
APPLYING STATISTICAL DESIGN TO CONTROL THE RISK OF  
OVER-DESIGN WITH STOCHASTIC SIMULATION 
 
Yi Wu1, Peng Zhou1*, Jian Lin1,2 ,Wanhua Qiu
 

1 

1Dept. of Economics and Management, Beijing University of Aeronautics & Astronautics, Beijing 
*1Email:shengniao@gmail.com 
2

 
Institute of Education, Tsinghua University, Beijing 

ABSTRACT 
 
By comparing a hard real-time system and a soft real-time system, this article elicits the risk of over-design 
in soft real-time system designing. To deal with this risk, a novel concept of statistical design is proposed. 
The statistical design is the process accurately accounting for and mitigating the effects of variation in part 
geometry and other environmental conditions, while at the same time optimizing a target performance 
factor. However, statistical design can be a very difficult and complex task when using classical 
mathematical methods. Thus, a simulation methodology to optimize the design is proposed in order to 
bridge the gap between real-time analysis and optimization for robust and reliable system design. 

Keywords: Percolated stochastic, Simulation optimization, Statistical design 

 

1 INTRODUCTION 
 

 

Soft Real-time embedded systems, such as battery-operated PDAs etc., have become increasingly popular 
in our life. Unlike hard real-time counterparts, soft real-time applications are only expected to guarantee 
“expected delay” over input data space. However, timing is traditionally treated as a hard constraint 
throughout the system design process. As a result, applications are often pessimistically analyzed for worst 
case scenarios, and the slowest responses determine their performance. Although this is a necessity for hard 
real-time applications, soft real-time counterparts can occasionally take longer than the deadline to finish 
some tasks. They are often expected to guarantee an expected delay (or latency) rather than a worst case 
execution time over the input data space. For example, embedded multimedia systems require the 
processing of signal, image, and video data streams in a timely fashion to the end user’s satisfaction. Such 
applications are often characterized by repetitive processing on periodically arriving inputs, such as voice 
samples or video frames, and the tolerance to occasional deadline (determined by the throughput 
requirement of the input data streams) misses without being noticed by human visual and auditory systems. 
In packet audio applications, loss rates of one to ten percent can be tolerated.  

 

As soft real-time systems can tolerate some violations of timing constraints, those methods which guarantee 
no deadline missing by considering worst-case execution time (WCET) of each task will often lead to 
over-designed systems that deliver higher performance than necessary at the cost of expensive hardware, 
higher energy consumption, and other system resources. 

There are plenty of studies on the estimation of soft real-time system’s probabilistic performance when the 
application’s computation time can be varied. However, most of their goals are to improve the system’s 
performance or to provide probabilistic performance guarantees. Our recent work discusses a percolated 
stochastic simulation approach to optimize a system’s design by taking advantage of a soft real-time 
application’s tolerance to deadline misses. To the best of our knowledge, there is no reported effort on 
systematically incorporating an application’s performance requirements, uncertainties in execution time, 

Data Science Journal, Volume 9, 12 March 2010

13



and tolerance for reasonable execution failures to guide rapid and economic optimization of real-time 
embedded systems. 
 

 

In this paper, we study the problem of how to integrate such tolerance to deadline misses into the 
optimization of soft real-time systems. We propose the novel concept of statistical design for multimedia 
systems and a simulation methodology to optimize the design. Given the execution time distribution of 
each task, we have developed a simulation algorithm to estimate the probabilistic timing performance and 
to manage system resources in such a way that the system achieves the required completion ratio 
probabilistically with a reduced amount of system resources. This method relaxes the rigid hardware 
requirements for software implementation and eventually avoids over-designing the soft real-time system.  

2  REVIEW OF DESIGN METHODS AND RULES 
 

The rest of the paper is organized as follows: Section 2 gives the review of design methods and rules 
developed by former writers. The overview of our statistical design methodology is discussed in Section 3. 
Probabilistic timing performance estimation is discussed in Section 4. The Random Critical Path simulation 
approach is discussed in Section 5. Section 6 introduces our percolated Stochastic simulation approaches. 
Finally, the conclusion and future study are discussed in section 7. 
 

 

From the late 1980s, when schedule ability analysis became one of the traditional fields of investigation in 
real-time systems research, worst-case execution time analysis (WCET analysis) caught the attention of the 
research community, and the basic methods of how to calculate a safe and tight WCET using static analysis 
for imperative programming languages (like C) and simple hardware (like MC68000) were presented. In 
the 1990s, more and more research groups focused on WCET analysis. As a result, substantial progress has 
been made in this area in a relatively short time. 

