in reprints 
 
Let us trace the variation of estimates of a selection of derived fundamental physical constants (FPC) in the last three 
consecutive adjustments published in the Reviews of Modern Physics and recommended by CODATA as the unique 
international source of reference data on FPC.                                                                  
    . 

CODATA:1986 
[21] 

Symbol  
[Units] 

Value (Uncertainty)×scale Correlations 

 
e 

 
h  me  

 
Elementary charge 
Plank constant  
Electron mass  
1/α(0)  
 

 
e          [C]  
h          [J s]  
me       [kg]  
α(0)−1  
 

 
1.602 177 33(49) ×10−19 
6.626 075 5(40) ×10−34  
9.109 389 7(54) ×10−31 
137.035 989 5(61)  
 

  0.997 
  0.975 
−0.226 
 

  0.989 
−0.154  
 

−0.005  
 

CODATA:1998 
[22] 

   
  

 
e  

 
h  me  

 
Elementary charge 
Plank constant  
Electron mass  
1/α(0)  
 

 
e          [C]  
h          [J s]  
me       [kg]  
α(0)−1  
 

 
1.602 176 462(63) 
×10−19 6.626 068 76(52) 
×10−34  
9.109 381 88(72) ×10−31 
137.035 999 76(50)  
 

  0.999 
  0.990 
−0.049   0.996 

−0.002  
 

0.092  
 

CODATA:2002 
[23] 

   
  

 
e  

 
h  me  

 
Elementary charge 
Plank constant 
Electron mass  
1/α(0) 
  

 
e          [C]  
h          [J s]  
me       [kg]  
α(0)−1  
 

 
1.602 176 53(14) ×10−19 
6.626 0693(11) ×10−34  
9.109 3826(16) ×10−31  
137.035 999 11(46)  
 

  1.000 
  0.998 
−0.029 
 

0.999 
−0.010  
 

0.029  
 

 
All three-correlation sub-matrices (see above table) are presented in accordance with GUM clause 7.2.6 with three 
digits to the right of the decimal point. 
All matrices turn out to be over-rounded, each of which has a negative eigenvalue with absolute values much larger 
than the machine zero ~10−17: 
CODATA: 1986 {2.99891, 1.00084, 0.000420779, −0.000172106}; 
CODATA: 1998 {2.99029, 1.01003, −0.000441572, 0.00012358};   
CODATA: 2002 {2.99802, 1.00173, 0.000434393, −0.000183906}. 
 
In May, 2005 on the NIST site, the new version of FPC (version 4.2) appeared. In this new version the misprints 
encountered in versions 4.0 and 4.1 were fixed, and for the first time the computer readable files for the basic LSA 
(Least Square Adjusted) FPC were released. The data in the computer readable files are free of critical issues (see 
[29]) and presented with sufficient precision to be safely used in high precision calculations. 
 
Historically the maintenance of the FPC set and re-adjustments are produced only at NIST (USA). All handbooks 
and textbooks reprinted the over-rounded data from NIST publications without mentioning the presence of large 
correlations between uncertainties of some constants. The majority of authoritative issues also reprinted NIST data 
without any comments or warnings (see [24], [25], [26], [27], and [28]). 
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3    THRESHOLDS FOR SAFE ROUNDING OF CORRELATED QUANTITIES 
 
In the above examples, we show that the rules of the numerical presentations developed for one measurand are 
inapplicable in multivariate cases. In this section we describe the construction of thresholds for safe uniform 
rounding in the multivariate case developed in [29]. These thresholds are relatively simple parameters that could be 
used to control the self consistency of the numerical estimates of correlated quantities or, in other words, to control 
the quality of the multivariate data presentation. We treat the numerical data on the estimates of the random vector 
as self consistent if the data structure consists at least of two obligatory items:  
     (i)  the mean value of the vector components and 
     (ii) the scatter region for it obtained with the predefined confidence level. 
 
In the simplest case, the scatter region is the scatter ellipsoid defined by the matrix of the second moments of the 
joint probability distribution. For our derivations we will need a few statements from the classical matrix theory. 
    
