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ABSTRACT
In many studies, we want to determine the influence of certain features on a dependent 
variable. More specifically, we are interested in the strength of the influence – i.e., is 
the feature relevant? And, if so, how the feature influences the dependent variable. 
Recently, data-driven approaches such as random forest regression have found their 
way into applications (Boulesteix et al. 2012). These models allow researchers to 
directly derive measures of feature importance, which are a natural indicator of the 
strength of the influence. For the relevant features, the correlation or rank correlation 
between the feature and the dependent variable has typically been used to determine 
the nature of the influence. More recent methods, some of which can also measure 
interactions between features, are based on a modeling approach. In particular, when 
machine learning models are used, SHAP scores are a recent and prominent method 
to determine these trends (Lundberg et al. 2017).

In this paper, we introduce a novel notion of feature importance based on the 
well-studied Gram-Schmidt decorrelation method. Furthermore, we propose two 
estimators for identifying trends in the data using random forest regression, the so-
called absolute and relative traversal rate. We empirically compare the properties of 
our estimators with those of well-established estimators on a variety of synthetic and 
real-world datasets.

*Author affiliations can be found in the back matter of this article
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1. INTRODUCTION
In many studies, scientific researchers are faced with high-dimensional but limited data to 
determine the influence of specific features on a dependent variable. Typically, the data consist 
of both numerical and categorical features, and strong artificial multivariate correlations 
appear. In particular, when data are generated from observations of live animals or collected 
in medical procedures, it is very likely that the data are unbalanced and, even worse, not 
all combinations of features contain samples. Therefore, it is unlikely that all necessary 
assumptions of classical statistical tests will be met. Machine learning methods have gained 
popularity among researchers because they can produce robust effect estimates with minimal 
assumptions. However, in particular, plain machine learning models are prone to overfitting 
effects such that they need to be applied with care. A plain but prominent example is the 
random forest regression. While random forests are rather old concepts in the mathematics 
literature, due to advances in data science concepts as well as the increasing computational 
power available to any research group, they have been finding their way into life science studies 
rather recently (Boulesteix et al. 2012; Gübert et al. 2023). Random forest regression, as with 
all machine learning models, makes few assumptions about the distributions of the underlying 
data and is particularly robust to noise and outliers. Finally, it allows to directly derive measures 
of feature importance, which are a natural indicator of the strength of influence of individual 
features (Fraser 1965; Beraha et al. 2019; Parveen et al. 2012). In cases where classical 
statistical tools such as ANOVA can be applied, it is well known that most features found to be 
significant by ANOVA also have high feature importance and vice versa (Chicco & Jurman 2021; 
Saarela & Jauhiainen 2021).

Once relevant features have been found, it is important to determine how the values of 
the features affect the dependent variable. Probably the oldest approach is to measure the 
correlation or rank correlation between a feature and the dependent variable. More recent 
methods, some of which can also measure interactions between features, are based on a 
modeling approach. A model (e.g., a multivariate linear regression model) is trained and its 
parameters can be used to determine trends, especially when machine learning models are 
used, the SHAP scores (Shapley 1953) are a recent and prominent method to determine these 
trends. These approaches use the model rather than the raw data. This can help to identify 
trends that are not directly visible in the data but are hidden behind noise. On the other hand, 
a decent model is required so that these trends are reliable.

The goal of this paper is twofold. First, since dependencies between features are known to 
influence feature importance scores, we introduce a notion of feature importance based on 
the well-studied Gram-Schmidt decorrelation method. This notion is empirically compared 
with a similar approach based on residual learning and the classical impurity-based feature 
importance and permutation importance. Second, we propose two estimators to identify 
trends in the data using random forest regression. We exploit the structure of random forests, 
i.e., at each split node we can compare the average prediction in the left and right subtrees. 
Since the left subtree is built on data below a threshold and the right subtree contains data 
above that threshold, this induces a natural estimator of a joint trend between the feature and 
the predicted variable.

