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ABSTRACT
Data transfer in sensitive industries such as healthcare presents significant challenges 
due to privacy issues, which makes it difficult to collaborate and use machine learning 
effectively. These issues are explored in this study by looking at how hybrid learning 
approaches can be used to move models between users and consumers as well as 
within organizations. Blockchain technology is used, compensating participants with 
tokens, to provide privacy-preserving data collection and safe model transfer. The 
proposed approach combines Long Short-Term Memory (LSTM) and Gated Recurrent 
Units (GRU) to create a privacy-preserving secure framework for predictive analytics. 
LSTM-GRU-based federated learning techniques are used for local model training. The 
approach uses blockchain to securely transmit data to a distributed, decentralised 
cloud server, guaranteeing data confidentiality and privacy using a variety of storage 
techniques. This architecture addresses privacy issues and encourages seamless 
cooperation by utilising hybrid learning, federated learning, and blockchain technology. 
The study contributes to bridging the gap between secure data transfer and effective 
deep learning, specifically within sensitive domains. Experimental results demonstrate 
an impressive accuracy rate of 99.01%.
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1 INTRODUCTION
To build trust with customers who prioritize security, organizations must prioritize transparency 
in three key areas: gaining permission to store private data, following privacy regulations, 
and organizing the collected data. By being transparent in these aspects, organizations 
can demonstrate their commitment to protecting customer data and complying with legal 
requirements. Failure to adhere to these regulations can result in significant fines and reputational 
damage (McMahan & Ramage 2017). In addition to legal compliance, organizations need to 
address the potential risks posed by external threats like malware or hackers. These attacks 
can lead to financial losses and a loss of customer confidence. To mitigate such risks and 
maintain customer trust, organizations must adopt transparent practices in data collection, 
data handling, and data security measures (Benhar, Idri & Fernández-Alemán 2020). When 
it comes to data privacy in the context of machine learning, the Differential Privacy technique 
plays a crucial role. It ensures that individual identities within a dataset remain anonymous, 
preventing viewers from associating specific individuals with the results. By introducing random 
noise through a distribution, the technique protects individuals’ privacy by obscuring their 
genuine answers (Dwork 2011; Li, Li & Varshney 2022). To ensure accurate and reliable data 
analysis, organizations can employ data cleaning techniques and leverage various machine 
learning frameworks that offer methods and APIs for data imputation. Missing values can be 
assigned using statistical measures such as medians, means, standard deviations, or utilizing 
techniques like k-nearest neighbors (k-NNs) (Chollet 2017; Choudhury et al. 2020). Machine 
learning algorithms, such as Support Vector Machines (SVM), clustering, and neural networks, 
are employed to analyze and find patterns in large datasets. Clustering allows the grouping 
of similar data pieces, enabling the discovery and examination of patterns across multiple 
datasets (Domadiya & Udai Pratap 2021; Hamza & Muhammad 2020). Neural networks, 
inspired by cognitive processes, excel at identifying complex patterns (He et al. 2016a; He et 
al. 2016b). Convolution is a technique used in neural networks where each layer focuses on 
specific features, gradually capturing higher-level properties (Howard et al. 2017). To perform 
secure computations on encrypted data, organizations can utilize homomorphic encryption. 
This technique enables calculations to be carried out on encrypted data, producing results that 
resemble what would have been obtained from plaintext data (Bos, Lauter & Naehrig 2014; 
Huang et al. 2017).

Federated learning addresses the challenge of handling heterogeneous data. Instead of locally 
storing or transmitting raw data, individual client’s data remains private. Analysts aggregate 
client data instead of accessing specific communications, ensuring privacy while enabling rapid 
analysis (Weng et al. 2019).

While differential privacy protects individual privacy, it introduces a tradeoff with accuracy, 
such as differential privacy techniques introduce noise or perturbations to protect individual 
privacy, but this can impact the accuracy of the analysis and make it challenging to draw 
conclusions from individual samples. Alterations made during the randomization process 
slightly impact the outcome distribution, making it difficult to draw conclusions from individual 
samples. Gradient-based learning systems can achieve differential privacy by introducing 
random perturbations to intermediate outputs, such as using Gaussian noise (Zhao, Chen & 
Zhang 2019). In federated learning, FedAvg is a distributed averaging approach that ensures 
communication efficiency. It involves training multiple clients and aggregating their models to 
achieve the desired outcome (Jamil & Kim 2021). Federated learning distinguishes between 
local and global privacy. Global privacy ensures modifications made to the model at each 
round remain secret from all external parties, preserving worldwide anonymity. Local privacy 
safeguards changes from being visible to the server as well. Minimizing data on the server helps 
reduce memory and computation requirements during training iterations, which is known as 
data normalization (Jena & Debaprada 2021).