 Weil’s theorem (see [30], [32]):  Let C = A + B, where  A, B, C ∈ nnR ×  – symmetric matrices and 
(α1 ≤ α2  · · ·  ≤ αn), (β1 ≤ β2  · · ·  ≤ βn), (γ1 ≤ γ2  · · ·  ≤ γn) their eigenvalues correspondingly. 
Then ∀ i  the following inequalities are valid 
                               αi + βmin  ≤  γi  ≤  αi + βmax .                                                                       (7) 
    Gershgorin’s theorem ([30], [31], [32]): Every eigenvalue αi of the matrix A belongs to the interior of one of the 
circles 

                                      | Aii − αi | ≤ ∑
=

n

j 1

|Ai≠j |.                                                                        (8) 

    Schur’s theorem ([32]): Let matrix B ∈ nnR ×  is symmetric with values of the diagonal elements  
B1≤ B2 · · · ≤ Bn any order) and eigenvalues β1 ≤ β2 · · · ≤ βn, then ∀ k≤ n 

                                                ∑∑
==

≤
k

i
i

k

i
i B

11

β                                                                           (9) 

The equality takes place only for k = n. 
 
Let { }r

digijii Nrux ,,, , i, j = 1, . . . , n be the list of decimal numbers expressing the results of n jointly measured 

quantities with: ix  - the real decimal number representing the mean value of  i-th observable; ui - its uncertainty 
the positive real decimal number; rij - real decimal numbers representing the matrix elements of the symmetric, 
positive definite matrix (correlation matrix) such that rii = 1 ∀ i ≤ n, |ri≠j | < 1.0; r

digN  - integer non negative number 
defining the unified decimal precision of the non diagonal matrix elements of the correlation matrix rij . 
 
This list is the minimum set of parameters needed for correctness and pithiness of the quantitative description of the 
random vector quantity {xi} and its scatter region defined by the “confidence radius” Rg,CL and the joint probability 
distribution function g on the confidence level CL 
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CLg
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jj
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If g is unknown but the matrix of the second moments is known, Kramer’s scatter ellipsoid is used with R2 = n + 2 
(see [34] page 80-81, [35] page 102). 
 
A proposed additional parameter thr

digN ,  is needed to assure the quality of the data and its preservation in the 
processes of data transfers and in calculations. From the statements of the Weil’s (7), Gershgorin’s (8), and Shur’s 
(9) theorems, it follows that the rounding threshold, i.e. the minimum number N of decimal digits to the right of the 
decimal point that should be preserved in rounding of the non diagonal elements of the correlation matrix rij with the 
minimal eigenvalue c1 = r

minλ , is defined by3 

                                                 
3 An analogous estimate in other terms was obtained recently in paper [33]. 
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Analogous rounding thresholds x
idigN ,  are obtained for the mean values ix  and u

idigN , for the standard deviations 
ui . They also are determined by the minimal eigenvalue of the correlation matrix. 
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                                              NN x

idig

u

idig ,,
=  ∀ i = 1, . . . , n.                                           (13) 

 
In summary, the independent uniform rounding of the decimal estimates of the results of multiple, jointly measured 
(estimated), random quantities is allowed only under restrictions posed by the requirements of the boundedness in 
the “rounded scatter region” (ellipsoid) and the confinement of the end of the rounded mean vector inside the non-
rounded scatter region (ellipsoid). To safely round the accuracies of the numbers in the structure should be higher 
than the rounding thresholds (11), (12), (13) defined by the minimal eigenvalue of the positive definite correlation 
matrix of the structure to be rounded. 
 
