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ABSTRACT 
 

Principal component analysis is applied to analyze the horizontal component of geomagnetic data for the 
Panzhihua Ms 6.1 earthquake. We investigate temporal variations in eigenvalues and find that only the first 
principal component has good correlation with the Ap index for which the cross-correlation correlation R is 
larger than 0.6, which may imply solar–terrestrial activity. Both the second and third principal components 
show clear daily variation, being high during work hours and low at night and on weekends. The mean 
eigenvalue of the third component at night (00:00–04:00 LT) increased about 40 days before the earthquake and 
returned to normal 10 days before the earthquake. These features are likely to be correlated with the 
earthquake.  
 
Keywords: Horizontal geomagnetism, Principal component analysis, Eigenvalue, Increase, Panzhihua 
earthquake 
 
1    INTRODUCTION 
 
An important task in research on earthquake prediction is to search for precursory signatures of large 
earthquakes. Recently, electromagnetic emissions in a wide frequency range from direct current and ultra-low 
frequency to very-high frequency were found to be associated with the occurrence and gestation of earthquakes 
(Nagao et al., 2002; Johnston, 1997). Hayakawa’s groups demonstrated that electromagnetic phenomena might 
be promising candidates for short-term earthquake predictors, and they have published many papers on seismic 
magnetism in the past two decades (Hayakawa et al., 1994; Hayakawa et al., 1999; Hayakawa et al., 2000). To 
extract precursory magnetic signature anomalies, many new methods have been applied to analyze the variation 
in geomagnetism during large earthquakes in recent years, such as polarization analysis (Hayakawa et al., 1996), 
multifractal analysis (Ida et al., 2006), and principal component analysis (PCA) (Gotoh et al., 2002; Hattori et al., 
2004; Han Peng et al., 2009). 
 
Gotoh et al. (2002) and Hattori et al. (2004) reported the effectiveness of PCA for signal discrimination and 
found an ultra-low frequency geomagnetic signature associated with the Izu Islands earthquakes in 2000 (Gotoh 
et al., 2002; Hattori et al., 2004). They employed PCA to analyze horizontal-component (north–south) data 
recorded at three closely spaced stations. Both studies showed that the third eigenvalue was significant in 
monitoring the forthcoming large earthquake. The third principal component might include information on 
future earthquake activity; the component began increasing before the earthquake swarm one month earlier in 
the latter study than in the former study, possibly owing to the different sampling rates in the data analysis (i.e., 
Gotoh et al. used 1 Hz data whereas Hattori et al. used 12.5 Hz data).   
 
Telesca et al. (2004) adopted PCA to analyze time series of the geoelectrical field measured at the Giuliano 
station, located in the seismically active region of Basilicata in southern Italy, from 1 March 2001 to 30 April 
2004. They studied the daily time evolution of two principal components and found an interesting seismic 
precursory-like pattern for both components, revealing PCA to be a promising method for the monitoring of 
seismic areas. 
 
Han Peng et al. (2009) employed the same method to study the geomagnetic diurnal variation associated with an 
M 6.1 earthquake in Japan. They investigated temporal variations in the contribution of each principal 
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component. The results showed that the contribution of the second principal component, which may relate to the 
local underground conductivity structure or local electromagnetic disturbance possibly due to a local 
seismogenic process, increased significantly about two weeks before the earthquake. These features are 
consistent with those obtained independently in previous case studies employing polarization analysis. Han’s 
study may strengthen our understanding of seismic-electromagnetic phenomena. 
 
The 2008 Panzhihua earthquake was an Ms 6.1 (Mw 5.7) earthquake that struck southern Sichuan province, 
China on 30 August 2008 at 16:30:50.5 local time. The earthquake was not an aftershock of the 2008 Sichuan 
earthquake since it related to different faults. With more than 400 aftershocks, it resulted in more than 40 deaths, 
the collapse of 10,000 homes, and damage to infrastructure in the area. The maximum intensity of the 
earthquake was VIII on the liedu scale. 
 
Fortunately, there were three (Pingdi, Huili, and Nanshan) stations nearby that recorded the variation in 
geomagnetism during the Panzhihua earthquake. We applied PCA to analyze three components of the 
geomagnetic field—the horizontal component (H), vertical component (Z), and declination (D)—but found that 
only the horizontal component became clearer. Therefore, this paper introduces the procedure of PCA and the 
results for the horizontal component (H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1. Relative locations of three observing stations and the epicenter of the Ms 6.1 earthquake in the 
Panzhihua region; thin lines are active faults. 
 
2    OBSERVATIONS AND DATA ANALYSIS 

 
2.1    Earthquake and Observations 

The epicenter of the Panzhihua earthquake was located at 26°12′ N, 101°54′ E, 50 km southeast of the city 
center, and approximately in the Renhe District of Panzhihua, Sichuan, and had a depth of about 10 km. The 
epicenter was 60 km from Huili County in Liangshan Yi Autonomous Prefecture, Sichuan, and 30 km from 
Yongren County and 55 km from Yuanmou County in neighboring Yunnan province.  