Blockchain technology provides a solution to reduce privacy erosion while enabling controlled 
data sharing. Users can selectively disclose parts of their personal data on a blockchain to 
access specific services. The transparency and decentralization of blockchain, exemplified 
by cryptocurrencies like Bitcoin, have demonstrated their reliability in managing information 
(Krizhevsky & Sutskever 2012; Yin et al. 2021).
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Consensus algorithms play a crucial role in ensuring agreement among participants in a 
blockchain network. These algorithms enhance network stability and foster decentralized trust 
among anonymous peers (Li et al., 2020). Proof of work is a cryptographic mechanism that 
demonstrates a participant’s computational effort, while proof of stake selects stakeholders 
based on their holdings of the cryptocurrency involved (Li et al., 2021).

The main objective of this work is to enhance privacy-preserving techniques in intrusion 
detection systems deployed in blockchain-based networks. Leveraging federated deep learning, 
the proposed model ensures efficient and accurate intrusion detection while maintaining data 
privacy. By utilizing federated learning techniques, individual client data remains confidential, 
allowing collaborative model training and analysis.

2 LITERATURE SURVEY
Qiang, Liu & Jin (2021) indicate that convolutional neural networks (CNNs) and binary neural 
networks (BNNs) can be used for collecting data, encrypting it before storing it in the cloud, 
and training and testing without additional decryption. Their system might be dangerous since 
they store all of their data in one place before encrypting it. Iterative search technique was 
used by Rui Hu et al. (2020) in order to propose a personalised federated learning strategy that 
offers strong privacy for user data regardless of user heterogeneity. However, because of the 
heterogeneity of the devices, this method’s training process is very difficult and complex. Data 
science and machine learning methods such as homomorphic encryption and dimensionality 
reduction can be utilized to guarantee the confidentiality of data. Rahman et al. (2020) 
presented such a system by which dimensionality reduction and homomorphic encryption can 
be used to guarantee data confidentiality. The suggested method is made to provide users 
confidence that machine learning would be used to preserve their data privacy and prevent 
their personal information from being used for commercial gain. Only certain illnesses and 
medical conditions are treated using this technique. A machine learning strategy was described 
by S. Shaham et al. (2021) with the aim of releasing the location of data while maintaining 
anonymity. Its strategy incorporates K-means algorithms as well as clustering, alignment, and 
generalization methods. By using MLA, users’ privacy is protected while geographical itinerary 
datasets can be made available, an anonymization framework based on machine learning. 
Tanwar et al. (2020) methodology for creating intelligent blockchain-based apps has been 
described. It involves the use of machine learning methods. Secure Hash Algorithm (SHA), 
the consensus algorithm, is used in this process. A smart city, healthcare system, smart grid, 
or unmanned aerial vehicle (UAV) could all benefit from this methodology, which combines 
machine learning and blockchain technology. Due to a high demand for internet bandwidth 
and an increase in chain, performance appears to be hindered. The privacy of datasets can 
be modified based on the distribution of data, according to Wang et al. (2019). Government 
transmission, storage, and learning training efficiency has improved as well as the security of 
client data. Sparse differential gradients increase gearbox efficiency, but their accuracy declines 
by 0.03%. Using heterogeneous data rather than homogeneous data, Decentralised Federated 
Learning through Mutual Knowledge Transfer is proposed by Shayan et al. After a certain 
number of cycles, this technique is more accurate than baseline techniques. For this approach 
to perform better, additional theoretical research has to be done. Based on a variety of datasets, 
experimental setups, and privacy budgets, Simonyan (2014) found that logistic regression 
had better performance than differential regression. It has been discovered, however, that 
differential privacy causes significantly worse performance degradation in federated learning. 
In a framework called PPSF (Srivastava et al. 2021), Srivastava et al. (2021) propose IoT-driven 
smart cities employing blockchain and machine learning. Based on LightGBM, e-PoW, and 
Principal Component Analysis (PCA), this system can be used to perform the analysis. With PPSF, 
smart cities powered by IoT can maintain privacy and security using blockchain technology and 
machine learning. Without the need of a centralized model coordinator, Szegedy et al. (2016) 
developed a decentralized, trustworthy, and secure technique for federated learning. This 
improves model update privacy security and successfully thwarts concerns of data poisoning. 
A slower convergence rate is observed for the proposed model compared with the SAE model. A 
strategy for implementing design using the present blockchain technology and compensating 
employees with bitcoin for following the protocols was put out by Toyoda, Zhao & Zhang (2020). 
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While this solution does not use blockchains in its implementation, it does use an open network. 
A technique for differential privacy publication of a medical data model was proposed by Z. Sun 
et al. (2019). Algorithms including Mini Batch Gradient Descent (MBGD), Differentially Private 
Mini Batch (DPMB), Gradient Descent (GD), and Back Propagation (BP) are used by their prosed 
system. When it comes to releasing and training data, it offers adequate privacy guarantees 
and privacy protection. This approach relies on a small number of datasets, so using several 
datasets at once reduces accuracy. Zhao et al. (2019) have developed a system that utilizes a 
stochastic gradient descent algorithm, a method for generating communication policies, and 
heterogeneous networks based on machine learning approaches to increase communication 
effectiveness through decentralized networks. NetMax is a decentralized and communication-
efficient method for accelerating distributed machine learning over heterogeneous networks. 
Their system malfunctions when a primary server is present, which raises concerns about 
data privacy. As in the literature deep learning based approaches are employed to secure 
environement (Alatawi & Mohammed 2023; Saba et al. 2022), CNN is the most common deep 
learning approach (Yar et al. 2021). The existing literature primarily focuses on individual privacy-
preserving techniques or strategies, neglecting the potential synergies that can be achieved by 
combining multiple approaches. However, it is crucial to explore the benefits and challenges 
associated with integrating various privacy-preserving methods to provide stronger assurances 
of data confidentiality and privacy. There is a research gap in understanding how these different 
techniques can work together cohesively to enhance overall privacy protection. Therefore, 
there is a need for further investigation to explore the potential advantages and complexities 
of leveraging a holistic approach that combines multiple privacy-preserving approaches. By 
addressing the research gap, the aim is to provide more robust and comprehensive solutions 
for ensuring data confidentiality and privacy in this study.

