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ABSTRACT 
 

Bayes’ estimators of the traffic intensity ρ and various queue characteristics in an M/M/1 queue have been derived 
under the assumptions of different priors for ρ and the quadratic error loss function (QELF). Finally, a numerical 
example is given to illustrate the results 
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1  INTRODUCTION    
 
Statistical analysis is an integral part of formulating a mathematical model for a real system. A model is not of much 
use unless it is related to the system through empirical data analyses, parameter estimation, and tests of relevant 
hypotheses. In queuing theory, statistical analyses and Bayesian analyses have taken a back seat and received 
comparatively less attention. Harischandra and Subba Rao (1988) discussed some problems of classical inference for 
the traffic intensity ρ involved in an M/Ek/1 queue. Bhattacharyya and Singh (1994) obtained the Bayes’ estimator 
of the traffic intensity ρ for an M/Ek/1 queue under two prior densities. Sharma and Kumar (1999) discussed 
classical and Bayesian estimators of various characteristics of a M/M/1 queue under squared error loss function. 
Mukherjee and Chowdhury (2005) obtained the Bayes’ estimator of the traffic intensity ρ in an M/M/1 queue under 
squared error loss function and LINEX loss function. Dey (2006) obtained Bayes estimators of the traffic intensity 
and various queue characteristics under the assumptions of different priors and the usual squared error loss function. 
 
The objective of this paper is to present the Bayesian estimation for the M/M/1 queue. To be specific, we have 
obtained the Bayesian estimates of the traffic intensity ρ and various queues’ characteristics in an M/M/1 queue such 
as expected queue length, expected length of waiting line, and the probability of minimum queue size, under the 
different priors for the queuing parameter  ρ  under the quadratic error loss function (QELF).  

 
2 PRELIMINARIES  
 
Let us consider an M/M/1 queuing system with the mean arrival rate λ  and mean service time 1/μ . The analysis for 
such a queue is now folk lore in the queuing literature, and we know that the random variable X representing the 
number of customers in the system under steady state has the distribution specified by the probability mass function 
(pmf) (cf. Kleinrock, 1975, page 96).  
  

P(x| ρ)  =  ( 1 –  ρ ) ρx          ,               x = 0,1,2, 3,  .   .  .       (2.1) 
 

where    , 0 1λρ
μ

= < ρ <         (2.2) 

represents the traffic intensity for the given queuing system. 
 
Based on the pmf in (2.1), various important characteristics of the system are: 
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 (i)  
1SL ρ

ρ
=

−
    : Expected queue length. 

 (ii) 
2

1qL ρ
ρ

=
−

    : Expected length of waiting line. 

 (iii) 0
0( )m

n
Q P X n ρ= ≥ =   : The probability of minimum queue size n0. 

 
The likelihood function (LF) corresponding to the pmf (2.1) is given by: 
 

 ( ) (1 ) n TL ρ ρ ρ= −        (2.3) 
                    α  
where  T =  Σ   xi          (2.4) 
                   i=0 
 
The expression (2.3) plays a key role in obtaining the Bayes’ estimator of  ρ under the assumption of the quadratic 
loss function. In the Bayesian approach, we assume further that some prior knowledge about the queuing parameter 
ρ is available to the investigator from past experiences with the underlying queuing system. This prior knowledge 
can often be summarized in terms of the so-called prior densities on the parameter space of ρ. When nothing is 
known regarding the parameter (ρ) from the past experience, however, this prior of ignorance may be represented by 
diffuse prior(s) or vague prior(s). For the problem at hand, we assume the following priors: 
 

 (1)  Diffuse Prior:      1
1( ) , 0cg ρ α
ρ

>c       (2.5) 

 (2)  Beta Prior:  1 1
2

1( ) (1 ) , 0 1, , 0
( , )

a bg a
B a b

ρ ρ ρ ρ− −= − < < b >    (2.6) 

 
 
3   BAYES’  ESTIMATOR OF ρ  
 
In this section, the Bayes’ estimator of ρ , its posterior variance, and various queue characteristics of an M/M/1 
queue are found out using the above prior distribution. 
  
