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ABSTRACT 

The explosion of non-structured materials science data makes it urgent for materials researchers to resolve the 
problem of how to effectively share this information. Materials science image data is an important class of 
non-structured data. This paper proposes a semantic annotation method to resolve the problem of materials science 
image data sharing. This method is implemented by a four-layer architecture, which includes ontology building, 
semantic annotation, reasoning service, and application. We take metallographic image data as an example and 
build a metallographic image OWL-ontology. Users can accomplish semantic annotation of metallographic image 
according to the ontology. Reasoning service is provided in a data sharing application to demonstrate the effective 
sharing of materials science image data through adding semantic annotation. 

Keywords: Non-structured data, Materials science image, Data sharing, Domain knowledge ontology, Semantic 
annotation, Metallographic image ontology 

1   INTRODUCTION 

Materials science data has been a valuable resource and the basis of modern material design, manufacture, 
development, and application (Westbrook, 2003). Their sharing has always been a focus of international research 
(Wei, Peng, Liu, & Xie, 2006), and the ways of sharing are mainly based on materials science databases (Ed, 2003). 
Non-structured data as an important category of scientific data is widely used in materials science; examples include 
phase diagrams, metallographic images, and CCT diagrams. Materials science image data are the basic data for 
analyzing material performance. While the development of computer technology enables the storage and distribution 
of materials science image data on an unprecedented scale, finding suitable materials science image data for a 
particular purpose is increasingly problem for materials researchers. 

A major recent trend in the sharing of image data is to annotate those image objects. Image annotation is a process 
that supplements image data with literal description. Different types of descriptive information can be associated 
with images (Del Bimbo, 1999; Zachman, 1999), such as content-independent information, content-dependent 
information, and content-descriptive information. Content-descriptive information refers to content semantics and  
is concerned with relationships of image entities with real-world entities or temporal events, emotions, and meaning 
associated with visual signs and scenes (Liu, Zhang, Lu, & Ma, 2007). Content-descriptive metadata are the focus of 
this paper, and they can be specified using the following approaches. 

In past studies, there are mainly three approaches for image annotation: keywords, free-text, and ontology. Image 
annotation based on keywords is an approach using keywords for image description, chosen arbitrarily from the 
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vocabularies defined in advance. This has been done in the image retrieval domain by Gevers et al. (Gevers & 
Smeulders, 2000) and in the image motion estimation domain by Suzhou et al. (Zhu & Ma, 2000). If one is 
searching within a single image database that has been annotated carefully using a keyword vocabulary, then 
searching is simplified. Unfortunately, naive users do not necessarily know the vocabulary used to annotate an 
image collection, and this lack of keyword knowledge makes searching by text input more difficult (Hanbury, 2008). 
The IAPR-TC12 dataset of 20000 vacation images (Grubinger, Clough, Müller, & Deselaers, 2006) is described by 
free text, and each image is annotated in English, German, and Spanish. For this type of annotation, no pre-defined 
structure for the annotation is given. Thus users can annotate images using any combination of words or sentences. 
This method makes it easy to annotate images, but it is more difficult to use the annotation later in image retrieval 
because the free-text annotation is lacking in structure, concepts, and relationships.  

An ontology is a specification of a conceptualization, where all the definitions are presented with respect to each 
other and their semantic relationships are defined explicitly (Jewell, Lawrence, & Tuffield, 2005). For that reason, 
ontology annotation is better than keywords annotation on knowledge representation of images. There exist a large 
number of studies on ontology-based image annotation completed in the last few years. Schreiber et al. (Schreiber, 
Dubbeldam, Wielemaker, & Wielinga, 2001) constructed a photo annotation ontology and subject matter ontology to 
help the annotation and retrieval of ape photos. Hollink et al. (Hollink, Schreiber, Wielemaker, & Wielinga, 2003) 
used SWI-Prolog to develop an RDF Parser, which was used to accomplish the annotation and retrieval of artistic 
images. In the CONFOTO project (Nowack, 2006), an OWL ontology, annotation parser, and RDF metadata were 
all converted into components, and these components were used successfully in the annotation and sharing of 
conference-related photo and video over the web. Khan et al. (Khan, 2007) registered knowledge ontology as a web 
service to an intelligent agent center, with an agent responsible for annotating athletic images on the web. 