2. BACKGROUND AND NOTATION
2.1 FEATURE IMPORTANCE

With respect to random forests, three types of feature importance scores are well known in 
the literature. The first one is an impurity-based feature importance. The so-called impurity 
is quantified by the splitting criterion of the collection of contained decision trees. Therefore, 
it is likely to overestimate the importance of large numerical features (if the dataset is not 
standardized). Furthermore, it is possible that features that may not be predictive on unseen 
data are found to be important in the case of overfitting. For these reasons, a second type of 
feature importance, the so-called permutation importance, has found its way into the literature 
and is to be preferred. It is defined as the decrease in model performance when a single 
feature’s values are randomly shuffled. A similar possibility to measure a feature’s importance 
is based on exclusion of a variable. More precisely, to measure the importance of a feature, a 
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second random forest is trained on the same data excluding the feature under consideration. 
The importance is, again, measured as the decrease in the model’s performance. Of course, 
the permutation-based and the exclusion-based approach have their shortcomings if there are 
clusters of (highly) correlated features (Breiman 2001). Indeed, due to the availability of the 
modified feature’s values via the correlation, the importance score can be highly misleading. 
One approach to overcome this problem, which is often used in the process of feature extraction, 
is to keep only one variable per cluster (Chen et al. 2020; Louppe 2014; Guyon et al. 2002). If 
the ultimate goal is to design a decent prediction model with as few features as possible, this is 
the state of the art. But in some cases, researchers are actually more interested in estimating 
the importance of each feature to determine which features influence the dependent variable 
and how strongly. In this setting, it may be convenient to treat the correlations differently. 
There are at least two decorrelation techniques that are usually used either for clustering data 
or for designing well-performing prediction models: the Gram-Schmidt decorrelation technique 
(Zhang & Chan 2006) or residual-based decorrelation (Dezfouli et al. 2019). The main idea in 
both cases is to subtract the information from a given feature Fi given by F1,…, Fi-1, Fi+1,… Fd and 
use this residual to train the model.

2.2 TRENDS

We compare three different ways to define trends in the dataset. The simplest way one might 
think of examining a trend between the values of a feature Y and the predicted variable is to 
use the correlation coefficient r(X,Y) = Cov(X,Y)/(σ(X)σ(Y)), which reflects linear trends. A more 
general correlation coefficient that handles any monotone trends are various types of rank 
correlation coefficients such as the Spearman correlation coefficient ρ(X,Y) = r(R(X), R(Y)) where 
R(·) denotes the rank function. This method of finding trends is well established and only 
considers the observable raw data.

Another approach does not look at the raw data but fits a model and looks for trends in that 
model. Many practitioners tend to identify trends in multivariate tasks by fitting a linear model 
to the data and interpreting the sign and corresponding p-value of the coefficient of a feature 
as a trend. We will denote this coefficient by rLM(F). However, we will see that this can be very 
misleading, even for very simple datasets.

In recent years, an old concept from mathematical game theory, called Shapley values, has 
been used to interpret machine learning models (Lundberg & Lee 2017). In particular, they are 
well understood mathematically for tree-based models and random forests. The Shapley value 
of a feature with respect to a data point measures how much the feature value contributes 
to the prediction compared to the average prediction and is defined as the average marginal 
contribution of the feature value among all possible combinations of features. For a formal 
definition, see Shapley’s original paper (1953), and for a detailed discussion of how to use the 
concept in machine learning, see Janzing et al. (2020) and Sundararajan and Najmi (2020). 
Shapley scores can be used to determine trends. More precisely, if a low value of a feature 
X induces a decrease of the Shapley value, then the model predicts a negative trend of the 
predictive variable with respect to feature X.

2.3 STUDIED DATASETS

To test the performance of our estimators in practice, we use two very well-known real datasets, 
called Kaggle fish market dataset (FISH) (Pyae 2019) and California housing data (HOUSING) 
(Nugent 2017). In addition, we create multiple different synthetic datasets to explore certain 
aspects of the estimators.