3 PROPOSED MODEL
The system model depicted in Figure 1 demonstrates the process of data sharing using a 
combination of federated learning and blockchain technology. The data requester initiates the 
process by publishing a task on the blockchain, indicating the need for data sharing. Relevant 
data nodes receive this request and respond accordingly. Through consensus mechanisms, 

Figure 1 Proposed Model.
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the participating nodes reach an agreement, and rewards are allocated based on their 
contributions. Additionally, data contributors register their data sharing request task on the 
alliance chain, further promoting the consensus process of the blockchain.

Blockchain (BC) serves as a distributed, open, and decentralized ledger that enables secure 
storage and transmission of data to cloud servers (Singh et al. 2022). Each block in the 
blockchain contains transaction information, including timestamps and hash values of previous 
and succeeding blocks. The cryptographic properties of the blockchain ensure the immutability 
of data, making it tamper-proof. This decentralized and trustworthy nature of blockchain 
technology facilitates the distribution of information in a secure and shared manner.

Federated learning, as part of this system model, addresses privacy preservation. It ensures 
that data remains on local nodes or devices instead of being transferred to a central server. By 
performing model training locally on each node, federated learning significantly reduces the 
risk of exposing sensitive information during data transfer. Instead of sharing raw data, only 
model updates are exchanged, thereby protecting individual data privacy. To further enhance 
privacy, differential privacy techniques can be applied. These techniques introduce noise or 
perturbations to the shared model updates, making it challenging to infer or reconstruct 
individual data.

To confirm secure data transmission during the exchange of model updates in federated 
learning, encryption and secure communication protocols are used. These measures preserve 
the transmission from unauthorized access or tampering, minimizing the risks of data leaks 
and malicious attacks. By leveraging encryption and secure protocols, the confidentiality and 
integrity of the shared data and model updates are maintained throughout the data sharing 
process. Furthermore, models that have been trained globally through federated learning 
can be packaged and recorded on the blockchain. This allows for transparent verification and 
auditing of the training process. By recording the models on the blockchain, their integrity and 
authenticity can be ensured, adding an extra layer of trust and accountability to the system.