Semantic web technology makes creating a syntactic format specifying background knowledge for image data 
possible, and many research effects have shown that an ontology is a proper basis for semantic annotation of images. 
The annotation of materials science images involves paying attention to domain knowledge representation, which is 
different from general annotation. The implicit knowledge of materials science imaging should be expressed 
explicitly in the annotation. Therefore semantic annotation based on an ontology is the most suitable approach.  
Research on the semantic annotation of materials science image data has been rare, however, and furthermore there 
is no mature domain knowledge ontology at present for this annotation. 

In this article, we explore the approach of knowledge presentation for materials science image data, and propose a 
semantic annotation method for materials science image data based on an OWL ontology. Then, reuse of the 
knowledge of a materials science image is resolved by DL reasoning in TBox (Horrocks, 2002). Finally, using 
metallographic image data as an example, we build a metallographic image ontology and develop an annotation and 
query tool to help users annotate and share the metallographic image data. The following sections of this paper 
describe an overview of the approach used in our study, the ontology-based annotation mechanisms, and a semantic 
query example. 

2   OUR APPROACH 

Current materials science image data services systems focus strongly on databases for specific materials, which can 
not meet the requirements for materials researchers. Materials scientists do not have timely access to the 
experimental results generated by different research institutions. Convenient retrieval of high-quality materials 
science image data directly impacts the sharing of materials science image data. The following scenario is common 
in materials science research. A user obtains a microstructure image of 20 steel by metallographic testing and wants 
to compare it with previous results, in order to estimate the heat treatment technique used in the metallographic test. 
We can construct a query: Which type of heat treatment is shown in the 20 steel metallographic image? This image 
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shows a homogeneous distribution of ferrite (white) and pearlite (black). 

The user can obtain knowledge about the above metallographic image by searching for an image with the same 
content. The result shows that a homogeneous distribution of ferrite (white) and pearlite (black) of 20 steel is 
obtained by normalizing at 890oC for 30 minutes and air cooling. Users are concerned more with obtaining the 
materials science image in this scene; therefore, the annotation of the matching materials science image should be 
able to express additional implicit knowledge. To simulate this process and create our test case, we obtained about 
1000 images from a metallographic image database and used a subset of approximately 100 metallographic images 
of common steel for annotation. 

The main targets of our annotation study include: 1) building a knowledge ontology to express implicit knowledge 
of metallographic images, which can meet the requirements of the user demand for materials domain knowledge; 2) 
deducing relevant knowledge of metallographic images from the semantic annotation information, which can enrich 
the semantics of materials image data and realize the full value of the data by increasing the usage of generated data; 
3) implementing a semantic annotation architecture, which can integrate the distributed materials science image data 
into a whole. Figure 1 shows the annotation architecture used for data sharing. The ontology-based semantic 
annotation system has a four-layered architecture, including an ontology building layer, semantic annotation layer, 
reasoning service layer, and application layer. 

 
 
Figure 1.  Ontology-based Semantic Annotation System Architecture 

The ontology building layer uses a user-cognition-based approach for knowledge presentation of various 
non-structured data. The prerequisite for building a knowledge ontology is the extraction of concepts. Most research 
has so far used expert knowledge to give direct definitions to knowledge ontology. This creates difficulty for users in 
finding the images they need due to the differences between user cognition and that of domain experts. Thus we 
attempt to build the metallographic image knowledge ontology based on user-cognition. 

The image metadata is archived into an ABox (Horrocks, 2002) file of OWL ontology through annotation program 
in the semantic annotation layer. In this layer, the annotation template is designed according to the concepts of 
metallographic image; metallographic images are annotated, and we represent them in ontology languages such as 
OWL for machines to read, so as to raise the annotated image data from descriptive to knowledge expression. 

In the reasoning tier, all image data have a set of semantic annotation metadata stored in an OWL format that form a 
knowledge base using TBox. Reasoning service is provided to define rules to carry out queries and knowledge 
reasoning related to metallographic image. In this layer, the knowledge base provides a test service that can be used 
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to test instances as fitting to certain concepts or relationships when reasoning. The results of reasoning (i.e., 
knowledge about a metallographic image) can be reused in the application layer. A powerful client is provided for 
users to query and acquire their desired metallographic image data for applications such as intelligent selection, 
safety evaluation, and materials science data sharing. 