3.1       Bayes’ Estimator Under Prior 1 ( )g ρ  
 
We consider the case when the prior density of  ρ is g1(ρ). The LF (2.3) is combined with the prior density (2.5) by 
using the Bayes’ theorem to obtain the so-called posterior density: 

 

1 1

0

(1 )( | )
(1 )

n T c

n T c

H x
d

ρ ρρ
ρ ρ ρ

−

−

−
=

−∫
      (3.1.1) 

                                
With a quadratic loss function, the Bayes’ estimator for ρ with posterior density (3.1) comes out as: 
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T n c
− −
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         (3.1.2) 

 
The corresponding posterior variance of ρ is given by: 
                    1 
V(ρ1)   =     ∫  ρ2 H1(ρ |  x ) dρ   – (ρ*1)2 

                  0 

            
2( 2)( 1) 1

( 3)( 2)
T c T c T c

T n c T n c T n c
− + − + − +⎛ ⎞= − ⎜+ − + + − + + − +⎝ ⎠2 ⎟

    (3.1.3) 

 

Also, the Bayes’ estimator of LS, say    , is 
1SL∗

1
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Similarly, the Bayes’ estimator of Lq, say 
1

L q
∗  , is 

1
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        (3.1.5) 

 

Finally, the Bayes’ estimator of Qm , say 
1

Q m
∗ ,  is 

1

10
0

1
2

10
0

1 ( | )

11 ( ) ( | )

n

n

H x d
Q m

H x d

ρ

ρ

ρ ρ

ρ ρ

∗ =
∫

∫
 

 

Data Science Journal, Volume 7, 25 December 2008

150



          0 0

0 0

( )! ( 2
( 1)! ( 2 )!
T c n T n c n
T n c n T c n
− − + − − +

=
+ − − + − −

1)!
      (3.1.6) 

We note that for n sufficiently large as compared to ‘c’, c0
ρ∗ , c1

ρ∗ , c2
ρ∗ are all numerically very close to each 

other. Moreover, we can show that E[( 2 ] 0)c ci j
ρ ρ∗ ∗− →  as n α   for any fixed value of , 

. By Tchebyshev’s inequality, it follows that for any    ε >0, , 

showing that in large samples the choice of the constant ‘c’  ( i.e., the choice of the prior ) is not very crucial.  

i jc and c

} } 1ε<0,1,2i j≠ = 2m  Pr{( )c ci j
ρ ρ

→∞
−

n
li ∗ ∗ →

3.2  Bayes’ Estimator Under Prior 2 ( )g ρ  

In this subsection, we consider the case when the prior density of ρ  is 2 ( )g ρ . The posterior distribution of  ρ  can 
be obtained by using Bayes’ theorem as: 

1 1

2 1
1 1

0

(1 )( | )
(1 )

n b T a

n b T a

H x
d

ρ ρρ
ρ ρ ρ

+ − + −
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−
=

−∫
      (3.2.1) 

With a quadratic error loss function, the Bayes’ estimator for ρ with posterior density (3.2.1) comes out as: 
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The corresponding posterior variance of ρ is given by: 
                    1 
V(ρ2)   =     ∫  ρ2 H2(ρ |  x ) dρ     –   ( 2ρ

∗ )2 

                  0 
           

           
2( 2)( 1)

( 1)( )
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Also, the Bayes’ estimator of LS , say , , is 
2SL∗
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Similarly, the Bayes’ estimator of Lq, say 
2

L q
∗ , is 
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Finally, the Bayes’ estimator of Qm, say , is 
2

Q m
∗
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4 NUMERICAL RESULTS 

 
We generated 5000 samples of size n = 50 from the geometric distribution as mentioned in section (2). Table 1 
shows Bayesian estimates of the parameter and posterior variance of ρ for different values of the parameter ρ under 
the prior distributions (i) diffuse prior density (ii) beta prior density and. Table 2 and Table3 show Bayesian 
estimates of the expected queue length (LS), expected length of waiting line (Lq), and the probability of minimum 
queue size (Qm) for different values of the traffic intensity (ρ). 
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Table 1. The Bayesian estimates of the traffic intensity parameter and posterior variance of ρ with  ρ = 0.5 and ρ = 
0.8 
 
n ρ  a b 

1ρ
∗  

c=0 
1ρ
∗  

c=1 
1ρ
∗  

c=2 
1( )v ρ∗

c=0 
1( )v ρ∗

c=1 
1( )v ρ∗  

c=2 
2ρ
∗  2( )v ρ∗

1 1 .5778 .5703 .5695 .0019 .0020 .0020 .5612 .0115 
1 2 .5778 .5703 .5695 .0019 .0020 .0020 .5603 .0113 
1 3 .5778 .5703 .5695 .0019 .0020 .0020 .5572 .0111 
2 1 .5778 .5703 .5695 .0019 .0020 .0020 .5501 .0114 
3 1 .5778 .5703 .5695 .0019 .0020 .0020 .5370 .0113 
1 10 .5778 .5703 .5695 .0019 .0020 .0020 .5190 .0102 

50 0.5 

10 1 .5778 .5703 .5695 .0019 .0020 .0020 .4650 .0109 
 

1 1 .8112 .8078 .8072 .00056 .00058 .00058 .8038 .0065 
1 2 .8112 .8078 .8072 .00056 .00058 .00058 .8022 .0064 
1 3 .8112 .8078 .8072 .00056 .00058 .00058 .7988 .0064 
2 1 .8112 .8078 .8072 .00056 .00058 .00058 .7962 .0065 
3 1 .8112 .8078 .8072 .00056 .00058 .00058 .7947 .0064 
1 10 .8112 .8078 .8072 .00056 .00058 .00058 .7805 .0061 