3.1 LSTM-GRU ARCHITECTURE

In this study, long short-term memory (LSTM) and gated recurrent unit (GRU) approaches are 
combined to employ predictive analytics. The LSTM-GRU architecture itself does not directly 
contribute to privacy preservation or secure data transfer. Instead, it is a model architecture 
commonly used in federated learning for its ability to extract useful patterns. Each of the six 
hidden levels in the suggested architecture contains 256 hidden units. While the other three 
are made up of GRU units, three of these hidden layers are made up of LSTM units. Leaky ReLU, 
a popular non-linear activation function is the activation function employed in each of these 
hidden layers. The output layer uses one dense layer and one unit with a linear activation 
function. The output from the dense layer is conveyed to the output layer by lowering the 
output dimension from the preceding levels. The output values are not constrained to a 
particular range because of the linear activation function in the output layer, which is useful in 
some applications.

3.1.1 Gated Recurrent Unit (GRU)

The GRU was designed to address the issue of bursting or disappearing gradients. It is an 
enhanced version of the LSTM model that also uses gate structures to regulate information flow. 
It is significant to note that GRU lacks an output gate, making all data accessible to anybody. 
The input and forget gates are combined in the LSTM, whereas the reset and update gates are 
the only two gates in GRUs. GRUs perform better because they have fewer parameters and a 
more straightforward structure. The following equations represent GRU reset and update gates:

{ } { }( )- -
é ù= s + +ê úë ût r t r rt 1 t 1r W h ,x U h b  (1)

{ } { }( )- -
é ù= s + +ê úë ût z t z zt 1 t 1z W h ,x U h b  (2)

( )
{ }( )-

é ù= +ê úë ût t th ht 1h tanh W r *h ,x b  (3)

( ) { } ( )
-= - +t t t tt 1h 1 z *h z * h  (4)
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Where w

rt : reset gate at time step t.

zt : update gate at time step t.

h{t–1} : hidden state at time step t–1.

xt : input at time step t.

wr, wz, wh : weight matrices for the reset, update, and candidate hidden state calculation.

ur, uz, uh : weight matrices applied to the hidden state for the reset, update, and candidate 
hidden state calculation.

br, bz, bh : biases for the reset, update, and candidate hidden state calculation.

σ : sigmoid activation function.

( )
th  : candidate hidden state at time step t.

W : weight matrix for the interpolation calculation.

b : bias label for the interpolation calculation.

ht : hidden state at time step t.

3.1.2 Long Short-Term Memory (LSTM)

An LSTM, a kind of recurrent neural network, has three gates. The forget, input, and output gates 
are some of them. The LSTM’s vanishing gradient technique causes the gradient in conventional 
RNNs to disappear (Qiang, Liu & Jin 2021). The forget gate is a crucial factor in determining 
whether to preserve or delete previously learned information. It assesses the significance of 
the data from the cell state of the previous time step and decides whether to keep or delete it. 
The Oblivion Gate’s mathematical formula is as follows:

{ }-
é ù
ê úë û

æ ö÷ç ÷= s +ç ÷ç ÷çè øtt 1
t pp h , x

p W b  (5)

The performance of the input gate can be calculated through the following formula given 
below:

{ }-
é ù
ê úë û

æ ö÷ç ÷= s +ç ÷ç ÷çè øtt 1
t qq h , x

q W b  (6)

{ }-
é ù
ê úë û

æ ö÷ç ÷= +ç ÷ç ÷çè øtt 1
t vv h , x

v tanh W  b  (7)

The computational equation for the output gate is as:

{ }-
é ù
ê úë û

æ ö÷ç ÷= s +ç ÷ç ÷çè øtt 1
t ff h , x

f W b  (8)

( ) { }-= + -t t t t t 1h f *v 1 f *h  (9)