3   ONTOLOGY-BASED METALLOGRAPHIC IMAGE ANNOTATION 

Generally, annotation is a process to describe image content; however, for science data, it is a knowledge 
representation process. The ontology-based metallographic image annotation has three steps: 1) analysis and 
definition of the conceptual structure (i.e., knowledge ontology); 2) provision of a template for metallographic 
image annotation according to the defined ontology; 3) understanding and reasoning about metallographic image 
knowledge, achievable when we use logical calculation in specific applications. 

3.1  Metallographic Image Ontology Building 

Ontology-based annotation is relatively new, and there are no existing ontologies for metallographic images. Thus 
we decided to define the metallographic image ontology on the basis of a cognitive analysis of user perspective. In 
this section, we describe building a metallographic image ontology. Definitions of this ontology are as follows 
according to the domain concepts collected and screened by knowledge engineers: 

Definition 1. Suppose O is a metallographic image ontology, which is defined as a 4-tuple O=<C, Hc, DP, OP>, 
where C is a finite set of concepts of metallography domain, for example, grain size, network carbide, on-metallic 
inclusion, depth of decarburized layer; Hc is the hierarchical relations of concepts sets; DP is a finite set of relations 
among concepts and data types; and OP is a finite set of relations among objects. 

Definition 2. The concept of an ontology is defined as a triple Ci=<CNAMEi, CIDi, Ai>. CNAMEi is the name of 
concept i; CIDi uniquely represents a concept of metallographic ontology; and Ai is a logic axiom set of Ci. 

Definition 3. The hierarchical relation of concept C is defined as Hc. For example, Hc (Ci, Cj) shows that Ci is the 
father concept of Cj. Figure 2 shows the taxonomy of metallographic image concept. 

 
Figure 2. The hierarchical relation of concepts of metallographic image 
 
Although there is a conceptual category, the simple hierarchical relation can not express the semantic relations. 
Therefore, we define sets of DP and OP to perfect the semantic relations among concepts. 
 
Definition 4. DP is a finite set of relations between concepts and data types. For example, hasURI is the relation 
between the instance of class metalcategory and the datatype xsd:AnyURI; hasName is the relation between the 
instance of class metalcategory and the datatype xsd:String; hasURI and hasName are defined as functional 
properties, so for a given individual, there can be at most one individual that is related to the individual via these 
properties. 

Definition 5. OP denotes non-hierarchical relation among objects. For example, the property hasClass and 
isClassOf denote a subordination relation between class metalcategory and class structurecategory. hasClass and 
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isClassOf are defined as inverse properties, that is to say, the property hasClass is an inverse property of the 
property isClassOf . If T10 image hasClass Pearlite, then because of the inverse property we can infer that Pearlite 
isClassOf T10 image. 

We specified our metallographic image ontology in OWL using Protege3.1 according to the above definitions. That 
is to say, we defined the TBox of our metallographic image ontology, including all classes of metallographic image 
ontology and corresponding datatype property, object property, and asserted conditions. Figure 3 shows the class and 
property hierarchy of metallographic image ontology. 

   
 
Figure 3. The class and property hierarchy of metallographic image ontology 
 
3.2  Annotation Template of Metallographic Image 
 
Annotation of metallographic image is a process, in essence, to add semantics to metallographic images. For this 
purpose, we developed an annotation tool that provides the annotator with a description template derived from the 
defined metallographic image ontology. Figure 4 shows the semantic annotation framework based on ontology. 
 

 
Figure 4. The semantic annotation framework based on ontology 
 
The tool we developed reads a TBox file containing OWL ontology specifications. From the OWL specifications, 
the tool generates a user interface for annotating images. In view of different levels of knowledge possessed by 
different annotators, a semantic assistant was developed to improve the precision of annotation. The assistant 
provides a domain vocabulary as a reference service for annotators, and the vocabulary can be considered as an 
instance vocabulary of the domain ontology. Each annotated item is in correspondence with several example 
instances in domain vocabulary, e.g., the item ‘carbon structure steel grad’ is bound with specific grades in the 
domain vocabulary, such as Q195, Q215, Q235, Q255, and Q275. Users can type in a term and use the domain 
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vocabulary to raise both annotation and recall precision. The storage of annotated information is an important part of 
the framework, and it is done in either internal or external ways. Although the internal way is easy to realize, the 
convenience is offset by the burden of extra data processing to update annotated information in original 
metallographic images once a targeted domain changes the requirements. Thus we use external storage to separate 
annotated information and original metallographic image data, catering to the variability of metallographic practices.  
 