 

Together with schedule ability analysis, worst-case execution time analysis (WCET analysis) forms the 
basis for establishing confidence in the timely operation of a real-time system. WCET analysis does so by 
computing (upper) bounds for the execution times of the tasks in the system. These bounds are needed for 
allocating the correct CPU time to the tasks of an application. They form the inputs for schedulability tools, 
which test whether a given task set is schedulable (and will thus meet the timing requirements of the 
application) on a given target system. 

 

Figure 1 represents a typical WCET circle of designing procedure. We start with a pool of target system 
architectures to select from. We first estimate the worst case execution time (WCET). If this estimation 
meets without any deadline misses, it is kept, and we go on to the next step, system synthesis and 
evaluation. If this is not the case, this estimation is transferred to the system architecture pool to find a way 
of optimization. The next estimation is then given, and a new circle begins. 

 

This method is pessimistic and suitable for developing systems in a “hard real-time” environment, where 
any deadline miss will be catastrophic. However, it is not suitable for a soft real-time system design. As is 
discussed in Section 1, such a soft real-time system could bear some response delay or performance loss 
while a hard real-time system could stand no such delay or loss. Thus, this type of WCET method will lead 
to an over-design risk, which may bring huge needless time cost and operation cost losses in production.  

Several studies on the probabilistic timing performance estimation for soft real-time systems design have 
been emerging since the late 1990s. The general assumption is that each task’s execution time can be 
described by a probability density function that can be obtained by applying path analysis and system 
utilization analysis techniques. In Kalavade and Moghe (1998) the authors extend the scheduling 

Data Science Journal, Volume 9, 12 March 2010

14



algorithms and schedule ability analysis methods developed for periodic tasks in order to provide a 
probabilistic performance guarantee for semi periodic tasks when the total maximum utilization of the tasks 
on each processor is larger than one. They describe the transform-task method that transforms each 
semi-periodic task into a periodic task followed by a sporadic task. The method can provide an absolute 
guarantee for requests with shorter computation times and a probabilistic guarantee for longer requests. In 
Hua et al. (2003), a performance estimation tool that outputs the exact distribution of the processing delay 
of each application is introduced. It can help the designers develop multimedia networked systems 
requiring soft real-time guarantees in a cost efficient manner. Given that the execution time of each task is a 
discrete random variable, Hu et al. propose a state-based probability metric to evaluate the overall 
probabilistic timing performance of the entire task set. Their experimental results show that the proposed 
metric reflects well the timing behavior of systems with independent and/or dependent tasks.  

WCET Performance 
Estimation

Meet without any 
deadline misses?

Keep and Plot

System Synthesis 
and Evaluation

Yes

System architectures 
pool

No

 

 

Figure 1. Hard Real-time Design Circle Based On WCET Analysis 

 

3  OVERVIEW OF STATISTICAL DESIGN METHODOLOGY 
 

 

Considering a soft real-time system, which can tolerate occasional missed deadlines, it is evidently not 
advisable to apply mechanically those methods and rules used in hard real-time system design. In order to 
avoid over-designing systems, we propose the concept of “statistical design,” where we design the system 
to meet the timing constraints of periodic applications statistically. That is, the system may not guarantee 
the completion of every execution or iteration, but it will produce sufficiently many successful completions 
over a large amount of iterations to meet the user-specific completion ratio. Or even better, the probability 
that any execution will be completed is not lower than the desired completion ratio. 

 

Clearly, the proposed “statistical design” will be preferred for many embedded soft real-time systems such 
as portable multimedia systems where high portability, low power consumption and reasonably good 
performance are equally important.  