3.1 Criteria for self-consistent expression of the results of joint measurements 
 
For the case of joint measurements or estimations of D quantities, to express the results correctly one has to present 
the following (minimal) structure { }r

digijii Nrux ,,, ,  i, j = 1, . . . , D. 
We propose to expand it to the structure 
 
      { } ( ){ }{ } ,,, ,),(, ,thr

digji
x
digiii NxxrNxux  i, j = 1, . . . , D                                (14) 

and advocate this view as a candidate standard for the numerical expression of the correlated measurements 
(estimates). Such expansion is needed to assure the quality of the measured data and to inform potential users about 
the critical precision needed for correct numerical computations in applications. Indeed, to form the structure 
proposed above (14), one needs to: 

• calculate the matrix elements of the correlation matrix with enough precision to assure its positive 
definiteness and calculate the corresponding rounding threshold thr

digN ,  ; 

• calculate mean values and their standard deviations with precisions higher than the corresponding rounding 
thresholds x

idigN , . 
 

4    NONLINEAR UNCERTAINTIES PROPAGATION LAW IS UNAVOIDABLE 
 
In this section, we will show that the problem of correct multivariate rounding is tightly intertwined with the 
problem of multivariate uncertainty propagation. In most multivariate cases, the widely used linear differential 
uncertainty propagation law is inapplicable. One will have to use integral (Monte Carlo) or nonlinear differential 
(higher order Taylor polynomials) uncertainty propagation laws.  
 
 Let us present the problem of propagating uncertainties from I random variables  ( ){ } ,,),(, jiiii xxrxux  
with a positive definite correlation matrix r (xα, xβ) to the system of D functions yi = {Fi (xα)}D

1. This means that we 
have to obtain estimates to fill the minimal structure ( ){ } ,),(, jiiii yyryuy . In the general case (with 
nonsingular functions) when the joint probability distribution function g(x1, . . . , xI) is known, this problem is 
formulated as follows: 

1) calculate the joint probability distribution function 
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D
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,...,                                                (15) 

and then calculate any of its joint moments if needed. In reality, however, this approach often turns out to be 
unfeasible. The g (xα) is unknown, or the reliable calculation of G (yi) is impossible because of the lack of computer 
power. 
2) The usual way to solve the uncertainty propagation problem is with the following approximations (valid and 
supposedly working well for the multinormal distribution g (xα)):  
 
calculate                              ( ) ( ) αααμ xdxgxFy I

iii ⋅⋅== ∫ ,                                                        (16) 

then calculate 
                     ( ) ( ) ( ) αααα xdxgyxFyxFyyu I

jjiiji ⋅⋅−⋅−= ∫ )()(),(                                          (17) 

It is known in classical function analysis and linear algebra that because of the positive definiteness of g(xα), the 
matrix (17), calculated without approximation and with sufficient accuracy, is the positive definite matrix for any 
linearly independent system of functions {Fi(xα)}D

1 (see [32], theorem 7.2.10). 
 
As previously mentioned, often the distribution function is not known, but its few first moments are known. In such 
cases, error propagation is carried out by the “nonlinear differential uncertainty propagation law” that is derived 
from the integral one (17) by the replacement of Fi (xα) − μi for the polynomials obtained by the cuts of the Taylor 
series for Fi (xα) − μi 
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where 

iii
xxx ααα −=Δ  and the sums over the repeated indices αj are assumed4. 

 
Let us show, however, that the requirement for positive definiteness of the correlation matrix poses clear restrictions 
on the powers T of Taylor’s polynomials even in cases when the approximations ( )αμ xFii ≈  are valid (the senior 
moments are small). Indeed, the maximal number n(T, I) of the linearly independent functional vectors of the type 
(18) is determined by the relation 

                                      1
!!
)!(

!)!1(
)!1(),(

1

−
⋅
+

=
⋅−
++

=∑
= IT

IT
kI

kIITn
T

k

.                                       (19) 

 
From this estimate, the following statement applies: if the covariance matrix of the system of D functions {Fi (xα)}D

1 
depending upon I random variables {xα}I

1 is determined by the differential uncertainty propagation law (18) of T –th 
order such that n (T, I) < D, then it is degenerate and its numerical expression in decimal numbers will be a matrix 
with at least one non positive eigenvalue. 
 