Semantic annotation in our design is a process of creating ontology instances. Thus the semantic metadata items to 
be annotated need to be in one-to-one correspondence with concepts in the metallographic image ontology. Every 
annotated metallographic document is an individual file of the metallographic image ontology, which is divided into 
two parts: ABox and TBox. The predefined image ontology is TBox; the annotated information is ABox, and they 
are explicit representations of knowledge of metallographic images. Meanwhile, in the reasoning tier, implicit 
knowledge of metallographic images can be found by a reasoner based on the ABox and TBox. Figure 5 shows the 
annotation tool prototype, which is an interactive and Java-based annotation form. The figure also illustrates how 
several techniques are combined to improve the user’s experience, such as reading the ontology, importing raw 
image data, writing an instance of ontology, and checking the consistency of an instance file. 

 
Figure 5. The annotation tool prototype. The user has selected T10 steel metallographic image as the object, and the 
semantic annotation according to the metallographic image ontology has been done. 
 
3.3  Reasoning Rule Design 
 
If the reasoning engine can be seen as a semantic bridge between the annotated information and its application, then 
the reasoning rules are the supporting piers of the bridge. The reasoning engine conducts semantic reasoning with 
the metallographic knowledge base by defining a series of reasoning rules based on the content of the ABox and 
TBox of the ontology. The purpose in designing reasoning rules is to obtain more relevant research results to meet 
users' requirement for knowledge about metallographic images. 
 
Semantic reasoning occurs when users submit a query or when semantic annotation is finished. At this phase of user 
interaction, a user query is decomposed and extended into many sub-queries, and then returned results are obtained 
by semantic reasoning. This method greatly enhances the recall precision rate, but system performance may be 
subject to obvious degradation when there are many concurrent users. Another method of semantic reasoning can be 
performed as soon as the annotation is finished. The relationship among concepts can be handled, but the 
relationships among individuals can not. Considering this, semantic reasoning is divided into two phases: TBox 
reasoning and ABox reasoning. TBox reasoning is responsible for handling synonymous and generalization 
relationships among concepts when annotation is accomplished. ABox reasoning is responsible for handling queries 
based on an ontology instance. In addition, because special concepts in metallography are not changed easily, the 
results of TBox reasoning are rarely changed. All kinds of metallographic images emerge, however, continuously 
with the development of new materials. Thus the results of ABox reasoning usually change over time 
correspondingly. We differentiate between ABox reasoning and TBox reasoning, which can reduce repetitive work 
and improve the efficiency of semantic reasoning. 
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The design of reasoning rules has been decomposed into TBox reasoning rules and ABox reasoning rules, 
respectively. The former are defined in advance in a rule database, and the latter are user-defined rules aimed at a 
specific application. Jena (McBride, 2004), developed in the HP laboratory, can provide support for TBox reasoning, 
and one of the services offered by the reasoner is to test whether one class is a subclass of another class. By 
performing such tests on the TBox of ontology, it is possible for a reasoner to compute the inferred ontology class 
hierarchy. The task of computing the inferred class hierarchy is also known as classifying the ontology. Furthermore, 
the classification information can be reused without reasoning at the phase of user query.  
 
Ontology information includes abundant knowledge that is not directly expressed. But knowledge discovery is a 
high-cost activity due to its very complex reasoning process. If knowledge discovery is supposed to happen during 
retrieval, the efficiency of the retrieval will be low. Our way of dealing with this is to first discover the knowledge in 
ontology by using Jena. Although the flexible application of the rules defined above in Jena can satisfy most 
reasoning needs, their use is limited in certain types of applications. Therefore, users are able to achieve better 
adaptability and extensibility through self-defining reasoning rules (i.e., ABox reasoning rules). According to the 
specific needs, three extensive rules of semantic reasoning are created as follows: 
 
Rule 1: (? x viaHeattreatment ? y), (? y subclassof ? z)—> (? x viaHeattreatment ? z) 
 
Rule 1 is a semantic entailment rule. Suppose that y is the heat treatment process of metallographic image x. While y 
belongs to z, then z is also the heat treatment process of x. For example, if you search T10 steel with annealing 
metallographic image, you could find metallographic images with other heat treatments, such as normalizing and 
quenching. Annealing, normalizing, and quenching all belong to the overall heat treatment. 
 