Figure 2 depicts our statistical design approach for rapid and economic system prototyping. We start with 
the popular dataflow graph representation of the embedded software, the system’s performance 
requirements (in terms of timing and completion ratio constraints), and a pool of target system architectures 
to select from. We partition the application into a set of tasks and use profiling tools to collect detailed 

Data Science Journal, Volume 9, 12 March 2010

15



execution information for each task. Next, we estimate the system timing performance by task path analysis 
to check whether it is feasible for the current system configuration to achieve the desired performance. If 
not, we change the hardware configuration and/or apply software optimization techniques and update the 
software profiling results that will be used in the next round of system timing performance estimation. We 
mention that any change to the target hardware configuration and/or software optimization may affect the 
application’s actual execution information, and therefore, the software profiling process will need to be 
re-started. This iterative design loop terminates when all the design requirements are met. Once the 
completion ratio constraint is met, we move on to the phase of percolated stochastic simulation 
optimization. If the constraints can be guaranteed with user-specific possibility requires, the design space 
of the current profile is kept and plotted. This is the key step in the proposed statistical design optimization 
where we 1) allocate minimum system resources to each task to make the desired completion ratio 
probabilistically achievable and 2) develop real time schedulers to manage the resources at run time such 
that the required completion ratio can be achieved probabilistically. Finally, we conduct system synthesis, 
simulation, and evaluation before prototyping the system.  
 

Task Path 
Analysis

System 
Utilization 
Analysis

Task Execution time estimation 

Meet Design 
Requirements?

System Protoyping

System architectures 
pool

Yes

No No

Completion 
Ratio 

Constraint

Response 
Time 

Constraint

Percolated Monte Carlo 
simulation Approach

Meet Completion 
Ratio Constraint?

Keep and Plot

System Synthesis 
and Evaluation

Yes

SCPM Analysis

Statistic Design

 
Figure 2. Statistical Design Methodology  
 

 

 

In this paper, we will restrict the discussion to one specific part of the statistical design approach – 
optimization; i.e. we are assuming the existence of a high quality, fast-running simulation model (or meta- 
model of a simulation model). 

4  ESTIMATING THE PROBABILISTIC TIMING PERFORMANCE 
 

 

In order to determine whether a given system implementation can meet the desired completion ratio 
constraint, we need to estimate the system’s probabilistic timing performance. Specifically, we calculate the 
upper bound of the completion ratio that the system can achieve to help us in exploring the statistical 
design space. 

Data Science Journal, Volume 9, 12 March 2010

16



We consider the task graph G = (V, E) for a given application. Each vertex in the graph represents one task 
computation and directed edges represent the data dependencies between vertices. We adopt the assumption 
that the execution time of each vertex can be described by a discrete or continue probability density 
function (Hu, 2005). Specifically, for each vertex vi, we associate with a finite set of possible execution 
time {ti1 ,t i2, …, tiki} (under a reference system configuration) and the set of probabilities:  

 
that such execution time will occur at run-time. That is, the time vertex vi requires with probability pij,. 
The completion time of the task graph G (or equivalently the given application) under a fixed execution 
order < v1, v2 …, vn > is the sum of each vertex’s run-time execution time ei:  

 
The deadline constraint M specifies the maximum time allowed to complete the application. The 
application (or its task graph) will be executed periodically with its deadline M as the period. We say that 
an iteration is successfully completed if A (< v1, v2 …, vn >) ≤M. The performance requirement is 
measured by a real-valued completion ratio Q0∈[0, 1], which is the minimum ratio of completions that the 
system has to maintain over a sufficiently large number of iterations. Let k be the number of successfully 
completed iterations over a total of  iterations; the actual completion ratio can be denoted by:  

 

We say that the completion ratio constraint is achievable if Q≥Q0.  

For a given system configuration, let tij be the time to execute task vi that requires an execution time tij  
under the reference configuration. We have a completion if the completion time is less than the deadline, 
that is,  

 
The probability that this occurs is
 

. Therefore, we have 

Theorem 1. The maximum achievable completion ratio is given by: 

 

 

where the sum is taken over the execution time combinations that meet the deadline constraint M and the 
product computes the probability each such combination happens. 

This is similar to the state-based feasibility probability defined in (7). Qmax helps us to quickly explore the 
statistical design space. Specifically, if Qmax < Q0, which means that the completion ratio requirement is not 
achievable under the current system, we can make the early and correct decision to reconfigure the 
hardware or optimize the software implementation rather than further investigating the current system 
configuration.   

Data Science Journal, Volume 9, 12 March 2010

17



 

 

The drawback of this estimation is that Equation (1) is computationally expensive, particularly when there 
are many tasks and each task has multiple execution times. For example, a task graph with 50 vertices and 
each vertex has only the best, average, and worst case execution time yields 350 different execution time 
combinations! If each task’s execution time can be described by a discrete probability density function, the 
following heuristic method (5) can be applied. 