FISH contains the records of seven different common fish species in fish market sales. The 
features are species, weight, vertical length, diagonal length, transverse length, height, and 
width for each fish. Of these characteristics, we used weight, height, and width to predict vertical 
length. The California housing data refers to the houses found in a given California county and 
summary statistics based on 1990 census data. The features are longitude, latitude, median 
age of the house, total number of rooms, total number of bedrooms, population, number of 
households, median income, and ocean proximity for each county with median house value as 
the prediction target. We transformed the ocean proximity feature into an ordinal scale.
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The first synthetic datasets (SYN1(a) and SYN1(b)) are derived from a base dataset B consisting 
of 1000 samples and 10 features, three of which are informative. The base dataset is 
standardized by removing the mean and scaling to unit variance. It is then combined with 
a Gaussian noise dataset N standardized the same way and with the same structure but no 
informative features, resulting in dataset SYN1(a). For SYN1(b), the same procedure is applied 
using uniform white noise rather than Gaussian noise. A family of datasets is obtained by:

(1 ) ( [0.01,0.02, ,1.]).wD w B wN w= − + ∈ …

SYN1(a) and SYN1(b) each consist of the combination of the base dataset with 250 different 
random noise datasets. These datasets are used to compare the robustness of trend estimators.

The second synthetic dataset (SYN2(a)) consists of 100 samples with independently generated 
features:

0 1 2 .   ~ 3 (0,1), ~ 2 (0,1), ~ (0,1)X X X⋅ ⋅  

Furthermore, given X0, we define:

2
0 0 1 0 2 0   (0,1), 10 (0,1), 10 (0,1).A X A X A X= + = + ⋅ = + ⋅  

The true label is given by:

1.5 2
0 1 24 2 0.5 .Y X X X= + +

Thus, the real labels depend on X0, X1, X2 and A0, A1, A2 can be considered as noisy instances 
of X0 with different types of dependencies. Similarly, we define a set SYN2(b), in which the 
standard Gaussian 𝒩(0, 1) is replaced by a uniform [–1,1] random variable. This is an instance 
of white noise applied to data. SYN2(a) and SYN2(b) are used to compare different notions of 
feature importance.

The last synthetic datasets (SYN3(a and b)) consist of 100 samples with only one informative 
feature X0, defined as previously. Moreover, A0, A1, A2 are defined as above. The true labels are 
now given by 1.5

04Y X= . SYN3 (a and b) are used to compare the notions of feature importance 
on a cluster of correlated features, in direct comparison to SYN2, in which two additional, 
uncorrelated, informative features are present.

3. CONTRIBUTION
3.1 FINDING TRENDS IN A DATASET

We compare the commonly used regression coefficients r, ρ, the linear model-based trend 
estimator, a Shapley-based trend estimator, and propose two novel estimators based on 
random forest regression to determine the trends of features. For this purpose, we simply define 
the Shapley-based trend of a feature as the correlation between its values X and its Shapley 
values s(X), so that we obtain the estimators r(X, s(X)) and ρ(X, s(X)), respectively. Moreover, we 
report the Shapley values themselves visually to compare the actual marginal contributions to 
the corresponding trend estimators.

The two proposed trend estimators are the absolute and the relative traversal rate. The random 
forest regression model uses an ensemble of uncorrelated decision trees. At each node, the 
current dataset is partitioned into two partition classes based on the values of the node’s 
feature. We assume without loss of generality that the data in the left partition class belong to 
small feature values and the data in the right partition class belong to large feature values. To 
determine the trend of a feature F, we compare the mean of the features in the left and right 
partition classes per node. If the average value of the predicted variable in the left tree is smaller 
than in the right tree, this corresponds to a positive correlation with the feature F. The intuition 
behind this is the following. As we find only data points with a smaller value of F in the left 
tree than in the right tree, and the model predicts a smaller value of the predicted variable, we 
expect a positive correlation between the feature F and the dependent variable. More formally, 
let {Fj}j = 1…n denote the set of nodes in the random forest in which the data is partitioned with 
respect to feature F. The corresponding partition classes are called L(Fn) and R(Fn). If the feature 
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F is clear from the context, we abbreviate these classes to Ln and Rn. Furthermore, for a subset A 
of the values of the predicted variable, we define 1( ) | |

a A
AVG A A a−

∈
= Σ  as the average value of the 

set A. This allows us to define our trend estimators.