Where

pt : forget gate activation vector at time step t

xt : input at time step t

bp : bias vector for the forget gate calculation

wp : weight matrix for the forget gate calculation

h{t-1} : previous hidden state at time step t–1

qt : input gate activation vector at time step t

vt : vector of new candidate cell state values at time step t

bq, bv : bias vectors for the input gate and candidate cell state calculation

wq, wv : weight matrices for the input gate and candidate cell state calculation
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ft : output gate activation vector at time step t

ht : output at time step t

The federated learning and the LSTM-GRU architecture contribute to privacy preservation and 
secure data transfer. Differential privacy protection (Wu et al. 2022) and mutual supervision 
mechanisms have been implemented to mitigate risks associated with data leaks and malicious 
attacks during data sharing. Federated learning ensures that data remains on the local nodes, 
and only the model updates are exchanged, reducing the risk of exposing sensitive information. 
The LSTM-GRU architecture, with its gated structures and secure data transmission protocols, 
further enhances the privacy and security of the learning process.

4 IMPLEMENTATION
An experiment was conducted on the NSL-KDD dataset to test the effectiveness of the proposed 
network model. Experiments were conducted to determine the optimal sizes of the training 
and test sets based on the randomization of the dataset. A performance assessment was then 
conducted on the trained model using the test set.

4.1 DATASET

Intrusion detection models are commonly tested using the NSL-KDD 2015 dataset. There 
are 12,5973 samples in this dataset, which are divided into normal samples and anomalous 
samples. The dataset contains 41 different characteristics that are used to describe the 
samples. Of the total samples in the dataset, 67,343 are classified as normal and 58,630 are 
classified as anomalous.

4.2 CONFIGURATION SETUP

Local training in the client utilized PyTorch (Paszke et al. 2019) for implementing the deep 
learning (DL) algorithm. To enable the development of the federated learning (FL) algorithm, 
PySyft (Ryffel et al. 2018), a Python extension library compatible with major DL frameworks 
like PyTorch and TensorFlow (Géron et al. 2019), was employed. PySyft provides the necessary 
requirements for FL algorithms and facilitates the development of secure and private DL 
algorithms. The implementation was conducted on the Google Colab platform (Google Colab 
2023) with GPU acceleration for efficient processing.

Regarding data preprocessing, the data was initially cleaned and then normalized using 
StandardScaler. The train set was assigned 80% of the data, while the test set received 20%, 
following a widely used method. Adaptive FL algorithm optimization was performed using the 
SGD (Le et al. 2011) optimizer. In the proposed LSTM-GRU model, hyperparameters such as 200 
epochs, 0.1 learning rate, and 128 batch sizes were set using a checkpoint to identify the most 
effective values.

4.3 EVALUATION METRICS

To evaluate the prediction accuracy, five distinct regression evaluation metrics were utilized: 
Sensitivity (TPR), Specificity (SPC), Precision (PPV), Accuracy (ACC), F1 Score (F1), and Matthews 
Correlation Coefficient (MCC).

( )= +TPR TP / TP FN  (10)

( )= +SPC TN/ FP TN  (11)

( )= +PPV TP / TP FP  (12)

( ) ( )= + + + +ACC TP TN / TP TN FP FN  (13)

( )= + +F1  2TP / 2TP FP FN  (14)

( )
( )( )( ) ( )( )

-
=

+ + + +

TP*TN FP*FN
MC

sqrt TP FP TP FN TN FP * TN FN
 (15)
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5. RESULTS AND DISCUSSIONS
This work used the NSL-KDD 2015 dataset to validate the proposed model’s performance in 
blockchain based privacy prediction. Based on 20% ratios of testing sets, there were 11,726 
anomalous samples and 13,468 normal samples and the proposed model produced results as 
presented in the Table 1.