Assuming that the task’s execution times are ordered such that t i1 < ti2 < … < tiki, we define the prefix sum 
of the occurrence probability: 

 
which measures the probability that the computation at vertex vi is not longer than til. If we allocate 
time tili to task vi and drop the iteration if its actual execution time is longer, then we achieve a completion 
ratio: 

 
We use a greedy approach to estimate whether completion ratio Q0 can be achieved within deadline M. First, 
we assign each vertex its WCET. This yields Q = 1 but the completion time: 

 
will most likely exceed the deadline constraint. From Equation (3), if we cut the time slot of vertex vi from 
tili

                                       
 to ti(li−1), the completion ratio will be reduced by the factor of: 

 

We iteratively cut the time slot of vertex vj that yields the largest  

 

as long as it gives a completion ratio larger than Q0. This greedy selection approach frees more assigned 
time slots at the minimum level of the completion ratio reduction. When we cannot reduce the completion 
ratio any further and the total assigned time 

 
is still larger than the deadline M, our heuristic concludes that the completion ratio cannot be guaranteed 
even though Qmax may still be larger than Q0

 
.  

Data Science Journal, Volume 9, 12 March 2010

18



The drawback of the heuristic method is that it is difficult to understand and not visual. Due to the 
importance of determining whether the required Q0

 

 is achievable in designing fast statistical design space 
exploration techniques, we have developed the following Random Critical Path simulation approach. When 
each task’s execution time is described by discrete or continue probability density function, this method can 
be applied. 

5  RANDOM CRITICAL PATH SIMULATION APPROACH 
 

The Critical Path Method (CPM) was invented by DuPont in 1957 for providing directions on how to 
control the schedule of some specific tasks. 

 

This method calculates the minimum completion time for a 
project along with the possible start and finish times for the project activities. The critical path is the one 
from the start of project to the finish where each slack time is zero. It is also the minimum time required to 
complete a project. Any delays along the critical path imply that additional time is required to complete the 
project. CPM has proved very valuable in evaluating project performance and identifying bottlenecks. Thus, 
CPM is a vital tool for the planning and control of complex tasks. Determining the critical path has been 
the correct way to manage task schedules. 

Project 
activities

Network 
calculation

Time

Time schedule

1

2

4

3

5

Network

 
Figure 3. 
 

Critical Path Method (CPM) Technique 

 

 

Figure 3 represents the steps of the CPM technique. Formally, critical path scheduling assumes that a 
project has been divided into activities of fixed duration and well defined predecessor relationships. A 
predecessor relationship implies that one activity must come before another in the schedule. Most critical 
path scheduling algorithms impose restrictions on the generality of the activity relationships or network 
geometries that are used. In essence, these restrictions imply that the construction plan can be represented 
by a network plan in which activities appear as branches in a network. The predecessor relationships among 
the activities are represented by a network as in Figure 3. Nodes are numbered, and no two nodes can have 
the same number or designation. Two nodes are introduced to represent the start and completion of the 
project.  

 

The goal of CPM is to estimate the total duration of a project by determining the End Last Finish Time 
(ELFT). This is done by network calculation. Considering just the activities that do not have slack, the 
minimum finishing time of the project is computed. The activities without slack trace the critical path of the 
project schedule. The purpose of the critical path method (CPM) is to identify critical activities so that 
resources may be concentrated on these activities in order to reduce project length time. There may be more 
than one critical path among all the project activities, and completion of the entire project could be delayed 
by delaying activities along any of the critical paths. Therefore, the time schedule of the project is 
developed. However, in actuality, the project may not proceed as planned, as some of the activities may be 
expedited or delayed. In this case, the schedule must be revised to reflect the realities on the ground. 

Data Science Journal, Volume 9, 12 March 2010

19



With the background provided above, we can formulate the critical path scheduling mathematically. We 
present an algorithm or set of instructions for critical path scheduling assuming an activity-on-branch 
project network. We also assume

 

 that all predecessors are of a finish-to-start nature so that a succeeding 
activity cannot start until the completion of a preceding activity.  

Suppose that our project network has n nodes, the initial event being 1 and the last event being n. Let the 
time at which node events occur be x1, x2,...., xn, respectively. The start of the project at x1 is defined as 
time 1. Nodal event times must be consistent with activity durations so that an activity's successor node 
event time must be larger than an activity's predecessor node event time plus its duration. For an activity 
defined as starting from event i and ending at event j, this relationship can be expressed as the inequality 
constraint, xj >xi + Dij, where Dij is the duration of activity (i,j). This same expression can be written for 
every activity and must hold true in any feasible schedule. Mathematically, then, the critical path 
scheduling problem is to minimize the time of project completion (xn

Minimize 

) subject to the constraints that each 
node completion event cannot occur until each of the predecessor activities have been completed. 