Definition 1

Given a random forest  , let {Fj}j = 1 … n denote the set of nodes in the random forest in which the 
data is split with respect to feature F. The absolute traversal rate of feature F is defined as:

( )1

1

( , ) 1{ ( ( )) ( ( ))} 1{ ( ( )) ( ( ))} .
n

i i i i
i

ATR F n AVG L F AVG R F AVG L F AVG R F−

=

= ≤ − ≥∑

Moreover, the relative traversal rate of feature F is defined as:

1

( ) ( )
( , ) 2 .

| ( ) ( )|

n
i i

i i i

R F L F
RTR F

L F R F=

−
=

+∑

The ATR formalizes the idea that we have a trend when the feature with a higher value causes 
the model to return a higher value. It is a number between –1 and 1. If it takes a value close 
to 1, this means that in almost every split, the smaller feature’s values induce a smaller model 
prediction, while a value close to –1 means that in most splits the smaller feature’s values 
induce a larger model prediction. A value around zero means that about half of the splits 
induce a positive, and half of the splits a negative correlation.

The RTR is a weighted variant of this idea. If the relative difference between the average 
prediction in the left and right sub-tree is large, the split can be said to induce a stronger trend 
than in the case in which the average predictions are close to each other in both trees.

Both ATR and RTR estimate the impact of a feature by assessing how it splits the tree into 
partition classes (see Figure 1). In particular, the impact of a feature is estimated by comparing 
those partition classes, which can be done without knowing any of the other features. This is 
in contrast to the Shapley-based trend estimator, which assesses the impact of a feature by 
calculating the average marginal contribution of a feature over different coalitions of features.

Trend Estimator. For the empirical analysis of the datasets, we wrote a trend estimator module, 
which trains both a random forest regression model as well as a linear model on the input data. 
For each feature, the trend estimator then outputs

(1) the coefficient of the linear model

(2) Spearman’s rank correlation and Pearson correlation coefficient between the target and

(a) the Shapley value

(b) the feature

(3) the absolute traversal rate (ATR)

(4) the relative traversal rate (RTR).

Figure 1 Each occurrence of 
feature F splits the dataset 
into two parts. In the example, 
F1 creates partition classes L1 = 
{2, 4, 7, 3} and R1 = {8, 12, 4, 6}. 
The split at F2 creates classes 
L2 = {7} and R2 = {3}, whereas 
the split at F3 defines L3 = {8, 
12} and R3 = {4, 6}. The model 
is agnostic to any features 
other than F.
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3.2 MEASURES OF IMPORTANCE

We compare five different notions of feature importance. Two definitions, the impurity-based 
feature importance and the permutation-based feature importance, are well studied concepts 
(Breiman 2001). We use scikit-learn’s default implementation of these measures. Moreover, 
the exclusion-based feature importance is a folklore variant to measure a feature’s importance 
by the model’s decrease in accuracy by excluding a feature. To compare different notions of 
feature importance with the exclusion-based variant, we denote by MSE(R, F) the mean squared 
error of the random forest model in which feature F was excluded. We then calculate MSE(R, 
F)/MSE(R) as a measure of feature importance. We train 50 random forest models R1, …, R50 
independently on 80% of the data each and estimate Ê(F) as the mean over MSE(Ri,F)/MSE(Ri) 
(for i = 1 … 50). Finally, we define the exclusion-based feature importance of features (F1, …, Fd) 
as the normalised value of Ê(F), thus E(F) = Ê(F)/(Ê(F1) + … + Ê(Fd)).