In particular the widely used linear (T = 1) uncertainty propagation law 

         )()()(
1

1
αα

αα
αα μ xx

x
FxPxF i

I

iii −⋅
∂
∂

=⇒− ∑
=

                                                    (20) 

for D > I is invalid, and for D ≤ I it is dangerous because of the possibility of the existence of hidden functional 
relationships such as Φ (F1, F2, . . . , FD) = const. Indeed, let D ≤ I. Then the output matrix in the linear propagation 
law in the general case is non degenerate. However, if there is at least one relationship of the type Φ (F1, F2, . . . , 

                                                 
4

It should be noted that in the ISO GUM the corresponding formula for higher terms contributions to the variance are incorrect, and the crucial 
terms are missing. This will cause wrong results in calculations (besides rounding) and for some nonlinear cases one will even obtain negative 
variances (see ISO GUM: clause 5.1.2) 
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FD) = const,  then the matrix u(Fi, Fj) derived by the linear uncertainty propagation is degenerate. It is easy to show 
this. Let us have such a relationship with Φ (F1, F2, . . . , FD) that is smooth enough. Then its gradient with respect to 
{xα}I

1 is expressible as the linear combination of the gradients Fi, 
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and from the other side it is the null vector. This means that gradients of Fi are linearly dependent, and hence the 
covariance matrix obtained by the linear uncertainty propagation law is degenerate. However, the matrix u(Fi, Fj), 
calculated with the integral uncertainty propagation law (17) with relationship Φ(F1, F2, . . . , FD) = const  (imposed 
via the Dirac’s δ-function which is non-negative everywhere by definition), is the positive definite matrix. 
     xdxgconstFFxFxFFFu I

Djjiiji ⋅⋅−Φ⋅−⋅−= ∫ )()),...,(())(())((),( 1 ααα δμμ ,                 (21) 

Unfortunately in the majority of texts known to the author on statistical data handling, the positive definiteness of 
the covariance (correlation) matrix is declared but often does not checkout in applied analytical and numerical 
calculations. Let us present an example from the recommendations of ISO GUM: 
  
 5.1.2   The combined standard uncertainty uc(y) is the positive square root of the combined 
             variance u2

c (y), which is given by  

                                                                )()( 2
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              where f is the function given in equation (1). Each u (xi) is a standard uncertainty evaluated as  
              described in 4.2 (Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard 
              uncertainty uc(y) is an estimated standard deviation and characterizes the dispersion of the values 
              that could reasonably be attributed to the measurand Y (see 2.2.3). Equation 10 and its counterpart for 

correlated input quantities, Equation 13, both of which are based on a first-order Taylor series 
approximation of Y = f(X1,X2, . . . ,XN), express what  is termed in this guide the law of propagation of 
uncertainty (see E.3.1 and E.3.2). 

            Note – When the nonlinearity of f is significant, higher-order terms in the Taylor series expansion 
            must be included in the expression for u2

c(y), Equation 10. When the distribution of each Xi 
            is symmetric about the mean, the most important terms of next highest order to be added to the 
            terms of Equation 10 are  
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           See H.1 for an example of a situation where the contribution of higher-order terms to u2
c(y) needs 

           to be considered.  (ISO GUM [1], р. 19) 
 

In this recommendation of the formula for the fourth order contribution in u (xi) into the variance of f, the terms 
containing the third partial derivatives of f are included by mistake and for some nonlinear f, lead to a negative 
valued variance u2

c(y). This mathematical incorrectness was missed in the Russian translation of the ISO GUM [3], 
and is reproduced in a recent SSfM document [7] (see section 6.3 p.68-70) and in a recent metrology paper devoted 
to the higher-order corrections for propagating uncertainties [40]. For the correct expression for this case see, for 
example, the recent book [36], section 12.4.2, p. 278-280. 
 