  

Subject to 

  

  (i,j)                               (12) 

This is a linear programming problem because the objective value to be minimized and each of the 
constraints are linear equations. Rather than solving the critical path scheduling problem with a linear 
programming algorithm (such as the Simplex method), more efficient techniques are available that take 
advantage of the network structure of the problem. These solution methods are very efficient with respect to 
the required computations so that very large networks can be treated, even with personal computers. These 
methods also give some very useful information about possible activity schedules. The programs can 
compute the earliest and latest possible starting times for each activity that are consistent with completing 
the project in the shortest possible time. This calculation is of particular interest for activities not on the 
critical path (or paths) because these activities might be slightly delayed or re-scheduled over time by the 
manager without delaying the entire project.  
 
An efficient solution process for critical path scheduling based upon node labeling is shown in Table 1. 
Three algorithms appear in the table. Define: 

 - The Earliest Occurrence Possible Time of Event 
 - The Latest Occurrence Possible Time of Event 

 
- Duration of activity (i,j) 

The event numbering algorithm numbers the nodes (or events) of the project such that the beginning event 
has a lower number than the ending event for each activity. Technically, this algorithm accomplishes a 
"topological sort" of the activities. The project start node is given number 1. As long as the project activities 
fulfill the conditions for an activity-on-branch network, this type of numbering system is always possible. 
The earliest event time algorithm computes the earliest possible time, E(i), at which each event, i, in the 
network can occur. 
 
 

Data Science Journal, Volume 9, 12 March 2010

20



Table 1. Critical Path Scheduling Algorithms (Activity-on-Branch Representation)     

Event Numbering Algorithm 

Step 1: Give the starting event number 1. 
Step 2: Give the next number to any unnumbered event whose predecessor events 
         are each already numbered. 
Repeat Step 2 until all events are numbered. 

Earliest Event Time Algorithm 

Step 1: Let  = 0. 

Step 2: For j = 2,3,...,n (where n is the last event), let 

          = maximum { + D ij} 

where the maximum is computed over all activities (i,j) that have j as the ending event. 

Latest Event Time Algorithm 

Step 1: Let equal the required completion time of the project. 

         Note:  must equal or exceed . 

Step 2: For i = n-1, n-2, ... , 1, let 

          = minimum {  - D ij} 

where the minimum is computed over all activities (i,j) that have i as the starting event. 

 
Earliest event times are computed as the maximum of the earliest start times plus activity durations for each 
of the activities immediately preceding an event. The earliest start time for each activity (i,j) is equal to the 
earliest possible time for the preceding event : 

 

The earliest finish time of each activity (i,j) can be calculated by: 

 

Activities are identified in this algorithm by the predecessor node (or event) i and the successor node j. The 
algorithm simply requires that each event in the network should be examined in turn beginning with the 
project start (node 1).  
 
 

Data Science Journal, Volume 9, 12 March 2010

21



The latest event time algorithm computes the latest possible time, , at which each event j in the network 
can occur, given the desired completion time of the project,  for the last event n. Usually, the desired  

completion time will be equal to the earliest possible completion time so that for the final node 
n. The procedure for finding the latest event time is analogous to that for the earliest event time except that 
the procedure begins with the final event and works backwards through the project activities. Thus, the 
earliest event time algorithm is often called a forward pass through the network, whereas the latest event 
time algorithm is the backward pass through the network. The latest finish time consistent with completion 
of the project in the desired time frame of  for each activity (i,j) is equal to the latest possible time  
for the succeeding event: 

 

The latest start time of each activity (i,j) can be calculated by: 

 

The earliest start and latest finish times for each event are useful pieces of information in developing a 
project schedule. Events which have equal earliest and latest times, E(i) = L(i), lie on the critical path or 
paths. An activity (i,j) is a critical activity if it satisfies all of the following conditions: 

 

 

 

Hence, activities between critical events are also on a critical path as long as the activity's earliest start time 
equals its latest start time, ES(i,j) = LS(i,j). To avoid delaying the project, all the activities on a critical path 
should begin as soon as possible, so each critical activity (i, j) must be scheduled to begin at the earliest 
possible start time, .  