In addition, we introduce two novel types of feature importance based on residual learning. 
The idea is that the importance of feature Fi is determined by its residuals given features F1, 
…, Fi-1, Fi+1,… Fd. With a slight misuse of notation, we interpret Fi ∈ ℝn as the vector of all values 
corresponding to feature Fi and denote by Y ∈ ℝn the values of the dependent variable. We 
denote by j  an arbitrary algorithm that takes F1, …, Fj-1 as input and outputs a vector in ℝn. 
Given a fixed permutation π of [d], we denote by i1, …, id the new order under π. To determine 
the importance of Fi, we determine its importance under all permutations π with the property 
that id = i and weight it by the performance of a model consisting only of the feature Fi. The 
interpretation is as follows: given all other features, what can be learned from feature 

di
F ? The 

algorithm to compute the importance can now be expressed as follows.

•	 For all permutations π which map i ⟼ d, do the following

– Define 
11 iW Fπ = .

– Replace the values of feature 
ji

F  with 
1 1|

( , , )
j j ji i i iW F W Wπ π π

−〉= − …  (for j = 2 … d).

– Train a random forest with features { }
ji

W .

– Determine the impurity-based feature importance of 
di

Wπ .

•	 Determine the average feature importance of Fi as the mean over all 
di

Wπ , call this (FI)i.

•	 Train a random forest regressor i with feature Fi and dependent variable Y and measure 
( ( ), )ir F Y .

•	 Return ( ( ), )( )i i i if r F Y FI= 

After applying this algorithm, we are left with 1, , df f…  . Finally, we define the feature importance 
based on the residual algorithm  as the standardized version of the above estimator,  
namely:

1

( ) .j
j d

i i

f
f

f=

=
Σ







Formally, the algorithm is given as Algorithm 1. We note the following.

•	 ( )jf   is a random quantity because it depends on the training of the random forest 
regressors 1, , d…   and the random forest regressors using the features { }

ji
W .

•	 In applications, it may not be possible to iterate over all permutations π. Instead, 
the average impurity-based feature importance is estimated by sampling some 
permutations.

•	 The algorithm is highly dependent on the residual algorithm  .

In this contribution, we empirically analyze the feature importance based on two different 
residual algorithms: classical residual learning by random forest regression and decorrelation 
by the Gram-Schmidt method.
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Residual learning-based feature importance

Following Dezfouli et al. (2019), it is a natural idea to define the family of residual algorithms 

2, , d…   as a family of random forest regressors. More precisely, given 
1 1

, ,
ji iW Wπ π
−

… , we train a 
random forest regressor   on those features with the dependent variable 

ji
F . Hence,

1 11 1( , , ) ( , , ).j j jW W W Wπ π π π
− −… = … 

Thus, we subtract from 
ji

F  everything that can be learned by random forest regressors from 
the first j–1 features under π. This approach is classically known as residual learning and finds 
prominent applications in machine learning (He et al. 2016).

Gram-Schmidt decorrelation-based feature importance

Another natural approach is to use the very famous Gram-Schmidt orthogonalization technique. 
While it is a standard tool in mathematics to generate orthogonal bases of vector spaces, it was 
first applied in the early 2000s to find independent components in complex datasets (Zhang & 
Chan 2006). The most important observation is that the covariance is an inner product, so the 
very general Gram-Schmidt orthogonalization technique can be applied with the covariance to 
create decorrelated features. Here, we define:

1

1 1
1

Cov( , )
( , , ) .

Cov( , )

j
j i

j j j
i j j

F W
W W F

F F

π
π π

−

−
=

… =∑

A major advantage may be that this orthogonalization method, unlike the above approach, is 
fully mathematically understandable. However, it may be brittle to nonlinear dependencies.

4. RESULTS
4.1 FINDING TRENDS

In the following, we report our empirical results on the performance of the different trend 
estimators on the HOUSING, FISH, and SYN1 datasets.