Figure 1 shows the relative locations of three observing stations and the earthquake epicenter; the thin lines are 
active faults. The three stations (HuiLi (HUL; 26.65°N, 102.25°E), NanShan (NAS; 26.54°N, 101.69°E), and 
PingDi (PID; 26.20°N, 101.84°E)) are in the Panzhihua region near the epicenter. The epicentral distances of the 
stations are roughly estimated to be about 6–65 km. The stations operate torsion-type magnetometers with three 
components and a sampling rate of 1 Hz. We used data from January to December 2008 to investigate the 
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precursor of the earthquake. 
 

2.2    The procedure of PCA 
 
PCA is a standard tool used in modern data analysis in diverse fields from neuroscience to computer graphics, 
because it is a simple, non-parametric method for extracting relevant information from confusing datasets. With 
minimal effort, PCA provides a roadmap for how to reduce a complex dataset to lower-dimension datasets to 
reveal the sometimes hidden and simple structures that often underlie a dataset (Smith, 2002). 
 
To extract any existing geomagnetic signature of the Panzhihua earthquake, PCA was performed to investigate 
long-term variations due to different sources (e.g., geomagnetic variations and man-made noise).  
 
The procedure of PCA is as follows (Smith, 2002). Step1: Collect data. The geomagnetic data recorded at the 
three stations are down-sampled to 1 Hz, and then all data are fed to numerical narrow band-pass filters without 
delay. We applied PCA to the time series data recorded at the closely separated stations. Let us consider that the 
time series (30 min) recorded at the three stations are given by yPID = [yPID(1), yPID(2),..., yPID(1800)], yNAS = 
[ yNAS(1), yNAS(2),..., yNAS(1800)], and yHUL = [yHUL(1), yHUL(2),..., yHUL(1800)], where the subscripts PID, NAS, 
and HUL correspond to the three stations. Step 2: Subtract the mean. For PCA to work properly we need to 
subtract the mean from each of the data dimensions; the mean is the average across each dimension. The data 
matrix Y = [yPID, yNAS, yHUL]T is obtained, where T denotes the transpose. Step 3: Calculate the covariance 
matrix R = YYT. Step 4: Calculate the eigenvectors of the covariance matrix. Since the covariance matrix is 
square, we can calculate the eigenvectors and eigenvalues for this matrix. The eigenvalue decomposition of R is 
R = VKVT, where K is the eigenvalue matrix with values λ1, λ2, and λ3, and V is the eigenvector matrix with 
columns v1, v2, and v3. Here the subscripts 1, 2, and 3 indicate the order of magnitude (i.e., λ1 > λ2 > λ3). The 
mathematical process of PCA is eigenvalue analysis of the covariance matrix of the observed signal matrix.  
 
3    PCA EIGENVALUE RESULTS 
 
This section describes the temporal variation of horizontal eigenvalues. Here we take the square root of 
eigenvalues λ1, λ2, and λ3, where λ1, λ2, and λ3 correspond to the first, second, and third principal components, 
respectively. 
 
Figure 2 is an overall summary of the temporal evolution of the three principal components ( λ1 , λ2 , λ3 ) 
at a frequency of 10 mHz together with the corresponding variation in horizontal geomagnetic activity expressed 
by the Ap index (lower panel). The upper three panels in the figure are continuous plots of the eigenvalues 
estimated every 30 minutes with the above procedures. The period of analysis is from January to December 
2008, as seen in Figure 2, but there is a gap in the result from the end of January to the end of March because 
PID had technical problems in data recording, so it is not possible to use data from all three stations. Using data 
for the full year in Figure 2, it is difficult to find correlation of any one principal component (λ1～λ3) with the Ap 
index. 
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Figure 2. Overall temporal evolution of three principal components (upper three panels) compared with that of 
geomagnetic activity (Ap index) (lower panel) for the year 2008. 
 
 
To find a relationship for these variables, we considered the data variation during April 2008. As shown in 
Figure 3, the variation in λ1 seems to adequately correlate with the Ap index, with there being a number of 
simultaneous peaks. In addition, we calculated the cross-coefficient R between each of three components and 
the Ap index, as shown in Figure 4. It is seen that only the variation in λ1 has good correlation with the Ap 
index; the coefficient R (red line) is greater than 0.6 in this case, which suggests that the first principal 
component may reflect signals originating from the solar activity. At the same time, the correlation coefficients 
for the second and third components (blue and black lines) are very low and have no regular pattern; therefore, 
correlations of λ2 and λ3  with Ap are not so obvious.  
 