5 7

6

8

10 11 12

9

41

3

2
A

B

C

D

E

F

G

H

I

J

K

L

M N

40

20

25

25

45

60

45

45

35

40

32

30 20 40

0
0

40
40

170

65
65

110
110

170

210
210

230
2300

0

270
270

[0]
(0)

[0]
(0)

[0]
(0)

[0]
(0)

[0]
(0)

[0]
(0)

[0]
(0)

0
20

[20 ]
(0)

20
40

110
153

110
135

165
198

155
180

170
175

205
210

[20]
(20)

[25]
(0)

[35]
(25)

[43]
(10)

[33]
(33)

[5]
(0)

[5]
(5)

 
Figure 4.  Single Point Project Scheduling 
 
 
Suppose a task of fourteen relevant activities, described in Figure 4. Applying this approach to the example, 

Data Science Journal, Volume 9, 12 March 2010

22



the End Last Finish Time (ELFT) for the project is 270 seconds, and the activities that lie on a critical path 
are: A, C, E, F, J, M, and N. That means if a delay occurs in any of these activities, the total completion 
time will be over 270 seconds.  
 
However, most of the time using

 

 CPM does not guarantee that the task will finish on time because the 
successful implementation of CPM requires defining the relevant activities, including estimates of their 
durations and the sequence of the activities. The output is usually represented by a network diagram in 
which the critical path is identified. However, in practical situations this requirement is usually hard to 
fulfill as many activities will be executed for the first time. Hence, there is always uncertainty about the 
time duration of activities in the network planning. In this case, more often than not, there is a vague idea 
about activity durations that then must be estimated subjectively. Some soft real-time system designers use 
the single-point estimate (most likely scenario) for each task in the tasks, and others use three scenarios: 
pessimistic, optimistic, and most likely. Each method is problematic: the task will not reach the goals on 
time because the designer does not know anything about the probability of each scenario.  

In this section, a simulation method is excogitated, allowing probabilities with the results to be associated, 
to determine all scenarios in which it is possible to trace the random critical paths. Most of the time, results 
from simulation can provide more critical paths than a scenario approach. Furthermore, the activities whose 
uncertainties have the greatest influence on the total completion time are not necessarily the same activities 
defining the most critical paths. That means one particular critical path is important depending on how 
probable it is. Obviously, using a single-point estimate or scenario analysis could be very inappropriate. 
With simulation, more realistic time forecasts
 

 can be guaranteed. 

Scenario analysis determines the best-case, most

Table 2. Scenario Analysis for Project Scheduling  

 likely case, and worst-case scenarios regarding the 
duration of each relevant activity on a project. Applying CPM to each scenario allows a project manager to 
identify a range for the completion time but not the associated probabilities of occurrence. Table 2 shows 
the scenarios for the example above. The completion time range is 198 to 395 seconds. 

Activities Durations Activities Durations 

ID Description OTD LTD PTD ID Description OTD LTD PTD 

A Task A 30 40 60 H Task H 40 45 60 

B Task B 15 20 30 I Task I 30 35 50 

C Task C 15 25 40 J Task J 30 40 60 

D Task D 20 25 40 K Task K 25 30 60 

E Task E 40 45 65 L Task L 28 32 42 

F Task F 30 60 95 M Task M 18 20 25 

G Task G 35 45 60 N Task N 35 40 50 

     Total Time 198 270 395 

OTD= optimistic time duration, PTD= pessimistic time duration, LTD= most likely time duration 

 

 

It is easy to think of adopting “the average” or “the most important value” for a deterministic analysis 
because of the tendency to overestimate their meaning. In fact, the problem is the sequence observed in 
many natural ways. That sequence creates another dimension of analysis because “the average” or “the 
most important value” of one separate event is not independent and has meaning in context to other events. 
For example, for five sequential events with each having a 50% probability of occurrence, the probability 
of the sequence is: power (0.5, 5) = 3.1%. That means that there is 97% confidence that the five sequential 
events will not occur. This is a critical situation for managing schedule in tasks because of the sequence 
required for completion. 