Require: d features F1, …, Fd, residual algorithm, dependent variable Y

Sd ← set of permutations of {1, 2,…, d}

FeatImp ← (0, …, 0) ∈ ℝd

for π ∈ Sd do

j

n
iF ∈ ← j-th feature vector under permutation π

1 1i iW Fπ =

for j = 2 … d do

1 1
( , , )

j j j ji i i i iW F W Wπ π π
−

← − …

end for

 RF ← generate a random forest model with features 
1

, ,
di iW Wπ π…  and dependent 

variable Y

FI ← result of impurity-based feature importance of RF for feature 
di

Wπ

di
←  generate random forest model with feature 

di
F  and dependent variable Y

FeatImp[ ] FeatImp[ ] ( ( ), ) FI
d di ik k r F Y← + ⋅

end for

1

FeatImp
||FeatImp||FeatImp←

return FeatImp Algorithm 1 Residual-based 
feature importance.
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4.1.1 SYN1

The datasets SYN1(a) and SYN1(b) were used to test the robustness of the different trend 
estimators with respect to the mixing of the dataset with noise. To do this, the trend estimator 
module was applied to Dw for each w ∈ [0.01, …, 1.] for each of the 250 random noise datasets. 
In our experiment, the aggregated output shows that both ATR and RTR, as well as the Shapley 
correlation, are more robust than the linear model for the informative features for both 
Gaussian noise and uniform white noise (Figure 2). The Shapley values are the most robust, 
followed by RTR and ATR. Interestingly, non-informative features were also assigned large ρS, 
rS, RTR and ATR values.

4.1.2 FISH

We performed three experiments on the FISH dataset using the features weight, height and 
width to predict length. All three selected features are positively correlated with the target 
(Figure 3).

First, we applied the trend estimation module to the FISH dataset. To control for random 
effects, we performed 100 bootstrapping iterations, sampling from a subset of 70%. The linear 
regression model assigned a negative coefficient to the Height feature, while the other trend 
estimators reported a positive trend (Figure 4).

To evaluate the robustness of the trend estimators to noise, we used a random mixing strategy 
similar to that used to create SYN1. The FISH data were standardized and mixed with random 
noise ranging from 0% to 99% noise before being used as input to the trend estimator module. 
We found that the linear model and the RTR became unstable as the feature-to-target 
correlation r and ρ decreased, while the ATR and the Shapley measures rS and ρS remained 
relatively unaffected up to much higher mixing rates (Figure 5).

4.1.3 HOUSING

The random forests were trained 100 times on HOUSING, each run using a random initialization 
and a random subset containing 70% of the training data. The mean and standard deviation 
of the different trend estimators, as well as the relative absolute SHAP values is shown in 
Figure 6, i.e. the sum of the absolute SHAP values divided by the maximum absolute sum for 

Figure 2 Mean and 95% 
confidence interval for the 
different trend estimators on 
SYN1(a) and SYN(b) for 250 
independent trials each. On 
the x-axis, the proportion of 
noise is reported. Features 
1–3 are informative, whereas 
features 4–10 are non-
informative.



Figure 3 Pairplot of the used fish market dataset features (weight, height and width) and the predicted variable (Length).

Figure 4 Comparison of the trend estimators for FISH. We report the mean and the standard deviation of the different trend estimators over 
100 bootstrap iterations, each containing 70% of the data. Relative absolute SHAP values shows the absolute sum of the SHAP values for each 
run, divided by the highest respective sum.



each run. The characteristic population is very weakly negatively correlated with the housing 
price. However, all trend estimators report a significant negative trend for population. The 
feature total rooms is positively correlated with the target. However, the linear model assigns 
a negative coefficient to the total number of rooms. All other trend estimators report a 
positive trend.

4.2 MEASURES OF IMPORTANCE

We compare the impurity-based feature importance, the permutation-based feature 
importance, the exclusion-based feature importance and the feature importance induced by 
the two described residual algorithms (residual learning and Gram-Schmidt decorrelation). A 

Figure 5 Mean and 95% confidence interval w.r.t. 100 independent iterations over noise on FISH. The x-axis reports the proportion of noise 
mixed to the real data.

Figure 6 Comparison of the trend estimators on HOUSING. The linear model assigns a negative coefficient to the total number of rooms 
feature, even though the feature itself is positively correlated to the target.
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run consists of fitting a random forest, to measure the feature importance values, multiple 
independent runs (between 100 and 400) were conducted. To determine the residual-based 
importance scores, for each feature, 50 permutations that assign this feature to the last 
position are sampled independently in every run.