5    CONCLUSION  
 
 In a few examples of present practice, we have shown that the current manner to express and exchange numerical 
multivariate measured data is obsolete5 and should be modernized with urgency. It seems that the majority of the 
published data that are incorrectly expressed and presented were obtained by inadmissible applications to the 

                                                 
5

This observation is not new. It is sufficient to quote the papers [9], [10], [11], [12], [13], [39], [41] where one can find further evidence that the 
multivariate data presented in scientific and technical publications, posted on the web pages, stored in handbooks and in the databases are in large 
portions incorrect and it is dangerous to use them for simulations of refined research or for simulations in the behavior of new high precision 
devices without careful input control and filtering. 
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multivariate case through the recommendations of ISO GUM and instructions from other metrology documents that 
were worked out only for the case of one measurand. We calculate that such confusion is partly inspired by the (in 
some cases incorrect) statements in the ISO GUM and by the absence of the analogous multivariate GUM (see, 
however, [4], [5], and [6]). 
 
The problem is especially sharp and urgent for the fundamental natural sciences where the requirements for data 
quality are becoming more and more stringent. New measurement techniques and devices have appeared and new 
data handling systems have been created, but the practice of expressing and exchanging the measured data still 
evolves too slowly. This permanent delay is the main reason for the appearance of incomplete and incorrect 
multivariate measured data in publications, in scientific and technological databases, and in scientific information 
agencies and sites that are “constrained” by the incomplete and partly incorrect recommendations and standards of 
respectable international metrology organizations (see the analogous view in the editorial note of Paul De Bièvre 
[37]). 
  
We hope that we have found a correct way to try to arrive at partial answers to the posed questions. We suggest as a 
first step that the ISO GUM should be revised. It seems more reasonable not to correct the original text 
incrementally (in the inconsistent and incorrect places indicated in the literature) but to make a complete revision by 
taking into account new methodology from the SSfM programme (see [4],[7], [15], [6]); the results of the 
NNDC(BNL) Cross Section Evaluation Working Group summarized in [38] (see sections 30. to 40.); critical 
statements and suggestions from [39], [41]; and new possibilities in data presentation and exchange provided by 
electronic publishing6. 
 
Then the planned Gum Supplement 2 (the multivariate expansion of the ISO GUM) should be prepared and issued 
with urgency. We propose that work to include the following topics: 

• Obligatory items in the multivariate data structure should be: mean values of random vector       
components with their rounding thresholds; covariance matrices and correlation matrices with their 
rounding thresholds; minimally sufficient, but detailed, descriptions of the procedures used to obtain 
estimates of all components of the structure. If directed rounding is used (instead of uniform rounding), 
then a detailed description of the rounding strategy should be given instead of rounding thresholds. 

• If the multivariate data adopted from sources with incomplete data presentations were used, then in the 
reported results a detailed description of the data quality “input check-ups” of the adopted data should be 
obligatory presented; 

• If differential uncertainty propagation procedures are used in the course of obtaining the final results, a 
detailed description of the uncertainty propagation procedure should be presented as well as estimates for 
the used higher moments of the joint distribution function of the “propagated variables.” 

 
Having reworked ISO GUM and Gum Supplements 1 and 2, the other instructive documents, guides, handbooks, 
and textbooks that used the obsolete recommendations of the ISO GUM should be corrected. After the first official 
release of the internationally approved new edition of the ISO GUM with GUM supplements 1 and 2 it will be very 
useful to apply to editors of all scientific journals, scientific information agencies, and data sites, as articulated in the 
appeal of Paul De Bièvre 

“. . . So, a result without reliability (uncertainty) statement cannot be published or communicated  
because it is not (yet) a result. I am appealing to my colleagues of all analytical journals not to  
accept papers anymore which do not respect this simple logic”.                      Paul De Bièvre [12] 

 
Having a formalized standard for the minimal, multivariate, data structure respected by the scientific and publishing 
communities timely revised in the metrology community, we can hope to have all procedures of multivariate data 
handling clearer and reported data more reliable. 
 
 

                                                 
6

Suggestion on the optimal content of the reports on the search results see in [36] (section 13.2 Desiderata for an optimal report of search results, 
p.286-287). 
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