Data Science Journal, Volume 9, 12 March 2010

23



 
The only way to capture the uncertainty in the estimation of the total completion time is by creating a 
dynamic model that simulates not just a few scenarios but all possible scenarios. The static model must be 
transformed into a simulation model. The parameters for defining the model are:  

• Assumptions: the duration of each activity is represented by a Gamma distribution 
A skewed distribution represents the duration of an activity better than a triangular distribution, 
because it includes the upside values.  
• Forecast: the total completion time 
• Path Control Box: shows activities

 
 in critical path with bold font 

A Path Control Box (PCB) has been created into the model to show us how the critical path is not only one 
critical path (see Figures 5 and 6). In fact, there are many potential critical paths depending on the 
conditions surrounding the time variables necessary to conclude
 

 the project. 

STOCHASTIC PATH      

Attributes      

Unit of time second     

Precision 0 decimals    

      

Path Control Box     

 Task A Task D Task G Task J Task M 

 Task B Task E Task H Task K Task N 

 Task C Task F Task I Task L  

      

Results      

Total time 280 seconds    

Figure 5. Stochastic Critical Paths A 
 
 

STOCHASTIC PATH      

Attributes      

Unit of time second     

Precision 0 decimals    

      

Path Control Box     

 Task A Task D Task G Task J Task M 

 Task B Task E Task H Task K Task N 

 Task C Task F Task I Task L  

      

Results      

Total time 306 seconds    

Figure 6. Stochastic Critical Paths B 
 
 

Data Science Journal, Volume 9, 12 March 2010

24



5.1 Simulation Result   
Figure 7 shows the forecast chart for the total completion time for the project, after 10,000 trials. The 
probability of not exceeding the base case time is approximately 30%. From this we can estimate the 
system timing performance to check whether it is feasible for the current system configuration to achieve 
the desired performance. If not, we take the sensitivity analysis to find out which part of system can be 
improved. 

 
Figure 7. Total Completion Time Forecast 
 
 

5.2 Sensitivity Analysis  
The inputs whose variability contributes the most for the dispersion in the total completion time are Task F, 
Task A, and Task E. They contribute over 75% to the variance on the forecast (Figure 8).  

             

Figure 8. Sensitivity Of The Total Completion Time   Figure 9. Number Of Activities On A Critical Path 
 
 
Figure 9 shows the number of activities lying on a critical path for the project example, and Figure 10 
displays the sensitivity of the number of activities on a critical path. 

Data Science Journal, Volume 9, 12 March 2010

25



 
Figure 10. Sensitivity Of The Number Of Activities On A Critical Path 
 
 
If we want to improve the system timing performance to achieve the desired performance, these tasks 
whose variability contributes the most to dispersion in the total completion time should be adjusted by 
changing the hardware configuration and/or applying software optimization techniques and updating the 
software profiling results that will be used in the next round of system timing performance estimation. 
 

6 PERCOLATED STOCHASTIC SIMULATION APPROACH 
 
When Qmax ≥ Q0 

 

, it becomes theoretically possible to deliver a probabilistic performance guarantee (in 
terms of completion ratio) with the current system configuration. The resource management phase in our 
design space exploration aims to reduce the design cost. It includes: 1) determining the minimum system 
resource required to provide the probabilistic performance guarantees and 2) developing on-line scheduling 
algorithms to guide the system to achieve such guarantees at run time with the determined minimum 
resource.  

The approach below is what is called a Percolated Stochastic approach. The approach is clearly easy to use, 
fast, and visual. The initial steps of the approach follow the standard application of Monte Carlo analysis. 
The range of the input variables (the Xs) to be explored are determined and fed as input through the 
simulation model to obtain the distribution output of the predicted performance variables (the Ys). Then 
post-processing of the output occurs through a series of percolates to ensure constraints are met, hence the 
name Percolated Stochastic. 

  
Figure11-a.  X1 vs output                     Figure11-b.  X2 vs X1                                         

Data Science Journal, Volume 9, 12 March 2010

26



 

 
Figure 12. Plot of Output vs X

 
2 

 
  

The approach will be demonstrated through the use of a simple example: Suppose we wish to maximize f 
(X1, X 2) =2(X1) + X 2

(1) X
, subject to the constraints 

 1

(2) 10(X
≤ 4.5 

1) +5(X 2

(3) 2(X
) ≤ 56 

1) + 0.5(X 2

(4) 2(X
) ≤ 17.5  

1) +1 .5（X 2

(5) −0.25(X
）≤ 44.5  

2)2 +8.5(X2) +2( X 1

The starting distributions for X
)≤ 64.  