First, we compare the different scores on the synthetic datasets SYN2 and SYN3 (see 
Figure 7). Perhaps the most important observation is that the impurity-based feature 
importance assigns the same score to all features – in both datasets. This is in strong contrast 
to all other feature importance scores. It is noteworthy that both residual-based approaches 
produce very comparable scores on the given datasets. Both residual-based approaches and 
the permutation-based score assign roughly the same score to X0 and the slightly noisy variant 
A0. However, feature A1, which is subject to much more noise, receives a significantly higher 
score under residual-based scoring. Especially on SYN3, the residual-based approaches assign a 
not too small score to all informative features. The permutation-based score for the informative 
features X1 and X2 is comparatively small. However, all scores assign a higher importance to the 
noisy instance A0 of X0 than to the informative features X1 and X2.

Next, we compare the different scores on the real datasets HOUSING and FISH (see Figure 8). 
For HOUSING, it is most striking that the residual learning, impurity-based, and permutation-
based scores assign the largest value to the median income, followed by the proximity to the 
ocean and the latitude/longitude, while the Gram-Schmidt-based score assigns only a large 

Figure 7 Comparison of the 
six different notions of feature 
importance on synthetic data. 
Figures A and B show results 
with respect to SYN2(a) and 
SYN2(b). Here, the labels are 
generated as 1.5

04Y X= ⋅ , and 
{Ai} are given as by 0 iX +  for 
differently strong Gaussian 
noise i  (SYN2(a)) and white 
noise (SYN2(b)). Figures C and 
D show results with respect to 
SYN3(a) (Gaussian noise) and 
SYN3(b) (White noise). Here, 
the labels are generated as 

1.5 2
0 1 24 2 0.5Y X X X= ⋅ + ⋅ + ⋅ , thus 

two more (weakly) informative 
features are given.
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value to the median income and all other features receive comparable scores. In addition, 
the population is found to be more important by the impurity-based and permutation-based 
approaches as opposed to the residual learning-based approach.

For FISH, all measures assign the highest score to weight and all measures assign a non-
vanishing score to all three variables. However, the score of width is within one standard 
deviation in the residual learning-based, impurity-based, and permutation-based approaches. 
Only the Gram-Schmidt-based score assigns a significantly larger value to weight and considers 
height to be the second most important feature.

5. CONCLUSION
We present two novel estimators for monotone trends in a dataset based on random forest 
regression. They perform much more reliably than the often proposed linear model coefficient 
and are robust to noise. However, the SHAP values perform equally well and are much better 
understood from a theoretical point of view. Nevertheless, we believe that the traversal rate-
based approach has its merits. It depends only on the random forest model (trained on some 
dataset) and the computation is completely independent of the specific data, once the model 
exists. This means, in particular, that given the random forest model (which has to be trained, 
and fine-tuned reasonably well), the trends estimated by the traversal rates do not vary in 
terms of input data. SHAP values, on the other hand, are computed as a combination of the 
model and some data (which may also have its own merits). Particularly, SHAP plots look 
different if different data points are included to calculate the SHAP values. The calculation of a 
Shapley-value is done by calculating and comparing different coalitions of features, where the 
traversal rate approach is agnostic with regard to other features. If only an adversarial part of 
the full dataset is used to generate SHAP plots, they can look completely different and assign 
different trends to the features. On the positive side, the SHAP analysis also provides insights 
into new data points during prediction: we can easily track which feature’s values increase 
and, respectively, decrease the model’s prediction. With respect to feature importance, we 
introduced the residual-based approach. We compared the results on synthetic data and two 
real instances. It is noteworthy that both residual-based approaches produce comparable 
results on the synthetic datasets, but this may be due to the fact that the noise is added 
linearly. Overall, the residual-based approaches perform much better on highly correlated 
features than the impurity-based approach. Their results are comparable to the permutation-
based approach in many facets. However, significant differences were also found. In particular, 
informative features that contribute weakly to the noise were assigned higher values than by 
the permutation-based score. Therefore, we believe that the residual-based feature importance 
scores should be preferred for use on datasets with highly dependent features.
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