50 0.8 

10 1 .8112 .8078 .8072 .00056 .00058 .00058 .7491 .0063 
 

 
Table 2. The Bayesian estimates of LS ,  Lq , and Qm   with  ρ = 0.5  for different prior distributions 
 

n a b T n0 LS1* 
c=0 

LS1* 
c=1 

LS1*
c=2

LS2* Lq1*
c=0 

Lq1*
c=1 

Lq1*
c=2 

Lq2* Qm1* 
c=0 

Qm1* 
c=1 

Qm1*
c=2 

Qm2*

50 1 1  62 3 1.17 1.15 1.13 1.17 0.61 0.59 0.58   .61 .151 .147 .143  .151
50 1 2  62 3 1.17 1.15 1.13 1.15 0.61 0.59 0.58   .59 .151 .147 .143  .146
50 1 3  62 3 1.17 1.15 1.13 1.13 0.61 0.59 0.58   .57 .151 .147 .143     .143
50 2 1  62 3 1.17 1.15 1.13 1.19 0.61 0.59 0.58   .62 .151 .147 .143  .154
50 3 1  62 3 1.17 1.15 1.13 1.21 0.61 0.59 0.58   .64 .151 .147 .143  .158
50 1 10  62 3 1.17 1.15 1.13 1.00 0.61 0.59 0.58   .48 .151 .147 .143 . 119
50 10 1  62 3 1.17 1.15 1.13 1.35 0.61 0.59 0.58   .75 .151 .147 .143  .183

 
 
Table 3. The Bayesian estimates of LS ,  Lq , and Qm   with  ρ = 0.8  for different prior  distributions 
 

n a b T n0 LS1* 
c=0 

LS1* 
c=1 

LS1*
c=2

LS2* Lq1*
c=0 

Lq1*
c=1 

Lq1*
c=2 

Lq2* Qm1* 
c=0 

Qm1* 
c=1 

Qm1*
c=2 

Qm2*

50 1 1 246 3 4.71 4.69 4.67 4.71 3.85 3.83 3.81 3.85 0.563 0.562 0.561 0.563
50 1 2 246 3 4.71 4.69 4.67 4.62 3.85 3.83 3.81 3.77 0.563 0.562 0.561 0.558
50 1 3 246 3 4.71 4.69 4.67 4.54 3.85 3.83 3.81 3.68 0.563 0.562 0.561 0.552
50 2 1 246 3 4.71 4.69 4.67 4.73 3.85 3.83 3.81 3.87 0.563 0.562 0.561 0.565
50 3 1 246 3 4.71 4.69 4.67 4.75 3.85 3.83 3.81 3.89 0.563 0.562 0.561 0.567
50 1 10 246 3 4.71 4.69 4.67 4.02 3.85 3.83 3.81 3.19 0.563 0.562 0.561 0.575
50 10 1 246 3 4.71 4.69 4.67 4.88 3.85 3.83 3.81 4.02 0.563 0.562 0.561 0.574
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5 CONCLUSION 
 
It has been observed from Table 1 that there is very little change in values of estimators of ρ and posterior variance 
(or Bayes’ risk) due to change in values of ‘c.’ When the value of ρ tends to 1, however, the proposed Bayes’ 
estimators approach the true value of the parameter, and in that case, the Bayes’ risk is also minimum in comparison 
to other values of ρ. 
 
In case of beta prior, we have considered seven sets of values of ‘a’ and ‘b’ for the analysis:  

1) When the difference between ‘a’ and ‘b’ is large, e.g., we have taken a=1, b=10. 
2) When ‘a’ and ‘b’ are equal, e.g., a=b=1, even if we take a=b=other than 1, we find almost the same results. 
3) When ‘a’ is greater than ‘b’, e.g.., a = 10, b = 1. 

 
From Table 1, it is clear that the difference between estimator and the true value is least in case of (1). 
 
It is interesting to note here that the Bayes’ estimator under quadratic error loss function (BQELF) with c = 0 has the 
smallest posterior variance among all, though posterior variances for c =1, 2 are close to it. It also has to be noted 
that the BQELF performs better than the Bayes’ estimator under squared error loss function (SQELF). 
 
The above remarks are just observations based on the data referred to and should be viewed as such. Extensive 
simulation studies with different sets of sample size and parameter need to be worked out to examine more closely 
the behavior of the Bayes’ estimators ρ and different characteristics of the system under different priors and loss 
functions.  
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