Figure 5 shows the universal time diurnal variations in λ2 and λ3 in April 2008. Both the second and third 
components (Figures 5(a) and 5(c)) have clear daily variation with there being high values during work hours 
(LT = UT + 8:00) and low values at night and on weekends (Figures 5(b) and 5(d)). Both components seem to 
have good correlation with human activity (i.e., work during the daytime and rest at night). Therefore, to 
discover precursory signatures of an earthquake, we should use nighttime data because there is less human 
activity at that time. 
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Figure 3. Comparison of the temporal evaluation of the first principal component λ1 with that of the Ap 
index during the short period of 1–30 April 2008.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Coefficient of the correlation of three principal components with the Ap index during the period of 
1–30 April 2008; the red line indicates λ1 , the black line λ2 , and the blue line λ3 . 
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Figure 5. Variations in λ2  and λ3 on each day of April 2008. Figures (a) and (c) show the diurnal 
variations in λ2 and λ3 on weekdays respectively, while Figures (b) and (d) show those on the weekend. 
LT = UT + 8:00. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variation in the second principal component λ2 during 2008. The occurrence time of the large 
earthquake (Ms 6.1) is indicated by a vertical line. (a) Variation in λ2 for a whole day. (b) Variation in the 
midnight average (00:00–04:00 LT) of λ2 . (c) Released energy (E/r2) around the array station (r < 100 km). 
(d) Variation in the Ap index.  
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Figure 7. Variation in the third principal component λ3 during 2008. The occurrence time of the large 
earthquake (M > 6) is indicated by a vertical line. (a) Variation in λ3  for a whole day. (b) Variation in the 
midnight average (00:00–04:00 LT) of λ3 . (c) Released energy (E/r2) around the array station (r < 100 km). 
(d) Variation in the Ap index.  

 

 

 

 

 

 

 

 
 
Figure 8. Variation in the third principal component λ3 from May to September 2008. The occurrence time 
of the large earthquake (Ms 6.1) is indicated by a vertical line. (a) Variation in λ3  for a whole day. (b) 
Variation in the midnight average (00:00–04:00 LT) of λ3 , with the red line being the 5-day running mean. (c) 
Released energy (E/r2) around the array station (r < 100 km). (d) Variation in the Ap index.  
 
Figure 6 shows the variations in λ2  (Figure 6(a) shows the whole-day variation and Figure 6(b) the 
nighttime variation), the seismicity E/r2 (Figure 6(c)), and the Ap index (Figure 6 (d)). The results show that the 
variation in λ2 does not change throughout the year, and it is difficult to find an anomaly before or after the 
earthquake. 
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The weakest third component λ3 , which may be the residual of the first and second principal components, is 
the third possible signal candidate to contain hidden earthquake-related emissions (Figure 7). As shown in 
Figures 5(c) and 7(a), λ3 is likely to have diurnal variation, being highly affected by man-made signals during 
the day but little affected at night (Figure 7(b)). Therefore, the component could be used to detect weak 
earthquake-related emissions, if they exist. The variation in midnight λ3 in Figure 7(b) shows that the 
amplitude of λ3 began to increase from the middle of July 2008, about 40 days before the Ms 6.1 earthquake, 
and then sharply decreased about 10 days before the earthquake. This kind of variation is not seen for the Ap 
index (Figure 7(d)). After approximately 4 months, λ3 became rather stable and returned to the level seen at 
the beginning of the plot. 
 
We need to investigate the possible causes of the increase in λ3  and any shaking of the sensor by mechanical 
seismic waves. Therefore, we use the China Earthquake Net Catalog to investigate the regional seismicity E/r2, 
where E and r are the energy released by an earthquake and the hypocentral distance from a certain array station. 
The formula logE＝1.695ML + 3.18 is adopted for this computation. Figure 7(c) shows the index of E/r2, which 
indicates regional seismic energy. The seismic energy decays macroscopically as an exponential function, but 
the changes in λ3  are quite different. Figure 8 is an enlarged plot of the nighttime variation in λ3 from 
May to September 2008 and shows the above feature more clearly. After the strong earthquake, λ3 sharply 
increased from 31 August, but at the same time, the Ap index was very stable, perhaps indicating a post-seismic 
effect. 
 
4    DISCUSSION AND CONCLUSIONS  
 
The PCA results for horizontal geomagnetism for the Ms 6.1 Panzhihua earthquake indicate that the first 
principal component originates from solar effects since the coefficient of correlation between Ap and λ1 is 
larger than 0.6, whereas the other second and third principal components do not obviously correlate with Ap. 
The second and third components have clear daily variation of high values during work hours and low values at 
night and on weekends, which suggests they are a combination of artificial and possible earthquake-related 
signals. It is difficult to find an anomalous variation in the nighttime average λ2 at the time of the earthquake 
(Fig. 6). To avoid artificial signals, we used average nighttime (00:00–04:00 LT) data for λ3 . The results 
indicate that λ3 increased about 40 days before the earthquake and returned to normal 10 days before the 
earthquake and sharply increased after the quake and returned to normal 3 months later. The correlation of λ3  
with the earthquake is rather better than the correlation of λ2  with the earthquake.  
 
We also rule out the Ap index and the possibility of shaking effects as possible causes of the anomalous 
increases in the third principal component preceding (a few days prior to) the large earthquake. It is clearly 
found that the variation in Ap is smooth and the released energy (E/r2) is normal with 100 km of the epicenter 
during the three months before the earthquake. These observations suggest the credibility of the increase in 
λ3 about 40 days before the earthquake as a precursor. The λ3 increase is weaker than that found by Hattori 

(2004), possibly because the stations are more separated or the earthquake is less intense in our study.  
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