Rule 2: (? x refersTo ? y), (? y sameAs ? z)—> (? x refersTo ? z) 
 
Rule 2 is a synonym expansion rule. Suppose that y is the microstructure of metallographic image x. While y is 
equivalent to z, then x contains z. For example, an image shows microstructure P, and P is the abbreviation of 
pearlite; then the image showing pearlite can be found. 
 
Rule 3: (? x onlyBelongto ? y), (? y storedplaceIs ? z) —> (? x storedplaceIs ? z) 
 
Rule 3 is a semantic association rule. Suppose that x is a metallographic test result, and x only belongs to a certain 
type of metallographic image y. While y is stored in z, then x is also stored in z. For example, macrostructure defect 
images are stored in the macrostructure defect images database. A macrostructure defect image of T10 steel belongs 
to macrostructure defect images; then it is stored in macrostructure defect image database. 
 
4   QUERY BASED ON SEMANTIC ANNOTATION  
 
The semantic annotation of metallographic images based on an ontology is essentially a process of knowledge 
representation and reuse. Image description equipped with a formal logic-based semantics is one of the key features 
of semantic annotation. Another important feature is that the semantic annotation information can be seen as a 
knowledge base, and implicit knowledge about a metallographic image can be inferred from the knowledge base. 
Meanwhile, self-defined semantic reasoning rules can meet the requirements of many expansion queries, such as 
semantic implications, semantic extensions, and semantic relativity. Consequently, metallographic image data can be 
retrieved more effectively using the semantic annotation and reasoning mechanism. 
 
We have developed a semantic retrieval system with metallographic image data as an example, to validate whether 
the annotation method is feasible for sharing non-structured materials science data. The user interface is built with 
Java SWT, and we use pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) as the OWL reasoner and Jena ARQ as 
OWL API for the query engine. In order to demonstrate the advantages of semantic annotation for metallographic 
image retrieval, we construct queries based on user-habit. Assuming a user wants to find a metallographic image 
which belongs to hypoeutectoidsteel, the user would enter a keyword such as HypoeutectoidSteel. The answer 
wanted, however, is some specific instance of HypoeutectoidSteel and some relevant knowledge of the instance. 
Figure 6 shows the results of semantic association query. 
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Figure 6. The results of semantic association query. In this process, we can derive a semantic match with the 
concept HypoeutectoidSteel, and we can find more relevant information by semantic association retrieval. 
 
The above query result is derived from the rules we have defined. By inference engine, the result of query 
HypoeutectoidSteel is as follows: 45 steel, 10 steel, and 20 steel. They are all instances of the concept 
HypoeutectoidSteel. Furthermore, more relevant information about this instance image can be obtained. For instance, 
45 steel can be found in the detail information for 20 steel by semantic association retrieval because 45 steel and 20 
steel have the same microstructure, ferrite and pearlite. In contrast, the general image search engine is only to find 
the items including keyword HypoeutectoidSteel. Although the SPARQL statement of the semantic query is similar 
with the SQL query, in fact the SPARQL query in the web has greater flexibility. Because all kinds of web data are 
combinations of external data sources, they can not be predicted nor are they reliable. As far as a query is concerned, 
SQL is not suitable for dynamic querying of the web data because its pre-defined structure, which satisfies constraint 
completeness, is fixed. In addition, the processing objective of SPARQL and SQL is different. Further relationships 
are not derived from the simple association rules of SQL, but SPARQL is provided with reasoning abilities by virtue 
of rules definition. Consequently a semantic query based on SPARQL can improve precision rate, and the semantic 
query process based on user cognition can provide users with additional interesting answers, which would not be 
requested in inquiry by reasoning rules. 
 
5   CONCLUSION AND FUTURE WORK 
 
In this paper, we have presented an ontology-based approach that can be used to develop annotation for 
non-structured materials science data with the usage of semantic web technologies. The role of ontology-based 
techniques is to exploit a specialization representation of materials science image content, and to form a knowledge 
base of non-structured materials data. The semantic web technology is increasingly important for annotation of 
non-structured data into machine-readable formats. Furthermore, semantic annotation allows us to make use of 
concept searches instead of keyword searches. Also, it paves the way for more specific applications. Taking 
metallographic image data as an example, we have implemented a semantic annotation tool based on a 
metallographic image ontology and developed a semantic query prototype system to evaluate the efficiency and 
effectiveness of our method. The results showed that image query based on semantic annotation has a high precision 
rate. 
 