Table 1. shows the evaluation metrics of a proposed blockchain-based model that uses the 
NSL-KDD 2015 dataset and LSTM-GRU architecture. Evaluation metrics were computed for 
the testing data, which comprised 80% training data and 20% testing data. In addition to 
Sensitivity, Specificity, Precision, Accuracy, and Matthews Correlation Coefficient (MCC), we 
measured Sensitivity (TPR), Specificity (SPC), Precision (PPV), Accuracy (ACC), and F1 Score (F1). 
As a ratio of total positive samples to the number of true positives, sensitivity (TPR) measures 
the true positive rate of a model. It was found that 98.72% of anomalous samples in the 
testing data were accurately identified by the proposed model, whose sensitivity is 0.9872. 
Specificity (SPC) measures the true negative rate of the model and is calculated as the ratio of 
true negatives to the total number of actual negative samples. The specificity of the proposed 
model is 0.9927, indicating that it accurately identified 99.27% of the normal samples in the 
testing data. PPV measures the ratio of true positives to predicted positives, which is the positive 
predictive value of the model. The precision of the proposed model is 0.9916, which indicates 
that when it predicted an anomalous sample, it was correct 99.16% of the time. As the ratio 
of correctly classified samples to the total number of samples, accuracy (ACC) measures the 
overall correctness of the model. As a result of the proposed model’s accuracy, 99.01% of 
samples were correctly classified. This metric provides a balanced measure by combining 
precision and recall with the F1 Score (F1). This model scores 0.9894 on the F1 test, which 
indicates a good balance between precision and recall. The Matthews Correlation Coefficient 
(MCC) measures how closely classes are related when taken into account the imbalance in 
class distributions. In this case, the MCC is 0.9802, which indicates a strong correlation between 
the actual and predicted classes.

Table 2 displays the confusion matrix generated from the classification of the proposed 
technique utilizing the NSL-KDD intrusion dataset. The confusion matrix indicates that out of 
the total samples, the model classified 11,628 samples as anomalies and 13,317 samples as 
normals. The table also provides additional information on the true positive, false positive, 
true negative, and false negative values of the classification. Specifically, the model correctly 
classified 11,628 attack samples as attacks (TP), but incorrectly classified 98 attack samples as 
normals (FN). Additionally, the model correctly classified 13,317 normal samples as normals 
(TN), but incorrectly classified 151 normal samples as attacks (FP).

Apart from demonstrating the classification accuracy results, the performance of the proposed 
technique was evaluated using the ROC Curve. Figure 2 presents a visual representation of the 
classification accuracy results through a ROC curve, which effectively depicts the correlation 
between the amount of training data and the performance of the technique.

Table 3 highlights and compares the performance of the proposed model with other recent 
models in terms of accuracy. It demonstrates that the Privacy-Preserving Secure Framework 
using LSTM-GRU achieved a higher accuracy rate of 99.01% compared to the other models.

ACTUAL PREDICTED

Attack Normal

Attack 11628 98

Normal 151 13317

SENSITIVITY 
(TPR)

SPECIFICITY 
(SPC)

PRECISION 
(PPV)

ACCURACY 
(ACC)

F1 SCORE 
(F1)

MATTHEWS CORRELATION 
COEFFICIENT (MCC)

0.9872 0.9927 0.9916 0.9901 0.9894 0.9802

Table 1 Model Assessment.

Table 2 Result of Confusion 
matrix.
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6. CONCLUSION
In this study, a novel framework is presented that utilizes blockchain technology in collaboration 
with multiple contributors, incorporating federated learning for secure and privacy-preserving 
model training without centralized data storage. Through this approach, models can be trained 
simultaneously by multiple parties while retaining their local privacy. The framework utilizes 
federated learning to improve the accuracy of the results, boost model performance, and 
enhance overall model performance. Transactions are stored in a decentralized, distributed 
digital ledger, and data privacy and security are ensured through various methods. The LSTM-
GRU model, included in the framework, facilitates primary data collection using sensing tools. 
Experimental results demonstrate the superiority of this approach over existing methods, with 
an accuracy of 99.01%. The research focused on the NSL-KDD dataset, a widely accepted 
benchmark for evaluating intrusion detection models, due to its suitable size and characteristics 
for initial experimentation and proof-of-concept studies. However, it is important to acknowledge 
that latency in network communication can impact the efficiency of the training process in 
federated learning. Additionally, blockchain technology may face scalability challenges, which 
need to be addressed. Future work aims to explore additional datasets with larger sample sizes 
and a wider range of intrusion scenarios, employing advanced deep learning algorithms to 
further enhance detection results.
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Figure 2 ROC Curve.

REFERENCE MODEL ACCURACY (%)

K. Pradeep Mohan Kumar et al (2022) PPSF-BODL 97.46

Alatawi, Mohammed Naif, et al (2023) PSO-GA followed by ELM-BA 96.04

Proposed Privacy-Preserving Secure Framework using 
LSTM-GRU

99.01

Table 3 Comparative analysis.
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