1 and X 2 

X
will be assumed to be  

1

X
~ unif (0,5)  

2

 
~ unif (0,10)  

Post-processing of the output occurs through a series of percolate to ensure constraints are met. For 
example, if the percolate for constraint 1 includes values in the range of [-∞, 4.5], other values are 
discarded. All the data meeting the constraints will be kept and plotted in Figures 11 and 12. 
 
The exciting result here is that one is able to visualize sensitivity to variation in the Xs – you can ensure 
that you are not close to a cliff and can determine how much to “back off” the deterministic optimum to 
account for expected variation.  
 

7 CONCLUSION AND FURTHER STUDY 
 
The Percolated Stochastic approach can be used in a variety of applications that include optimization, 
robustness studies, and design space exploration. However, the corresponding “statistical design 
space” becomes larger than the above mentioned pessimistic design space because it includes designs 
that fail some iterations while still meeting the desired completion ratio requirement statistically. This 
increases the design complexity and makes early design space exploration difficult. The “statistical 
design” will thrive only when designers can quickly explore the huge statistical design
The next big challenge will be problems with a large number of Xs and/or Ys (>10). The key need is for 
improved visualization and data mining tools that will allow designers to rapidly explore design spaces 
while understanding sensitivity to variation. 

 space. 

Data Science Journal, Volume 9, 12 March 2010

27



8 REFERENCES 
 
Benini, L., Bogliolo, A., & De Micheli, G. (2000)A survey of design techniques for system-level dynamic 
power management. IEEE Trans. on VLSI Systems, 8(3), 299–316.  
 
Gustafsson, J. (2002) Worst case execution time analysis of object-oriented programs, Object-Oriented 
Real-Time Dependable Systems, 2002. (WORDS 2002). Proceedings of the Seventh International 
Workshop on 2002, 71-76, Digital Object Identifier 10.1109/WORDS.2002.1000038   
 
Hu, X., Zhou, T., & Sha, H.-M. (2001) Estimating probabilistic timing performance for real-time embedded 
systems. IEEE Trans. on VLSI systems, 9(6):833–844. 
 
Hua, S., Qu, G., & Bhattacharyya, S. (2003) Energy reduction techniques for multimedia applications with 
tolerance to deadline misses. 40th ACM/IEEE Design Automation Conference.  
 
Kalavade, A. & Moghe, P. (1998) A tool for performance estimation of networked embedded end-systems. 
Proc. Design Automation Conference, 257–262. 
 
Kligerman, E., &Stoyenko, A. (1986) Real-time euclid: A language for reliable real-time systems. IEEE 
Transactions on Software Engineering SE-12(9), 941–949. 
 
Mok, A. K., Amerasinghe, P., Chen, M., &Tantisirivat, K. (1989) Evaluating tight execution time bounds 
of programs by annotations. Proc. 6th IEEE Workshop on Real-Time Operating Systems and Software, 
Pittsburgh, PA, USA, 74–80. 
 
Park, C.Y. & Shaw, A. (1990) Experiments with a Program Timing Tool Based on a Source-Level Timing 
Schema. In Proc. 11th IEEE Real-Time Systems Symposium(RTSS’90), 72–81. 
 
Puschner, P. (2000) Guest Editorial: A Review of Worst-Case Execution-Time Analysis[J]. Real-Time 
Systems Vol.18, No.2/3. 
 
Puschner, P., & Koza, C. (1989) Calculating the maximum execution time of real-time programs. 
Real-Time Systems 1(2), 159–176. 
 
Shaw, A. C. (1989) Reasoning about time in higher-level language software. IEEE Transactions on 
Software Engineering SE-15(7), 875–889. 
 
Taha, H. (2006) Operations Research: An Introduction (8th Edition), Prentice Hall. 
 
 
(Article history: Received 8 January 2009, Accepted 9 February 2010, Available online 28 February 2010) 

Data Science Journal, Volume 9, 12 March 2010

28


	2  REVIEW OF DESIGN METHODS AND RULES
	3  OVERVIEW OF STATISTICAL DESIGN METHODOLOGY
	4  ESTIMATING THE PROBABILISTIC TIMING PERFORMANCE
	5  RANDOM CRITICAL PATH SIMULATION APPROACH
	Simulation Result
	Sensitivity Analysis

	PERCOLATED STOCHASTIC SIMULATION APPROACH
	CONCLUSION AND FURTHER STUDY
	8 REFERENCES