Future enhancements will focus on three issues. The first major target is to acquire more accurate domain knowledge 
representation by using formal concept analysis. The second is to propose an application standard similar to DICOM 
(Digital Imaging and Communications in Medicine) to assist annotation of materials science image data. The third is 
to explore an automatic annotation approach that is able to intelligently annotate non-structured data using manual 
training in conjunction with feedback. 

Data Science Journal, Volume 8, 20 May 2009

59



6   ACKNOWLEDGEMENTS 
 
This work is supported in part by the Key Science-Technology Plan of the National ‘Eleventh Five-Year-Plan’ of 
China under Grant No. 2006BAK11B03 and the R&D Infrastructure and Facility Development Program under 
Grant No. 2005DKA32800. 
 
7   REFERENCES 
 
Del Bimbo, A. (1999) Visual Information Retrieval, San Francisco, CA: Morgan Kaufmann. 
 
Ed, B. (2003) Materials property data standardized for Internet. Advanced Materials & Processes, 161(4), 23. 
 
Gevers, T. & Smeulders, AW. M. (2000) PicToSeek: combining color and shape invariant features for image 
retrieval. IEEE Transactions on Image Processing, 9(1), 102-119. 
 
Grubinger, M., Clough, P., Müller, H. & Deselaers, T. (2006) The IAPR TC-12 Benchmark: A New Evaluation 
Resource for Visual Information Systems. In proceedings of International Workshop OntoImage'2006 Language 
Resources for Content-based Image Retrieval, held in conjunction with LREC 2006, Genoa, Italy. 
 
Hanbury, A. (2008) A survey of methods for image annotation. Journal of Visual Languages and Computing, 
DOI:10.1016/j.jvlc.2008.01.002. 
 
Hollink, L., Schreiber, A. Th., Wielemaker, J. & Wielinga, B.J. (2003) Semantic annotation of image collections. In 
Proc. K-Cap 2003 Workshop on Knowledge Markup and Semantic Annotation, Sanibel Island, Finland. 
 
Horrocks, I. (2002) Reasoning with Expressive Description Logics: Theory and Practice. LECTURE NOTES IN 
COMPUTER SCIENCE, 2392, 1-15. 
 
Jewell, M. O., Lawrence, F. & Tuffield, M. M. (2005) OntoMedia: An Ontology for the Representation of 
Heterogeneous Media. In proceedings of Multimedia Information Retrieval Workshop 2005 (MMIR 2005), Salvador, 
Brazil. 
 
Khan, L. (2007) Standards for image annotation using Semantic Web. Computer Standards & Interfaces, 29(2), 
196-204. 
 
Liu, Y., Zhang, D., Lu, G. & Ma, W. Y. (2007) A survey of content-based image retrieval with high-level semantics. 
Pattern Recognition, 40(1), 262-282. 
 
McBride, B., Boothby, D., & Dollin, C. (2004) An Introduction to RDF and the Jena RDF API. Retrieved August 1, 
2007 from the World Wide Web: http://jena.sourceforge.net/tutorial/RDF_API/ index.html. 
 
Nowack, B. (2006) CONFOTO: Browsing and annotating conference photos on the Semantic web. Web Semantics: 
Science, Services and Agents on the World Wide Web, 4(4), 263-266. 
 
Schreiber, A. Th., Dubbeldam, B., Wielemaker, J. & Wielinga, B. J. (2001) Ontology-Based Photo Annotation. IEEE 
Intelligent Systems, 16(3), 66–74. 
 
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A. & Katz, Y. (2007) Pellet: A practical OWL-DL reasoner. Web 
Semantics: Science, Services and Agents on the World Wide Web, 5(2), 51-53. 
 
Wei, Q., Peng, X., Liu, X. & Xie, W. (2006) Materials informatics and study on its further development. Chinese 
Science Bulletin, 51(4), 498-504. 
 
Westbrook, J. H. (2003) Materials data on the Internet. Data Science Journal, 2, 198-212. 
 

Data Science Journal, Volume 8, 20 May 2009

60



Zachman, J. A. (1999) A Framework for Information Systems Architecture. IBM Systems Journal, 26(3), 454-470. 
 
Zhu, S. & Ma, K. K. (2000) A new diamond search algorithm for fast block-matching motion estimation. IEEE 
Transactions on Image Processing, 9(2), 287-290. 
 
 

(Article history: Received 10 October 2008, Accepted 18 February 2009, Available online 24 April 2009) 

Data Science Journal, Volume 8, 20 May 2009

61


